Skip to main content
Erschienen in: Inflammation 6/2018

08.08.2018 | ORIGINAL ARTICLE

Blockade of Aquaporin 4 Inhibits Irradiation-Induced Pulmonary Inflammation and Modulates Macrophage Polarization in Mice

verfasst von: Yuhui Li, Hongda Lu, Xiaojuan Lv, Qiu Tang, Wangxia Li, Hongfei Zhu, Yuan Long

Erschienen in: Inflammation | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

To investigate the effects of aquaporin 4 (AQP4) inhibitor in irradiation-induced pulmonary inflammation in mice. A single dose of 75 Gy was delivered to the left lung of mice to induce radiation pneumonitis. For inhibition of AQP4, 200 mg/kg of TGN-020 was administered i.p. one time per 2 days post-irradiation. Blockade of AQP4 with TGN-020 resulted in the inhibition of inflammatory cell infiltration and the downregulation of inflammatory cytokines (IL-6, IL-17, and TGF-β), chemokines (MIP1a and MCP1), fibrosis-related (Col3al and Fn1), and M2 macrophage marker (Arg1) post-irradiation. Immunofluorescence staining indicated that there was significant fewer M2 macrophage infiltration in the irradiated lung tissues from mice treated with TGN-020. Additionally, depletion of macrophages with liposome clodronate resulted in alleviated lung injury induced by irradiation. Furthermore, adoptive transfer of M1 or M2 macrophages into clodronate-treated mice was performed. The results showed that the administration of M2 macrophages fully reversed the clodronate-induced beneficial effect on inflammation score, thickness, and fibrosis. However, transfer of M1 macrophages only impacted the inflammation score and thickness and did not affect lung fibrosis. AQP4 blockade alleviated the development and severity of irradiated lung damage. This was associated with attenuated infiltration of inflammatory cell, decreased production of pro-inflammatory cytokines, and inhibited activation of M2 macrophages.
Literatur
1.
2.
Zurück zum Zitat Onishi, H., and T. Araki. 2013. Stereotactic body radiation therapy for stage I non-small-cell lung cancer: A historical overview of clinical studies. Japanese Journal of Clinical Oncology 43: 345–350.CrossRef Onishi, H., and T. Araki. 2013. Stereotactic body radiation therapy for stage I non-small-cell lung cancer: A historical overview of clinical studies. Japanese Journal of Clinical Oncology 43: 345–350.CrossRef
3.
Zurück zum Zitat Simone, C.B., 2nd, B. Wildt, A.R. Haas, G. Pope, R. Rengan, and S.M. Hahn. 2013. Stereotactic body radiation therapy for lung cancer. Chest 143: 1784–1790.CrossRef Simone, C.B., 2nd, B. Wildt, A.R. Haas, G. Pope, R. Rengan, and S.M. Hahn. 2013. Stereotactic body radiation therapy for lung cancer. Chest 143: 1784–1790.CrossRef
4.
Zurück zum Zitat Ehta, V.I.M. 2005. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. International Journal of Radiation Oncology, Biology, Physics 63: 5–24.CrossRef Ehta, V.I.M. 2005. Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: Pulmonary function, prediction, and prevention. International Journal of Radiation Oncology, Biology, Physics 63: 5–24.CrossRef
5.
Zurück zum Zitat Yarnold, J., and M.C. Vozenin Brotons. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97: 149–161.CrossRef Yarnold, J., and M.C. Vozenin Brotons. 2010. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 97: 149–161.CrossRef
6.
Zurück zum Zitat Atsuya, T., T. Yuichiro, and S. Naoko. 2018. Clarithromycin mitigates radiation pneumonitis in patients with lung cancer treated with stereotactic body radiotherapy. J Thorac Dis. 10 (1): 247–261.CrossRef Atsuya, T., T. Yuichiro, and S. Naoko. 2018. Clarithromycin mitigates radiation pneumonitis in patients with lung cancer treated with stereotactic body radiotherapy. J Thorac Dis. 10 (1): 247–261.CrossRef
7.
