Skip to main content
Erschienen in: Clinical Reviews in Bone and Mineral Metabolism 2/2014

01.06.2014 | Original Paper

Bone and Muscle Pleiotropy: The Genetics of Associated Traits

verfasst von: Robert D. Blank

Erschienen in: Clinical & Translational Metabolism | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Bone and muscle mass are highly correlated. In part, this is a consequence of both tissues sharing common genetic determinants. In addition, both tissues are responsive to their mechanical environments. New genetic tools in mice will allow genes of interest to be inactivated in experimentally defined contexts, thus allowing investigators to distinguish direct effects on each tissue from physiological responses to a primary phenotype in the other.
Literatur
1.
Zurück zum Zitat Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab. 2000;18(6):305–16.PubMedCrossRef Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab. 2000;18(6):305–16.PubMedCrossRef
2.
Zurück zum Zitat Frost HM. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec. 2001;262(4):398–419.PubMedCrossRef Frost HM. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec. 2001;262(4):398–419.PubMedCrossRef
3.
Zurück zum Zitat Leblanc AD, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50.PubMedCrossRef Leblanc AD, et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50.PubMedCrossRef
4.
Zurück zum Zitat LeBlanc A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60. LeBlanc A, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact. 2000;1(2):157–60.
5.
Zurück zum Zitat Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006;17(2):180–92.PubMedCrossRef Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int. 2006;17(2):180–92.PubMedCrossRef
6.
Zurück zum Zitat Jones HH, et al. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am. 1977;59(2):204–8.PubMed Jones HH, et al. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am. 1977;59(2):204–8.PubMed
7.
Zurück zum Zitat Torrance AG, et al. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periosteal pressure. Calcif Tissue Int. 1994;54(3):241–7.PubMedCrossRef Torrance AG, et al. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periosteal pressure. Calcif Tissue Int. 1994;54(3):241–7.PubMedCrossRef
8.
Zurück zum Zitat Morey-Holton ER, Globus RK. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone. 1998;22(5 Suppl):83S–8S.PubMedCrossRef Morey-Holton ER, Globus RK. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone. 1998;22(5 Suppl):83S–8S.PubMedCrossRef
9.
Zurück zum Zitat Wysocki A, et al. Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med. 2011;155(10):680–6 (W206–2013).PubMedCrossRef Wysocki A, et al. Whole-body vibration therapy for osteoporosis: state of the science. Ann Intern Med. 2011;155(10):680–6 (W206–2013).PubMedCrossRef
10.
11.
Zurück zum Zitat Sugiyama T, et al. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res. 2012;27(8):1784–93.PubMedCrossRefPubMedCentral Sugiyama T, et al. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res. 2012;27(8):1784–93.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.PubMedCrossRef Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.PubMedCrossRef
14.
Zurück zum Zitat Sawakami K, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711.PubMedCrossRef Sawakami K, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711.PubMedCrossRef
15.
Zurück zum Zitat Boyden LM, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.PubMedCrossRef Boyden LM, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.PubMedCrossRef
16.
Zurück zum Zitat Little RD, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.PubMedCrossRefPubMedCentral Little RD, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11–9.PubMedCrossRefPubMedCentral
17.
Zurück zum Zitat Pierroz DD, et al. Deletion of beta-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res. 2012;27(6):1252–62.PubMedCrossRef Pierroz DD, et al. Deletion of beta-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res. 2012;27(6):1252–62.PubMedCrossRef
18.
Zurück zum Zitat Li J, et al. Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology. 2003;144(4):1226–33.PubMedCrossRef Li J, et al. Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology. 2003;144(4):1226–33.PubMedCrossRef
19.
Zurück zum Zitat Sugiyama T, et al. Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1–34) on trabecular and cortical bone in mice. Bone. 2008;43(2):238–48.PubMedCrossRef Sugiyama T, et al. Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1–34) on trabecular and cortical bone in mice. Bone. 2008;43(2):238–48.PubMedCrossRef
20.
Zurück zum Zitat Akhter MP, et al. Bone response to in vivo mechanical loading in two breeds of mice. Calcif Tissue Int. 1998;63(5):442–9.PubMedCrossRef Akhter MP, et al. Bone response to in vivo mechanical loading in two breeds of mice. Calcif Tissue Int. 1998;63(5):442–9.PubMedCrossRef
21.
Zurück zum Zitat Robling AG, Turner CH. Mechanotransduction in bone: genetic effects on mechanosensitivity in mice. Bone. 2002;31(5):562–9.PubMedCrossRef Robling AG, Turner CH. Mechanotransduction in bone: genetic effects on mechanosensitivity in mice. Bone. 2002;31(5):562–9.PubMedCrossRef
