Skip to main content
Erschienen in: Breast Cancer Research 1/2008

Open Access 01.02.2008 | Research article

Breast cancer stroma frequently recruits fetal derived cells during pregnancy

verfasst von: Gil Dubernard, Sélim Aractingi, Michel Oster, Roman Rouzier, Marie-Christine Mathieu, Serge Uzan, Kiarash Khosrotehrani

Erschienen in: Breast Cancer Research | Ausgabe 1/2008

Abstract

Introduction

Breast carcinomas associated with pregnancy display a high frequency of inflammatory types, multifocal lesions and lymph node metastasis. Because pregnancy results in transfer to mothers of foetal stem cells that can migrate and differentiate into various tissues, we addressed the issue of whether such cells are present in breast carcinoma associated with pregnancy.

Methods

We analyzed women presenting with such tumours who were pregnant with male foetuses using fluorescence in situ hybridization (FISH), targeting X and Y chromosomes. The foetal cell phenotype was then determined by combining FISH and immunohistochemistry with various antibodies. Statistical analysis was performed using t-test or nonparametric Wilcoxon's test.

Results

We found that foetal cells were present in nine out of 10 carcinomas, in contrast with none of four benign mammary lesions (P < 0.05). Counting foetal and maternal cells showed that the mean number of foetal cells per million maternal cells was 36 in breast cancers and 0 in control samples (P < 0.01). By combining FISH and immunolabelling, we found that foetal cells expressed mainly mesenchymal or, to a lesser degree, epithelial or endothelial markers, but never leucocytes.

Conclusion

These findings demonstrate the frequent presence of foetal derived cells essentially in tumour stroma. Given the role played by stroma in tumour proliferation, these findings raise the issue of whether foetal cell can be targeted to influence tumour behaviour.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​bcr1860) contains supplementary material, which is available to authorized users.
Sélim Aractingi and Kiarash Khosrotehrani contributed equally to this work.

Competing interests

The authors declare that they have no financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial, or any other) to declare in relation to this manuscript.

Authors' contributions

SA, KK and SU contributed to study conception and design. GD, MO, RR and MCM contributed to generation of data. KK, SA, GD and RR were involved in the analysis and interpretation of data. KK, SA and GD were involved in drafting the manuscript or revising it critically for important intellectual content.
Abkürzungen
FISH
fluorescence in situ hybridization
HLA
human leucocyte antigen
PABC
pregnancy-associated breast carcinoma.

Introduction

Breast cancer is among the two most commonly diagnosed cancers of pregnancy, along with cervical cancer [1]. Up to 3.8% of all breast carcinomas are associated with pregnancy [2]. These tumours account for 8% of breast cancers occurring in women younger than 45 years old and for as many as 18% of women younger than 30 years [2]. One of the most used definitions of pregnancy-associated breast carcinoma (PABC) emphasizes the fact that these tumours develop during pregnancy itself or during the first year after delivery [1, 3]. Accordingly, analysis of the literature shows that PABC develops in 60% of patients during pregnancy itself and 40% of cases occurred during the year following delivery [4]. In addition, these tumours appear to exhibit peculiar profiles of evolution. Indeed, 14% to 28% of PABCs are of inflammatory types [5]. These tumours were found to be significantly larger, with more extensive lymph node involvement, as compared with tumours developing in nonpregnant women [6]. Finally, the SBR (Scarff, Bloom, Richardson; a histological index) grades of PABCs appear to be high [6, 7].
Pregnancy induces the transfer of foetal cells that may persist for decades in the mother. Foetal transferred cells include differentiated cells as well as several progenitor cell types, such as haematopoietic [8] and mesenchymal stem cells [9]. These progenitors are capable of migration in maternal damaged tissues and can differentiate into various phenotypes [10]. Several groups have suggested that microchimeric foetal cells were recruited to maternal lesional tissues such as kidney, liver, or brain tissues in order to help in the repair process, and may rescue genetically deficient maternal tissues [1113]. Similarly, we recently demonstrated the ability of foetal endothelial progenitor cells to form blood vessels in maternal inflamed skin [14].
Microchimeric cells have also been detected in tumours. Indeed, in a series of kidney transplant recipients, we and others recently reported that epidermal skin carcinoma and, moreover, Kaposi's sarcomas may arise from microchimeric donor cells [15]. Similarly, nontumoural cytokeratin-expressing foetal microchimeric cells have been identified in cervical cancer from women with a prior history of pregnancy [16].
Because PABC appears to be a frequent condition with an aggressive course, and because foetal cells can participate in tissue remodelling, we conducted the present study to analyze the presence and phenotype of foetal cells in PABCs.

Materials and methods

Materials

We retrospectively retrieved data from two institutions (Institut Gustave Roussy and Hôpital Tenon) between 2000 and 2005. In order to be eligible for inclusion, female patients had to fulfill the following criteria: pathologically proven ductal breast carcinoma; carcinoma diagnosed during pregnancy or during the 6 months after delivery; male child; and availability of formalin fixed paraffin-embedded specimens (biopsy, tumourectomy, or mastectomy). The study fulfilled the commitments of ethics regulations in France in terms of institutional review board approval and informed consent. Ten cases were identified; six had neoadjuvant chemotherapy and four had adjuvant chemotherapy. Control samples included benign breast tumour, such as fibroadenosis and mastosis, obtained from women pregnant with a male baby. The samples were made available to us in accordance with national and European procedures and ethical guidelines.