Zurück zum Zitat Tsoutsou, P.G., and M.I. Koukourakis. 2006. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. International Journal of Radiation Oncology, Biology, Physics 66: 1281–1293.CrossRef Tsoutsou, P.G., and M.I. Koukourakis. 2006. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. International Journal of Radiation Oncology, Biology, Physics 66: 1281–1293.CrossRef
8.
Zurück zum Zitat Schaue, D., and W.H. McBride. 2010. Links between innate immunity and normal tissue radiobiology. Radiation Research 173: 406–417.CrossRef Schaue, D., and W.H. McBride. 2010. Links between innate immunity and normal tissue radiobiology. Radiation Research 173: 406–417.CrossRef
9.
Zurück zum Zitat Marks, L.B., X. Yu, Z. Vujaskovic, W. Small Jr., R. Folz, and M.S. Anscher. 2003. Radiation-induced lung injury. Seminars in Radiation Oncology 13: 333–345.CrossRef Marks, L.B., X. Yu, Z. Vujaskovic, W. Small Jr., R. Folz, and M.S. Anscher. 2003. Radiation-induced lung injury. Seminars in Radiation Oncology 13: 333–345.CrossRef
10.
Zurück zum Zitat Demaria, S., E. Pikarsky, M. Karin, L.M. Coussens, Y.C. Chen, E.M. El-Omar, G. Trinchieri, S.M. Dubinett, J.T. Mao, E. Szabo, et al. 2010. Cancer and inflammation: Promise for biologic therapy. Journal of Immunotherapy 33: 335–351.CrossRef Demaria, S., E. Pikarsky, M. Karin, L.M. Coussens, Y.C. Chen, E.M. El-Omar, G. Trinchieri, S.M. Dubinett, J.T. Mao, E. Szabo, et al. 2010. Cancer and inflammation: Promise for biologic therapy. Journal of Immunotherapy 33: 335–351.CrossRef
11.
Zurück zum Zitat Sorani, M.D. 2008. Novel variants in human aquaporin-4 reduce cellular water permeability. Human Molecular Genetics 17 (15): 2379–2389.CrossRef Sorani, M.D. 2008. Novel variants in human aquaporin-4 reduce cellular water permeability. Human Molecular Genetics 17 (15): 2379–2389.CrossRef
12.
Zurück zum Zitat Verkman, A.S. 2013. Biology of AQP4 and anti-AQP4 antibody: Therapeutic implications. Brain Pathol 23 (6): 684–695.CrossRef Verkman, A.S. 2013. Biology of AQP4 and anti-AQP4 antibody: Therapeutic implications. Brain Pathol 23 (6): 684–695.CrossRef
13.
Zurück zum Zitat Sun, C.Y., Y.X. Zhao, and W. Zhong. 2014. The expression of aquaporins 1 and 5 in rat lung after thoracic irradiation. Journal of Radiation Research 55 (4): 683–689.CrossRef Sun, C.Y., Y.X. Zhao, and W. Zhong. 2014. The expression of aquaporins 1 and 5 in rat lung after thoracic irradiation. Journal of Radiation Research 55 (4): 683–689.CrossRef
14.
Zurück zum Zitat Bloch, O., and G.T. Manley. 2007. The role of aquaporin-4 in cerebral water transport and edema. Neurosurg. Focus. 22: E3.CrossRef Bloch, O., and G.T. Manley. 2007. The role of aquaporin-4 in cerebral water transport and edema. Neurosurg. Focus. 22: E3.CrossRef
15.
Zurück zum Zitat Xu, M., W. Su, and Q.P. Xu. 2010. Aquaporin-4 and traumatic brain edema. Chinese Journal of Traumatology 13 (2): 103–110.PubMed Xu, M., W. Su, and Q.P. Xu. 2010. Aquaporin-4 and traumatic brain edema. Chinese Journal of Traumatology 13 (2): 103–110.PubMed
16.
Zurück zum Zitat Liu, S., J. Mao, T. Wang, and X. Fu. 2017. Downregulation of aquaporin-4 protects brain against hypoxia ischemia via anti-inflammatory mechanism. Molecular Neurobiology 54 (8): 6426–6435.CrossRef Liu, S., J. Mao, T. Wang, and X. Fu. 2017. Downregulation of aquaporin-4 protects brain against hypoxia ischemia via anti-inflammatory mechanism. Molecular Neurobiology 54 (8): 6426–6435.CrossRef
17.
Zurück zum Zitat Ayasoufi, K., N. Kohei, M. Nicosia, et al. 2018. Aquaporin 4 blockade improves survival of murine heart allografts subjected to prolonged cold ischemia. American Journal of Transplantation 00: 1–9. Ayasoufi, K., N. Kohei, M. Nicosia, et al. 2018. Aquaporin 4 blockade improves survival of murine heart allografts subjected to prolonged cold ischemia. American Journal of Transplantation 00: 1–9.
18.