22.
Zurück zum Zitat Kiel DP, et al. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone. 2007;40(3):587–96.PubMedCrossRefPubMedCentral Kiel DP, et al. Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone. 2007;40(3):587–96.PubMedCrossRefPubMedCentral
23.
Zurück zum Zitat Saless N, et al. Linkage mapping of femoral material properties in a reciprocal intercross of HcB-8 and HcB-23 recombinant mouse strains. Bone. 2010;46(5):1251–9.PubMedCrossRefPubMedCentral Saless N, et al. Linkage mapping of femoral material properties in a reciprocal intercross of HcB-8 and HcB-23 recombinant mouse strains. Bone. 2010;46(5):1251–9.PubMedCrossRefPubMedCentral
24.
Zurück zum Zitat Jepsen KJ, et al. Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility. Mamm Genome. 2007;18(6–7):492–507.PubMedCrossRefPubMedCentral Jepsen KJ, et al. Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility. Mamm Genome. 2007;18(6–7):492–507.PubMedCrossRefPubMedCentral
25.
Zurück zum Zitat Pluijm SM, et al. Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res. 2001;16(11):2142–51.PubMedCrossRef Pluijm SM, et al. Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res. 2001;16(11):2142–51.PubMedCrossRef
26.
Zurück zum Zitat Peeters MW, et al. Heritability of somatotype components: a multivariate analysis. Int J Obes (Lond). 2007;31(8):1295–301.CrossRef Peeters MW, et al. Heritability of somatotype components: a multivariate analysis. Int J Obes (Lond). 2007;31(8):1295–301.CrossRef
27.
Zurück zum Zitat MacDougall JD, et al. Effects of strength training and immobilization on human muscle fibres. Eur J Appl Physiol Occup Physiol. 1980;43(1):25–34.PubMedCrossRef MacDougall JD, et al. Effects of strength training and immobilization on human muscle fibres. Eur J Appl Physiol Occup Physiol. 1980;43(1):25–34.PubMedCrossRef
28.
Zurück zum Zitat Ahmetov II, Rogozkin VA. Genes, athlete status and training—an overview. Med Sport Sci. 2009;54:43–71.PubMedCrossRef Ahmetov II, Rogozkin VA. Genes, athlete status and training—an overview. Med Sport Sci. 2009;54:43–71.PubMedCrossRef
29.
Zurück zum Zitat Karasik D, et al. Bivariate genome-wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. J Bone Miner Res. 2009;24(4):710–8.PubMedCrossRefPubMedCentral Karasik D, et al. Bivariate genome-wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. J Bone Miner Res. 2009;24(4):710–8.PubMedCrossRefPubMedCentral
30.
Zurück zum Zitat Deng FY, et al. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res. 2007;22(6):808–16.PubMedCrossRef Deng FY, et al. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res. 2007;22(6):808–16.PubMedCrossRef
31.
32.
Zurück zum Zitat Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–28.PubMedCrossRef Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–28.PubMedCrossRef
33.
Zurück zum Zitat Anderson MS, Kunkel LM. The molecular and biochemical basis of Duchenne muscular dystrophy. Trends Biochem Sci. 1992;17(8):289–92.PubMedCrossRef Anderson MS, Kunkel LM. The molecular and biochemical basis of Duchenne muscular dystrophy. Trends Biochem Sci. 1992;17(8):289–92.PubMedCrossRef
34.
Zurück zum Zitat McDonald DG, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–8.PubMedCrossRef McDonald DG, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–8.PubMedCrossRef
35.
Zurück zum Zitat Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–4.PubMed Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–4.PubMed
36.
Zurück zum Zitat Pouwels S, et al. Risk of fracture in patients with muscular dystrophies. Osteoporos Int. 2014;25(2):509–18. Pouwels S, et al. Risk of fracture in patients with muscular dystrophies. Osteoporos Int. 2014;25(2):509–18.
38.
39.
Zurück zum Zitat Montgomery E, et al. Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice. Anat Rec A Discov Mol Cell Evol Biol. 2005;286(1):814–22.PubMedCrossRef Montgomery E, et al. Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice. Anat Rec A Discov Mol Cell Evol Biol. 2005;286(1):814–22.PubMedCrossRef
40.
Zurück zum Zitat Schuelke M, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350(26):2682–8.PubMedCrossRef Schuelke M, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;350(26):2682–8.PubMedCrossRef
41.
Zurück zum Zitat McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.PubMedCrossRef McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.PubMedCrossRef
42.
Zurück zum Zitat Marchitelli C, et al. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm Genome. 2003;14(6):392–5.PubMedCrossRef Marchitelli C, et al. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm Genome. 2003;14(6):392–5.PubMedCrossRef
43.
Zurück zum Zitat Mosher DS, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3(5):e79.PubMedCrossRefPubMedCentral Mosher DS, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3(5):e79.PubMedCrossRefPubMedCentral
44.
Zurück zum Zitat Zimmers TA, et al. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296(5572):1486–8.PubMedCrossRef Zimmers TA, et al. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296(5572):1486–8.PubMedCrossRef