Fluorescence in situhybridization

Fluorescence in situ hybridization (FISH) was performed to detect male foetal cells in maternal breast, as was previously described by Johnson and coworkers [17], in 5 μm thick paraffin-embedded sections. We used X and Y chromosome probes labelled respectively with Cy3 (red) and FITC (green), mapping to Xp11.1q11.1 (a satellite centromeric region of the X chromosome) and to Yq12 (satellite III region of the Y chromosome; Abbott, Chicago, IL, USA).

FISH combined with immunostaining (immuno-FISH)

In order to determine the phenotype of foetal cells detected in the sections of breast carcinomas associated with pregnancy, we combined X and Y FISH with immunostaining. This was done in similar 5 μm thick paraffin-embedded sections, as was previously described [10, 18]. The antibodies were anti-CD45 (monoclonal mouse anti-human CD45, clone 2B11 + PD7/26; Dako, Carpintera, CA, USA), anti-CD34 (monoclonal mouse anti-human CD34 class II, clone QBEnd-10; Dako), anti-vimentin (monoclonal mouse anti-vimentin, clone Vim 3B4; Dako) and anti-cytokeratin (monoclonal mouse anti-human cytokeratin, clone AE1/AE3; Dako), which stain leucocytes, endothelial cells, stromal cells and epithelial cells, respectively. For the FISH combined with anti-CD34 and anti-CD45 antibody labelling, we used the Envision + peroxidase kit (Dako). For FISH combined with anti-cytokeratin and anti-vimentin labelling, we used an immunofluorescence technique with secondary goat anti-mouse antibody labelled with Texas red (Jackson immunoresearch, West Grove, PA, USA). All slides were counterstained with 4',6-diamidino-2-phenylindole.

Scoring and statistical analysis

Sections of tissue from female pregnant patients and control sections were all analyzed for the presence of male (presumably foetal) cells. Sections were scored if more than 70% of the nuclei had at least one FISH signal. Male cells were recognized as having one X (red) and one Y (green) chromosome within an intact blue-stained nucleus. We estimated the total number of nucleated cells in each section by counting the number of nuclei in six fields that were randomly chosen (630× magnification). The size of our samples in case and control groups was identical and a total of 6 million cells were evaluated in all samples combined (range 10e5 to 2 × 10e6).
For each case, the number of foetal cells found was reported as the total number of cells examined. The frequency of foetal cells and the proportion of tumours with foetal cells were then compared between the breast carcinomas and the control group using Student's t-test or nonparametric Wilcoxon's test.

Results

Patient characteristics

During the study period, more than 5,000 women were diagnosed with breast carcinomas in the two institutions. Sixty patients developed breast carcinoma during pregnancy or during the 6 months after delivery; only 10 had tumours that corresponded with the inclusion criteria. The clinical and histological characteristics of the patients and their breast tumours are summarized in Table 1. No patient or control individual had a history of blood transfusion, organ transplantation, or a twin sibling that could have been a confounding factor in interpreting male cell microchimerism. The mean ages of the patients and control individuals were 36 years (range 27 to 40 years) and 35 years (range 30 to 40 years), respectively. Among the malignant lesions, five were diagnosed during pregnancy at a median term of 7 months (range 2 to 7 months), and five were diagnosed postpartum at a median delay of 4 months. The four benign lesions were all diagnosed during pregnancy at a median term of 4 months (3 to 6 months). The median sizes of the malignant tumours and benign lesions were 36 mm (range 5 to 80 mm) and 28 mm (range 22 to 70 mm), respectively.
Table 1
Clinical and histological characteristics of the patients and breast tumours
Patients/control individuals
Time of diagnosis
Term of diagnosis (months)
Neoadjuvant chemotherapy
pTNM
Size (mm)
Nodal status
Histology
Grade
Estrogen receptors
Presence of MC cells
Number of MC cells
Number of MC cells/10e6 maternal cells
Patients
            
   1
Pregnancy
2
Yes
T3N0
60
3N+
Ductal carcinoma
3
1
Positive
16
8
   2
Pregnancy
7
Yes
T4N0
4 6
15N-/15
Ductal carcinoma
3
0
Positive
20
78
   3
Postpartum
6
No
T2N0
25
11N-
Ductal carcinoma
3
0
Positive
3
7
   4
Pregnancy
-
No
T3N1
30
14N+
Ductal carcinoma
3
0
Positive
23
24
   5
Postpartum
4
No
T2N1
27
2N+
Ductal carcinoma
3
1
Positive
17
165
   6
Postpartum
3
No
T2N1
5
24N-
Ductal carcinoma
1
1
Positive
19
29
   7
Pregnancy
7
Yes
T4D N3
80
24N+
Ductal carcinoma
3
0
Positive
21
16
   8
Postpartum
5
Yes
T3N1
70
6N+
Ductal carcinoma
2
1
Positive
6
12
   9
Postpartum
1
Yes
T2N1
40
13N-
Ductal carcinoma
2
1
Positive
10
26
   10
Pregnancy
7
Yes
T2N1
36
N+
Ductal carcinoma
3
1
Negative
0
0
Controls
            