Zurück zum Zitat Kim, M.-G., S.C. Kim, Y.S. Ko, H.Y. Lee, S.-K. Jo, and W. Cho. 2015. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS One 10 (12): e0143961.CrossRef Kim, M.-G., S.C. Kim, Y.S. Ko, H.Y. Lee, S.-K. Jo, and W. Cho. 2015. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS One 10 (12): e0143961.CrossRef
19.
Zurück zum Zitat Li, Q., G. Eades, Y. Yao, Y. Zang, and Q. Zhou. 2014. Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lessons. The Journal of Biological Chemistry 289 (3): 1303–1312.CrossRef Li, Q., G. Eades, Y. Yao, Y. Zang, and Q. Zhou. 2014. Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lessons. The Journal of Biological Chemistry 289 (3): 1303–1312.CrossRef
20.
Zurück zum Zitat McCloy, R.A., S. Rogers, C.E. Caldon, T. Lorca, A. Castro, and A. Burgess. 2014. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13 (9): 1400–1412.CrossRef McCloy, R.A., S. Rogers, C.E. Caldon, T. Lorca, A. Castro, and A. Burgess. 2014. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13 (9): 1400–1412.CrossRef
21.
Zurück zum Zitat Kim, J.Y., D. Shin, Lee Gihyun, J.M. Kim, and D.W. Kim. 2017. Standardized herbal formula PM014 inhibits radiation-induced pulmonary inflammation in mice. Sci Rep 7: 45001.CrossRef Kim, J.Y., D. Shin, Lee Gihyun, J.M. Kim, and D.W. Kim. 2017. Standardized herbal formula PM014 inhibits radiation-induced pulmonary inflammation in mice. Sci Rep 7: 45001.CrossRef
22.
Zurück zum Zitat Hong, Z.Y., S.H. Eun, K. Park, W.H. Choi, J.I. Lee, E.J. Lee, J.M. Lee, M.D. Story, and J. Cho. 2014. Development of a small animal model to simulate clinical stereotactic body radiotherapy-induced central and peripheral lung injuries. Journal of Radiation Research 55: 648–657.CrossRef Hong, Z.Y., S.H. Eun, K. Park, W.H. Choi, J.I. Lee, E.J. Lee, J.M. Lee, M.D. Story, and J. Cho. 2014. Development of a small animal model to simulate clinical stereotactic body radiotherapy-induced central and peripheral lung injuries. Journal of Radiation Research 55: 648–657.CrossRef
23.
Zurück zum Zitat Dabjan, M.B., C.M. Buck, and I.L. Jackson. 2016. A survey of changing trends in modelling radiation lung injury in mice: Bringing out the good, the bad, and the uncertain. Laboratory Investigation 96 (9): 936–949.CrossRef Dabjan, M.B., C.M. Buck, and I.L. Jackson. 2016. A survey of changing trends in modelling radiation lung injury in mice: Bringing out the good, the bad, and the uncertain. Laboratory Investigation 96 (9): 936–949.CrossRef
24.
Zurück zum Zitat Alnajar, A., C. Nordhoff, T. Schied, R. Chiquet-Ehrismann, K. Loser, T. Vogl, S. Ludwig, and V. Wixler. 2013. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis. PLoS One 8 (11): e81356.CrossRef Alnajar, A., C. Nordhoff, T. Schied, R. Chiquet-Ehrismann, K. Loser, T. Vogl, S. Ludwig, and V. Wixler. 2013. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis. PLoS One 8 (11): e81356.CrossRef
25.
Zurück zum Zitat Kakugawa, T., et al. 2004. Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. The European Respiratory Journal 1: 57–65.CrossRef Kakugawa, T., et al. 2004. Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. The European Respiratory Journal 1: 57–65.CrossRef
26.
Zurück zum Zitat Sempowski, G.D., M.P. Beckmann, S. Derdak, and R.P. Phipps. 1994. Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis. J. Immunol. 152: 3606–3614.PubMed Sempowski, G.D., M.P. Beckmann, S. Derdak, and R.P. Phipps. 1994. Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis. J. Immunol. 152: 3606–3614.PubMed
27.
Zurück zum Zitat Wu, Z., et al. 2013. Effects of carbon ion beam irradiation on lung injury and pulmonary fibrosis in mice. Experimental and Therapeutic Medicine 5: 771–776.CrossRef Wu, Z., et al. 2013. Effects of carbon ion beam irradiation on lung injury and pulmonary fibrosis in mice. Experimental and Therapeutic Medicine 5: 771–776.CrossRef