45.
Zurück zum Zitat Tsuchida K. Targeting myostatin for therapies against muscle-wasting disorders. Curr Opin Drug Discov Dev. 2008;11(4):487–94. Tsuchida K. Targeting myostatin for therapies against muscle-wasting disorders. Curr Opin Drug Discov Dev. 2008;11(4):487–94.
46.
Zurück zum Zitat Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(1):388–91.PubMedCrossRef Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(1):388–91.PubMedCrossRef
48.
Zurück zum Zitat Hamrick MW, et al. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2006;21(3):477–83.PubMedCrossRef Hamrick MW, et al. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res. 2006;21(3):477–83.PubMedCrossRef
49.
Zurück zum Zitat Hamrick MW, et al. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone. 2007;40(6):1544–53.PubMedCrossRefPubMedCentral Hamrick MW, et al. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone. 2007;40(6):1544–53.PubMedCrossRefPubMedCentral
50.
Zurück zum Zitat Harslof T, et al. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians. Calcif Tissue Int. 2013;92(5):467–76.PubMedCrossRef Harslof T, et al. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians. Calcif Tissue Int. 2013;92(5):467–76.PubMedCrossRef
51.
Zurück zum Zitat Hamrick MW, et al. Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone. 2000;27(3):343–9.PubMedCrossRef Hamrick MW, et al. Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone. 2000;27(3):343–9.PubMedCrossRef
52.
Zurück zum Zitat Vecchione L, et al. Craniofacial morphology in myostatin-deficient mice. J Dent Res. 2007;86(11):1068–72.PubMedCrossRef Vecchione L, et al. Craniofacial morphology in myostatin-deficient mice. J Dent Res. 2007;86(11):1068–72.PubMedCrossRef
53.
Zurück zum Zitat Blank RD. Mouse genetics: breeding strategies and genetic engineering. In: Basow DS, editor. UpToDate. Waltham: Wolters Kluwer; 2012. Blank RD. Mouse genetics: breeding strategies and genetic engineering. In: Basow DS, editor. UpToDate. Waltham: Wolters Kluwer; 2012.
54.
Zurück zum Zitat Kim JE, Nakashima K, de Crombrugghe B. Transgenic mice expressing a ligand-inducible cre recombinase in osteoblasts and odontoblasts: a new tool to examine physiology and disease of postnatal bone and tooth. Am J Pathol. 2004;165(6):1875–82.PubMedCrossRefPubMedCentral Kim JE, Nakashima K, de Crombrugghe B. Transgenic mice expressing a ligand-inducible cre recombinase in osteoblasts and odontoblasts: a new tool to examine physiology and disease of postnatal bone and tooth. Am J Pathol. 2004;165(6):1875–82.PubMedCrossRefPubMedCentral
55.
Zurück zum Zitat Kalajzic I, et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res. 2002;17(1):15–25.PubMedCrossRef Kalajzic I, et al. Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res. 2002;17(1):15–25.PubMedCrossRef
56.
Zurück zum Zitat Zhang M, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005–12.PubMedCrossRef Zhang M, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005–12.PubMedCrossRef
57.
Zurück zum Zitat Lu Y, et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res. 2007;86(4):320–5.PubMedCrossRef Lu Y, et al. DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res. 2007;86(4):320–5.PubMedCrossRef
58.
Zurück zum Zitat Rodda SJ, McMahon A. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231–44.PubMedCrossRef Rodda SJ, McMahon A. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231–44.PubMedCrossRef
59.
Zurück zum Zitat Maes C, Kobayashi T, Kronenberg HM. A novel transgenic mouse model to study the osteoblast lineage in vivo. Ann N Y Acad Sci. 2007;1116:149–64.PubMedCrossRef Maes C, Kobayashi T, Kronenberg HM. A novel transgenic mouse model to study the osteoblast lineage in vivo. Ann N Y Acad Sci. 2007;1116:149–64.PubMedCrossRef
61.
Zurück zum Zitat Schuler M, et al. Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse. Genesis. 2005;41(4):165–70.PubMedCrossRef Schuler M, et al. Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse. Genesis. 2005;41(4):165–70.PubMedCrossRef
62.
Zurück zum Zitat Bothe GW, et al. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis. 2000;26(2):165–6.PubMedCrossRef Bothe GW, et al. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis. 2000;26(2):165–6.PubMedCrossRef
63.
Zurück zum Zitat Chen JC, et al. MyoD-cre transgenic mice: a model for conditional mutagenesis and lineage tracing of skeletal muscle. Genesis. 2005;41(3):116–21.PubMedCrossRef Chen JC, et al. MyoD-cre transgenic mice: a model for conditional mutagenesis and lineage tracing of skeletal muscle. Genesis. 2005;41(3):116–21.PubMedCrossRef
64.
65.
Metadaten
Titel
Bone and Muscle Pleiotropy: The Genetics of Associated Traits
verfasst von
Robert D. Blank
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Clinical & Translational Metabolism / Ausgabe 2/2014
Print ISSN: 1534-8644
Elektronische ISSN: 2948-2445
DOI
https://doi.org/10.1007/s12018-014-9159-4

Weitere Artikel der Ausgabe 2/2014

Clinical Reviews in Bone and Mineral Metabolism 2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.