   1
Pregnancy
4
-
-
70
-
Mastosis
-
-
Negative
0
-
   2
Pregnancy
4
-
-
28
-
Fibroadenosis
-
-
Negative
0
-
   3
Pregnancy
4
-
-
28
-
Fibroadenosis
-
-
Negative
0
-
   4
Pregnancy
4
-
-
22
-
Fibroadenosis
-
-
Negative
0
-
MC, microchimeric
The analyzed specimens consisted of four tumourectomies, five mastectomies and five biopsies (four benign lesions and one carcinoma).

Detection of foetal cells

We detected X and Y positive foetal cells in maternal tumoural tissues in nine out of 10 ductal carcinomas versus none of four breast adenofibroma or mastosis samples (P < 0.01) (Table 2). The unique PABC that did not exhibit foetal cells was a small biopsy specimen. Surgical samples contained healthy and breast carcinoma tissue. Microchimeric cells were distributed throughout the specimens and were preferentially located in tumoural area rather than nontumoural areas. Morphologically, they were undistinguishable from the surrounding cells in terms of size and nuclear shape. Of note, the foetal cells were never grouped in clusters. We estimated the frequency of the foetal cells; we found an average of 19 foetal cells per million maternal cells (median frequency: 20 fetal/million maternal cells) versus none per million maternal cells in control individuals (P < 0.01; Figure 1). In addition, we compared the level of faetal cells according to patient features. There were fewer foetal cells in patients who had received neoadjuvant chemotherapy than in those who were not treated (23 versus 56 foetal cells/million maternal cells), but the difference did not reach statistical significance. No relationship were established between timing of surgery (during versus after pregnancy), hormone receptor status, lymph node invasion and number of foetal cells.
Table 2
Level of foetal cells observed in breast carcinoma and in control group
Patients/control individuals
Presence of MC cells
Number of MC cells
Number of MC cells/10e6 maternal cells
Cytokeratin
CD34
CD45
Vimentin
Patients
       
   1
Positive
16
8
4
0
0
-
   2
Positive
20
78
0
0
0
-
   3
Positive
3
7
0
0
0
-
   4
Positive
23
24
1
0
0
0
   5
Positive
17
165
1
0
0
-
   6
Positive
19
29
4
0
0
-
   7
Positive
21
16
0
0
0
2
   8
Positive
6
12
1
0
0
-
   9
Positive
10
26
1
1
0
-
   10
Negative
0
0
-
-
-
-
Controls
       
   1
Negative
0
-
    
   2
Negative
0
-
    
   3
Negative
0
-
    
   4
Negative
0
-
    
MC, microchimeric.

Phenotype of foetal cells

We next determined the phenotype of foetal cells in maternal breast tumours according to four different markers. We used CD45 to identify leucocytes, CD34 for endothelial cells, and cytokeratin and vimentin for epithelium and stroma, respectively (Table 2). In the 135 foetal cells that were identified and evaluated individually for phenotype, vimentin expression and cytokeratin expression were identified in 22% (2/9 microchimeric cells) and 16% (12/74 microchimeric cells), respectively (Figure 2). CD34 expression was found in only one out of 20 analyzed foetal cells (5%). Foetal cells never expressed CD45.