28.
Zurück zum Zitat Wolf, J., S. Rose-John, and C. Garbers. 2014. Interleukin-6 and its receptors: A highly regulated and dynamic system. Cytokine 70: 11–20.CrossRef Wolf, J., S. Rose-John, and C. Garbers. 2014. Interleukin-6 and its receptors: A highly regulated and dynamic system. Cytokine 70: 11–20.CrossRef
29.
Zurück zum Zitat Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta 1813 (5): 878–888.CrossRef Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta 1813 (5): 878–888.CrossRef
30.
Zurück zum Zitat Chen, Y., J. Williams, I. Ding, E. Hernady, W. Liu, T. Smudzin, et al. 2002. Radiation pneumonitis and early circulatory cytokine markers. Seminars in Radiation Oncology 12 (1 Suppl 1): 22–33. Chen, Y., J. Williams, I. Ding, E. Hernady, W. Liu, T. Smudzin, et al. 2002. Radiation pneumonitis and early circulatory cytokine markers. Seminars in Radiation Oncology 12 (1 Suppl 1): 22–33.
31.
Zurück zum Zitat Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21 (4): 467–476.CrossRef Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21 (4): 467–476.CrossRef
32.
Zurück zum Zitat Wilson, M.S., S.K. Madala, T.R. Ramalingamet, B.R. Gochuico, I.O. Rosas, A.W. Cheever, et al. 2010. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. The Journal of Experimental Medicine 207: 535–552.CrossRef Wilson, M.S., S.K. Madala, T.R. Ramalingamet, B.R. Gochuico, I.O. Rosas, A.W. Cheever, et al. 2010. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. The Journal of Experimental Medicine 207: 535–552.CrossRef
33.
Zurück zum Zitat Fosslien, E. 2008. Cancer morphogenesis: Role of mitochondrial failure. Annals of Clinical and Laboratory Science 38 (4): 307–329.PubMed Fosslien, E. 2008. Cancer morphogenesis: Role of mitochondrial failure. Annals of Clinical and Laboratory Science 38 (4): 307–329.PubMed
34.
Zurück zum Zitat Zhang, X.J., J.G. Sun, J. Sun, H. Ming, X.X. Wang, L. Wu, and Z.T. Chen. 2012. Prediction of radiation pneumonitis in lung cancer patients: A systematic review. Journal of Cancer Research and Clinical Oncology 138 (12): 2103–2116.CrossRef Zhang, X.J., J.G. Sun, J. Sun, H. Ming, X.X. Wang, L. Wu, and Z.T. Chen. 2012. Prediction of radiation pneumonitis in lung cancer patients: A systematic review. Journal of Cancer Research and Clinical Oncology 138 (12): 2103–2116.CrossRef
35.
Zurück zum Zitat Johnston, C.J., J.P. Williams, P. Okunieff, and J.N. Finkelstein. 2002. Radiation-induced pulmonary fibrosis: Examination of chemokine and chemokine receptor families. Radiation Research 157: 256–265.CrossRef Johnston, C.J., J.P. Williams, P. Okunieff, and J.N. Finkelstein. 2002. Radiation-induced pulmonary fibrosis: Examination of chemokine and chemokine receptor families. Radiation Research 157: 256–265.CrossRef
36.
Zurück zum Zitat Wermuth, P.J., and S.A. Jimenez. 2015. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and Translational Medicine 4: 2.CrossRef Wermuth, P.J., and S.A. Jimenez. 2015. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clinical and Translational Medicine 4: 2.CrossRef
37.
Zurück zum Zitat Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. 2005. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. Journal of Immunology 175: 5–14. Mosmann, T.R., H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. 2005. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. Journal of Immunology 175: 5–14.
Metadaten
Titel
Blockade of Aquaporin 4 Inhibits Irradiation-Induced Pulmonary Inflammation and Modulates Macrophage Polarization in Mice
verfasst von
Yuhui Li
Hongda Lu
Xiaojuan Lv
Qiu Tang
Wangxia Li
Hongfei Zhu
Yuan Long
Publikationsdatum
08.08.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0862-z

Weitere Artikel der Ausgabe 6/2018

Inflammation 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.