Discussion

This study was conducted to determine whether there is an interaction between a tumour type that is known to develop during pregnancy and foetal cells, which can migrate and differentiate in various maternal tissues. Our findings show that among women bearing a child, only those with breast carcinoma had foetal cells in their mammary tissue. Although the number of specimens analyzed was low, significant differences from benign control samples were identified; moreover, breast carcinomas nearly always had foetal cells within tumoural areas.
PABC is usually defined as occurring during pregnancy, lactation and up to 1 year after delivery [1, 3]. In this study, in order to improve the stringency of detecting PABC and to avoid coincident cases, we restricted our sampling to tumours occurring up to 6 months after delivery. In our view, this allowed us also to avoid other unknown factors that may interfere with foetal cell trafficking over a prolonged period and to focus on a period characterized by higher levels of circulating foetal cells. Depending on country, breast carcinomas are the first or the second most common cancer occurring in pregnant women [1]. It develops in about one in 3,000 pregnant women and therefore represents a troublesome but not infrequent disease [19]. The profile of breast cancer during pregnancy has a number of distinct features. Women with PABC have larger tumours and with lymph node invasion occurring in 56% to 89%, as compared with 38% to 54% in breast carcinomas not associated with pregnancy [3, 5, 6, 2025]. Similarly, women with PABC were more likely to have tumours of high histological grade, to exhibit a high level of mitosis, and to be progesterone receptor negative than matched nonpregnant control women [26, 27]. However, in two studies [24, 28], when patients and nonpregnant control women were matched for histological grade and tumour stage, survival rates were equivalent. Therefore, the poorer scores of PABCs may result from a more advanced stage at diagnosis, because physiological changes in the breast delay diagnosis [23, 2932]. Alternatively, these higher scores may reflect an intrinsically worse profile for these breast carcinomas.
Analysis of the precise types of infiltrating foetal cells, which were present at very low levels, proved difficult. Although our team has accumulated experience in combining FISH and immunolabelling, each antibody in various tissues required careful evaluation, with multiple preliminary trials. Because this multistep, delicate technique was applied to few cells, only 40% of total foetal cells could be identified with precision, which is in accordance with our usual findings under such circumstances. Foetal cells in the vicinity of breast carcinomas were not circulating leucocytes nor endothelial cells, but seemed mainly of mesenchymal or epithelial origin, because these expressed vimentin or cytokeratin, respectively. Because the foetal cells that we identified were isolated and not organized as clusters, they were not part of the neoplastic clone, even if they expressed antigens that can be found within the adenocarcinoma.
Pregnancy induces the transfer of foetal haematopoietic, mesenchymal and endothelial stem cells to the mothers. These may persist decades after delivery in niches such as the mother's bone marrow. The persisting foetal stem cells may interact with maternal peripheral tissues. Indeed, several human and murine studies have demonstrated that foetal derived cells were present in thyroid, intestinal liver, neuronal, glial [12] and kidney tubular cells [11]. Interestingly, most studies have demonstrated that these foetal derived cells home to lesional tissues, where they adopt the phenotype of the affected tissues [11, 13, 33]. Therefore, it appears that foetal cells are recruited in damaged organs, where they differentiate or fuse with host cells to adopt the phenotype of the involved tissue.
In the present study, we describe foetal derived cells expressing fibroblast, epithelial and even endothelial markers in breast carcinomas. These findings are in accordance with the above-mentioned previous studies and demonstrate that the stroma of malignant tumours developing during pregnancy nearly always recruits foetal derived cells. In mice as well as in humans, CD34 haemopoietic progenitors may develop into isolated epithelial cells without clusters in injured tissues, similar to our findings [34, 35]. Mesenchymal stem cells can be recruited by cancer tissue, as was previously described [36]. More recently, we reported the observation that endothelial progenitor cells of foetal origin could form blood vessels in maternal inflammatory skin during pregnancy [14]. All of these data can therefore account for the presence of foetal fibroblasts, and endothelial and epithelial cells in breast carcinomas.
Although, Cha and coworkers [16] in cervical carcinomas in women with a prior history of pregnancy reported the presence of CD45+ leucocytes in 44.4% but also cytokeratin foetal derived cells in 24.3%. The present study is the first systematic evaluation of foetal cell invasion in carcinomas developing during or shortly after pregnancy. We previously conducted a study of skin epithelial tumours in skin cancers developing after kidney transplantation, a situation similar to pregnancy because it is characterized by the presence of a small number of circulating donor cells [15]. In that context, microchimeric cells from the donors were frequently found in cutaneous malignant epithelial tumours, but they were not epithelial [15]. In a unique and peculiar case, such donor cells were even able to give rise to a skin carcinoma, a situation that we did not identify in the present study. Interestingly, Kaposi's sarcoma in kidney transplant recipients occured more frequently in donor tissue [37]. However, these tumours are not epithelial but derive partly from endothelial cells. Endothelial progenitors circulate and may therefore have been present in the transplanted kidney. Therefore, malignancies occurring during pregnancy appear to frequently recruit foetally derived cells and, in the case of breast, these are mainly cells stroma participating. Gadi and Nelson [38] recently found that detection of foetal cells occurred more frequently in peripheral blood from women without breast carcinomas than in those presenting with breast cancer. These authors therefore suggest that circulating foetal microchimerism could 'protect' women from developing breast carcinoma [38].
Pregnancy associated carcinomas are aggressive tumours. Our small series of 10 patients suggests that PABC is characterized by the presence of foetal cells in stroma. Stroma may influence tumor cell proliferation and may eventually be relevant to prognosis [39]. This observation is potentially important enough to warrant further investigation. Indeed, foetal derived stromal cells may behave in a different way from adult maternal cells, because foetal mesenchymal cells exhibit a greater degree of plasticity, grow more rapidly and exhibit longer telomers than do their adult counterparts [40]. In addition, the maternal immune system allows fetal cells bearing paternal nonshared antigens to avoid immune responses. Human leucocyte antigen (HLA)-G is among the molecules that are expressed by foetal cells to reduce maternal immune responses [41]. HLA-G abnormal expression has also been suspected of playing a role in various malignancies, including breast cancer [42]. One can therefore hypothesize that foetal cells in breast cancer tumours may influence tumour evolution. However, this question should be addressed through comparisons of foetal cell infiltration between PABC and similar tumours occurring years or decades postpartum.

Conclusion

The presence of foetal cells in PABC is a frequent phenomenon. These cells were mostly part of the tumour stroma and could intervene in the poorer profile of these carcinomas.

Acknowledgements

Assistance Publique-Hopitaux de Paris for their financial support (CIRC No 04026). Service de Cyto-génétique, Hôpital Tenon, for giving access for imaging.

Competing interests

The authors declare that they have no financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial, or any other) to declare in relation to this manuscript.

Authors' contributions

SA, KK and SU contributed to study conception and design. GD, MO, RR and MCM contributed to generation of data. KK, SA, GD and RR were involved in the analysis and interpretation of data. KK, SA and GD were involved in drafting the manuscript or revising it critically for important intellectual content.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Barnes DM, Newman LA: Pregnancy-associated breast cancer: a literature review. Surg Clin North Am. 2007, 87: 417-430. 10.1016/j.suc.2007.01.008.CrossRefPubMed Barnes DM, Newman LA: Pregnancy-associated breast cancer: a literature review. Surg Clin North Am. 2007, 87: 417-430. 10.1016/j.suc.2007.01.008.CrossRefPubMed
2.
Zurück zum Zitat Kitchen PR, McLennan R: Breast cancer and pregnancy. Med J Aust. 1987, 147: 337-339.PubMed Kitchen PR, McLennan R: Breast cancer and pregnancy. Med J Aust. 1987, 147: 337-339.PubMed
3.
Zurück zum Zitat Petrek JA: Breast cancer and pregnancy. J Natl Cancer Inst Monogr. 1994, 16: 113-121. Petrek JA: Breast cancer and pregnancy. J Natl Cancer Inst Monogr. 1994, 16: 113-121.
4.
Zurück zum Zitat Andrieu N, Prevost T, Rohan TE, Luporsi E, Lê MG, Gerber M, Zaridze DG, Lifanova Y, Renaud R, Lee HP, Duffy SW: Variation in the interaction between familial and reproductive factors on the risk of breast cancer according to age, menopausal status, and degree of familiality. Int J Epidemiol. 2000, 29: 214-223. 10.1093/ije/29.2.214.CrossRefPubMed Andrieu N, Prevost T, Rohan TE, Luporsi E, Lê MG, Gerber M, Zaridze DG, Lifanova Y, Renaud R, Lee HP, Duffy SW: Variation in the interaction between familial and reproductive factors on the risk of breast cancer according to age, menopausal status, and degree of familiality. Int J Epidemiol. 2000, 29: 214-223. 10.1093/ije/29.2.214.CrossRefPubMed
5.
Zurück zum Zitat Tretli S, Kvalheim G, Thoresen S, Host H: Survival of breast cancer patients diagnosed during pregnancy or lactation. Br J Cancer. 1988, 58: 382-384.CrossRefPubMedPubMedCentral Tretli S, Kvalheim G, Thoresen S, Host H: Survival of breast cancer patients diagnosed during pregnancy or lactation. Br J Cancer. 1988, 58: 382-384.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Reed W, Hannisdal E, Skovlund E, Thoresen S, Lilleng P, Nesland JM: Pregnancy and breast cancer: a population-based study. Virchows Arch. 2003, 443: 44-50. 10.1007/s00428-003-0817-z.CrossRefPubMed Reed W, Hannisdal E, Skovlund E, Thoresen S, Lilleng P, Nesland JM: Pregnancy and breast cancer: a population-based study. Virchows Arch. 2003, 443: 44-50. 10.1007/s00428-003-0817-z.CrossRefPubMed
7.
Zurück zum Zitat Dargent M, Mayer M, Lansac J, Carret JL: Breast cancer and pregnancy. Apropos of 96 cases followed for 3 and 1/2 years at the Centre Leon Berard, Lyons [in French]. J Gynecol Obstet Biol Reprod (Paris). 1976, 5: 783-803. Dargent M, Mayer M, Lansac J, Carret JL: Breast cancer and pregnancy. Apropos of 96 cases followed for 3 and 1/2 years at the Centre Leon Berard, Lyons [in French]. J Gynecol Obstet Biol Reprod (Paris). 1976, 5: 783-803.
8.
Zurück zum Zitat Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA: Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996, 93: 705-708. 10.1073/pnas.93.2.705.CrossRefPubMedPubMedCentral Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA: Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996, 93: 705-708. 10.1073/pnas.93.2.705.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM: Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet. 2004, 364: 179-182. 10.1016/S0140-6736(04)16631-2.CrossRefPubMed O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, Roberts IA, Fisk NM: Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet. 2004, 364: 179-182. 10.1016/S0140-6736(04)16631-2.CrossRefPubMed
10.
Zurück zum Zitat Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW: Transfer of fetal cells with multilineage potential to maternal tissue. Jama. 2004, 292: 75-80. 10.1001/jama.292.1.75.CrossRefPubMed Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW: Transfer of fetal cells with multilineage potential to maternal tissue. Jama. 2004, 292: 75-80. 10.1001/jama.292.1.75.CrossRefPubMed
11.
Zurück zum Zitat Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, Imai E, Hori M: Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun. 2004, 325: 961-967. 10.1016/j.bbrc.2004.10.105.CrossRefPubMed Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, Imai E, Hori M: Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun. 2004, 325: 961-967. 10.1016/j.bbrc.2004.10.105.CrossRefPubMed
12.
Zurück zum Zitat Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS: Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?. Stem Cells. 2005, 23: 1443-1452. 10.1634/stemcells.2004-0169.CrossRefPubMed Tan XW, Liao H, Sun L, Okabe M, Xiao ZC, Dawe GS: Fetal microchimerism in the maternal mouse brain: a novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?. Stem Cells. 2005, 23: 1443-1452. 10.1634/stemcells.2004-0169.CrossRefPubMed
13.
Zurück zum Zitat Khosrotehrani K, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, Stroh H, Guegan S, Bianchi DW: Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod. 2007, 22: 654-661. 10.1093/humrep/del426.CrossRefPubMed Khosrotehrani K, Reyes RR, Johnson KL, Freeman RB, Salomon RN, Peter I, Stroh H, Guegan S, Bianchi DW: Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Hum Reprod. 2007, 22: 654-661. 10.1093/humrep/del426.CrossRefPubMed
14.
Zurück zum Zitat Huu SN, Oster M, Uzan S, Chareyre F, Aractingi S, Khosrotehrani K: Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci USA. 2007, 104: 1871-1876. 10.1073/pnas.0606490104.CrossRef Huu SN, Oster M, Uzan S, Chareyre F, Aractingi S, Khosrotehrani K: Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci USA. 2007, 104: 1871-1876. 10.1073/pnas.0606490104.CrossRef
15.
Zurück zum Zitat Aractingi S, Kanitakis J, Euvrard S, Le Danff C, Peguillet I, Khosrotehrani K, Lantz O, Carosella ED: Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res. 2005, 65: 1755-1760. 10.1158/0008-5472.CAN-04-2783.CrossRefPubMed Aractingi S, Kanitakis J, Euvrard S, Le Danff C, Peguillet I, Khosrotehrani K, Lantz O, Carosella ED: Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res. 2005, 65: 1755-1760. 10.1158/0008-5472.CAN-04-2783.CrossRefPubMed
16.
Zurück zum Zitat Cha D, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson KL: Cervical cancer and microchimerism. Obstet Gynecol. 2003, 102: 774-781. 10.1016/S0029-7844(03)00615-X.PubMed Cha D, Khosrotehrani K, Kim Y, Stroh H, Bianchi DW, Johnson KL: Cervical cancer and microchimerism. Obstet Gynecol. 2003, 102: 774-781. 10.1016/S0029-7844(03)00615-X.PubMed
17.
Zurück zum Zitat Johnson KL, Zhen DK, Bianchi DW: The use of fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques. 2000, 29: 1220-1224.PubMed Johnson KL, Zhen DK, Bianchi DW: The use of fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques. 2000, 29: 1220-1224.PubMed
18.
Zurück zum Zitat Khosrotehrani K, Stroh H, Bianchi DW, Johnson KL: Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques. 2003, 34: 242-244.PubMed Khosrotehrani K, Stroh H, Bianchi DW, Johnson KL: Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques. 2003, 34: 242-244.PubMed
19.
Zurück zum Zitat Eedarapalli P, Jain S: Breast cancer in pregnancy. J Obstet Gynaecol. 2006, 26: 1-4. 10.1080/01443610500363808.CrossRefPubMed Eedarapalli P, Jain S: Breast cancer in pregnancy. J Obstet Gynaecol. 2006, 26: 1-4. 10.1080/01443610500363808.CrossRefPubMed
20.
Zurück zum Zitat Bunker ML, Peters MV: Breast cancer associated with pregnancy or lactation. Am J Obstet Gynecol. 1963, 85: 312-321.CrossRefPubMed Bunker ML, Peters MV: Breast cancer associated with pregnancy or lactation. Am J Obstet Gynecol. 1963, 85: 312-321.CrossRefPubMed
21.
Zurück zum Zitat Ishida T, Yokoe T, Kasumi F, Sakamoto G, Makita M, Tominaga T, Simozuma K, Enomoto K, Fujiwara K, Nanasawa T, et al: Clinicopathologic characteristics and prognosis of breast cancer patients associated with pregnancy and lactation: analysis of case-control study in Japan. Jpn J Cancer Res. 1992, 83: 1143-1149.CrossRefPubMed Ishida T, Yokoe T, Kasumi F, Sakamoto G, Makita M, Tominaga T, Simozuma K, Enomoto K, Fujiwara K, Nanasawa T, et al: Clinicopathologic characteristics and prognosis of breast cancer patients associated with pregnancy and lactation: analysis of case-control study in Japan. Jpn J Cancer Res. 1992, 83: 1143-1149.CrossRefPubMed
22.
Zurück zum Zitat Petrek JA, Dukoff R, Rogatko A: Prognosis of pregnancy-associated breast cancer. Cancer. 1991, 67: 869-872. 10.1002/1097-0142(19910215)67:4<869::AID-CNCR2820670402>3.0.CO;2-Q.CrossRefPubMed Petrek JA, Dukoff R, Rogatko A: Prognosis of pregnancy-associated breast cancer. Cancer. 1991, 67: 869-872. 10.1002/1097-0142(19910215)67:4<869::AID-CNCR2820670402>3.0.CO;2-Q.CrossRefPubMed
23.
Zurück zum Zitat Guinee VF, Olsson H, Moller T, Hess KR, Taylor SH, Fahey T, Gladikov JV, van den Blink JW, Bonichon F, Dische S, et al: Effect of pregnancy on prognosis for young women with breast cancer. Lancet. 1994, 343: 1587-1589. 10.1016/S0140-6736(94)93054-6.CrossRefPubMed Guinee VF, Olsson H, Moller T, Hess KR, Taylor SH, Fahey T, Gladikov JV, van den Blink JW, Bonichon F, Dische S, et al: Effect of pregnancy on prognosis for young women with breast cancer. Lancet. 1994, 343: 1587-1589. 10.1016/S0140-6736(94)93054-6.CrossRefPubMed
24.
Zurück zum Zitat Woo JC, Yu T, Hurd TC: Breast cancer and pregnancy: a literature review. Arch Surg. 2003, 138: 91-98.CrossRefPubMed Woo JC, Yu T, Hurd TC: Breast cancer and pregnancy: a literature review. Arch Surg. 2003, 138: 91-98.CrossRefPubMed
25.
Zurück zum Zitat Middleton LP, Amin M, Gwyn K, Theriault R, Sahin A: Breast carcinoma in pregnant women: assessment of clinicopathologic and immunohistochemical features. Cancer. 2003, 98: 1055-1060. 10.1002/cncr.11614.CrossRefPubMed Middleton LP, Amin M, Gwyn K, Theriault R, Sahin A: Breast carcinoma in pregnant women: assessment of clinicopathologic and immunohistochemical features. Cancer. 2003, 98: 1055-1060. 10.1002/cncr.11614.CrossRefPubMed
26.
Zurück zum Zitat Daling JR, Malone KE, Doody DR, Anderson BO, Porter PL: The relation of reproductive factors to mortality from breast cancer. Cancer Epidemiol Biomarkers Prev. 2002, 11: 235-241.PubMed Daling JR, Malone KE, Doody DR, Anderson BO, Porter PL: The relation of reproductive factors to mortality from breast cancer. Cancer Epidemiol Biomarkers Prev. 2002, 11: 235-241.PubMed
27.
Zurück zum Zitat Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO: Transient increase in the risk of breast cancer after giving birth. N Engl J Med. 1994, 331: 5-9. 10.1056/NEJM199407073310102.CrossRefPubMed Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO: Transient increase in the risk of breast cancer after giving birth. N Engl J Med. 1994, 331: 5-9. 10.1056/NEJM199407073310102.CrossRefPubMed
28.
Zurück zum Zitat Gemignani ML, Petrek JA, Borgen PI: Breast cancer and pregnancy. Surg Clin North Am. 1999, 79: 1157-1169. 10.1016/S0039-6109(05)70066-9.CrossRefPubMed Gemignani ML, Petrek JA, Borgen PI: Breast cancer and pregnancy. Surg Clin North Am. 1999, 79: 1157-1169. 10.1016/S0039-6109(05)70066-9.CrossRefPubMed
29.
Zurück zum Zitat Anderson BO, Petrek JA, Byrd DR, Senie RT, Borgen PI: Pregnancy influences breast cancer stage at diagnosis in women 30 years of age and younger. Ann Surg Oncol. 1996, 3: 204-211. 10.1007/BF02305802.CrossRefPubMed Anderson BO, Petrek JA, Byrd DR, Senie RT, Borgen PI: Pregnancy influences breast cancer stage at diagnosis in women 30 years of age and younger. Ann Surg Oncol. 1996, 3: 204-211. 10.1007/BF02305802.CrossRefPubMed
30.
Zurück zum Zitat Kroman N, Wohlfahrt J, Andersen KW, Mouridsen HT, Westergaard T, Melbye M: Parity, age at first childbirth and the prognosis of primary breast cancer. Br J Cancer. 1998, 78: 1529-1533.CrossRefPubMedPubMedCentral Kroman N, Wohlfahrt J, Andersen KW, Mouridsen HT, Westergaard T, Melbye M: Parity, age at first childbirth and the prognosis of primary breast cancer. Br J Cancer. 1998, 78: 1529-1533.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Olson SH, Zauber AG, Tang J, Harlap S: Relation of time since last birth and parity to survival of young women with breast cancer. Epidemiology. 1998, 9: 669-671. 10.1097/00001648-199811000-00019.CrossRefPubMed Olson SH, Zauber AG, Tang J, Harlap S: Relation of time since last birth and parity to survival of young women with breast cancer. Epidemiology. 1998, 9: 669-671. 10.1097/00001648-199811000-00019.CrossRefPubMed
32.
Zurück zum Zitat Wohlfahrt J, Andersen PK, Mouridsen HT, Melbye M: Risk of late-stage breast cancer after a childbirth. Am J Epidemiol. 2001, 153: 1079-1084. 10.1093/aje/153.11.1079.CrossRefPubMed Wohlfahrt J, Andersen PK, Mouridsen HT, Melbye M: Risk of late-stage breast cancer after a childbirth. Am J Epidemiol. 2001, 153: 1079-1084. 10.1093/aje/153.11.1079.CrossRefPubMed
33.
Zurück zum Zitat Guettier C, Sebagh M, Buard J, Feneux D, Ortin-Serrano M, Gigou M, Tricottet V, Reynes M, Samuel D, Feray C: Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology. 2005, 42: 35-43. 10.1002/hep.20761.CrossRefPubMed Guettier C, Sebagh M, Buard J, Feneux D, Ortin-Serrano M, Gigou M, Tricottet V, Reynes M, Samuel D, Feray C: Male cell microchimerism in normal and diseased female livers from fetal life to adulthood. Hepatology. 2005, 42: 35-43. 10.1002/hep.20761.CrossRefPubMed
34.
Zurück zum Zitat Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS: Lack of a fusion requirement for development of bone marrow-derived epithelia. Science. 2004, 305: 90-93. 10.1126/science.1098925.CrossRefPubMed Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS: Lack of a fusion requirement for development of bone marrow-derived epithelia. Science. 2004, 305: 90-93. 10.1126/science.1098925.CrossRefPubMed
35.
Zurück zum Zitat Murata H, Janin A, Leboeuf C, Soulier J, Gluckman E, Meignin V, Socie G: Donor-derived cells and human graft-versus-host disease of the skin. Blood. 2007, 109: 2663-2665. 10.1182/blood-2006-07-033902.CrossRefPubMed Murata H, Janin A, Leboeuf C, Soulier J, Gluckman E, Meignin V, Socie G: Donor-derived cells and human graft-versus-host disease of the skin. Blood. 2007, 109: 2663-2665. 10.1182/blood-2006-07-033902.CrossRefPubMed
36.
Zurück zum Zitat Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002, 62: 3603-3608.PubMed Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002, 62: 3603-3608.PubMed
37.
Zurück zum Zitat Barozzi P, Luppi M, Facchetti F, Mecucci C, Alù M, Sarid R, Rasini V, Ravazzini L, Rossi E, Festa S, Crescenzi B, Wolf DG, Schulz TF, Torelli G: Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med. 2003, 9: 554-561. 10.1038/nm862.CrossRefPubMed Barozzi P, Luppi M, Facchetti F, Mecucci C, Alù M, Sarid R, Rasini V, Ravazzini L, Rossi E, Festa S, Crescenzi B, Wolf DG, Schulz TF, Torelli G: Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med. 2003, 9: 554-561. 10.1038/nm862.CrossRefPubMed
38.
Zurück zum Zitat Gadi VK, Nelson JL: Fetal microchimerism in women with breast cancer. Cancer Res. 2007, 67: 9035-9038. 10.1158/0008-5472.CAN-06-4209.CrossRefPubMed Gadi VK, Nelson JL: Fetal microchimerism in women with breast cancer. Cancer Res. 2007, 67: 9035-9038. 10.1158/0008-5472.CAN-06-4209.CrossRefPubMed
39.
Zurück zum Zitat Su G, Blaine SA, Qiao D, Friedl A: Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem. 2007, 282: 14906-14915. 10.1074/jbc.M611739200.CrossRefPubMed Su G, Blaine SA, Qiao D, Friedl A: Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem. 2007, 282: 14906-14915. 10.1074/jbc.M611739200.CrossRefPubMed
40.
Zurück zum Zitat Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007, 25: 646-654. 10.1634/stemcells.2006-0208.CrossRefPubMed Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007, 25: 646-654. 10.1634/stemcells.2006-0208.CrossRefPubMed
41.
Zurück zum Zitat Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N: HLA-G: a shield against inflammatory aggression. Trends Immunol. 2001, 22: 553-555. 10.1016/S1471-4906(01)02007-5.CrossRefPubMed Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N: HLA-G: a shield against inflammatory aggression. Trends Immunol. 2001, 22: 553-555. 10.1016/S1471-4906(01)02007-5.CrossRefPubMed
42.
Zurück zum Zitat Lefebvre S, Antoine M, Uzan S, McMaster M, Dausset J, Carosella ED, Paul P: Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol. 2002, 196: 266-274. 10.1002/path.1039.CrossRefPubMed Lefebvre S, Antoine M, Uzan S, McMaster M, Dausset J, Carosella ED, Paul P: Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol. 2002, 196: 266-274. 10.1002/path.1039.CrossRefPubMed
Metadaten
Titel
Breast cancer stroma frequently recruits fetal derived cells during pregnancy
verfasst von
Gil Dubernard
Sélim Aractingi
Michel Oster
Roman Rouzier
Marie-Christine Mathieu
Serge Uzan
Kiarash Khosrotehrani
Publikationsdatum
01.02.2008
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 1/2008
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1860

Weitere Artikel der Ausgabe 1/2008

Breast Cancer Research 1/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.