Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2009

01.01.2009 | Original Article

Calculation of electron dose to target cells in a complex environment by Monte Carlo code “CELLDOSE”

verfasst von: Elif Hindié, Christophe Champion, Paolo Zanotti-Fregonara, Domenico Rubello, Nicole Colas-Linhart, Laura Ravasi, Jean-Luc Moretti

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

Background

We used the Monte Carlo code “CELLDOSE” to assess the dose received by specific target cells from electron emissions in a complex environment. 131I in a simulated thyroid was used as a model.

Methods

Thyroid follicles were represented by 170 μm diameter spherical units made of a lumen of 150 μm diameter containing colloidal matter and a peripheral layer of 10 μm thick thyroid cells. Neighbouring follicles are 4 μm apart. 131I was assumed to be homogeneously distributed in the lumen and absent in cells. We firstly assessed electron dose distribution in a single follicle. Then, we expanded the simulation by progressively adding neighbouring layers of follicles, so to reassess the electron dose to this single follicle implemented with the contribution of the added layers.

Results

Electron dose gradient around a point source showed that the 131I electron dose is close to zero after 2,100 μm. Therefore, we studied all contributions to the central follicle deriving from follicles within 12 orders of neighbourhood (15,624 follicles surrounding the central follicle). The dose to colloid of the single follicle was twice as high as the dose to thyroid cells. Even when all neighbours were taken into account, the dose in the central follicle remained heterogeneous. For a 1-Gy average dose to tissue, the dose to colloidal matter was 1.168 Gy, the dose to thyroid cells was 0.982 Gy, and the dose to the inter-follicular tissue was 0.895 Gy. Analysis of the different contributions to thyroid cell dose showed that 17.3% of the dose derived from the colloidal matter of their own follicle, while the remaining 82.7% was delivered by the surrounding follicles. On the basis of these data, it is shown that when different follicles contain different concentrations of 131I, the impact in terms of cell dose heterogeneity can be important.

Conclusion

By means of 131I in the thyroid as a theoretical model, we showed how a Monte Carlo code can be used to map electron dose deposit and build up the dose to target cells in a complex multi-source environment. This approach can be of considerable interest for comparing different radiopharmaceuticals as therapy agents in oncology.
Literatur
1.
Zurück zum Zitat Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S–61S.PubMed Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S–61S.PubMed
2.
Zurück zum Zitat Kassis AI. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005;46(Suppl 1):4S–12S. Review.PubMed Kassis AI. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005;46(Suppl 1):4S–12S. Review.PubMed
3.
Zurück zum Zitat Neti PV, Howell RW. Isolating effects of microscopic nonuniform distributions of (131)I on labeled and unlabeled cells. J Nucl Med 2004;45:1050–8.PubMed Neti PV, Howell RW. Isolating effects of microscopic nonuniform distributions of (131)I on labeled and unlabeled cells. J Nucl Med 2004;45:1050–8.PubMed
4.
Zurück zum Zitat Hindorf C, Emfietzoglou D, Lindén O, Bousis C, Fotopoulos A, Kostarelos K, et al. Single-cell dosimetry for radioimmunotherapy of B-cell lymphoma patients with special reference to leukemic spread. Cancer Biother Radiopharm 2007;22:357–66.PubMedCrossRef Hindorf C, Emfietzoglou D, Lindén O, Bousis C, Fotopoulos A, Kostarelos K, et al. Single-cell dosimetry for radioimmunotherapy of B-cell lymphoma patients with special reference to leukemic spread. Cancer Biother Radiopharm 2007;22:357–66.PubMedCrossRef
5.
Zurück zum Zitat Cariati M, Purushotham AD. Stem cells and breast cancer. Histopathology 2008;52:99–107. Review.PubMed Cariati M, Purushotham AD. Stem cells and breast cancer. Histopathology 2008;52:99–107. Review.PubMed
6.
Zurück zum Zitat Ricci-Vitiani L, Pagliuca A, Palio E, Zeuner A, De Maria R. Colon cancer stem cells. Gut 2008;57:538–48. Review.PubMedCrossRef Ricci-Vitiani L, Pagliuca A, Palio E, Zeuner A, De Maria R. Colon cancer stem cells. Gut 2008;57:538–48. Review.PubMedCrossRef
7.
Zurück zum Zitat Goddu SM, Howell RW, Rao DV. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 1994;35:303–16.PubMed Goddu SM, Howell RW, Rao DV. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med 1994;35:303–16.PubMed
8.
Zurück zum Zitat Goddu SM, Rao DV, Howell RW. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. J Nucl Med 1994;35:521–30.PubMed Goddu SM, Rao DV, Howell RW. Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. J Nucl Med 1994;35:521–30.PubMed
9.
Zurück zum Zitat Hartman T, Lundqvist H, Westlin JE, Carlsson J. Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with (131)I labeled ligands or antibodies. Int J Radiat Oncol Biol Phys 2000;46:1025–36.PubMed Hartman T, Lundqvist H, Westlin JE, Carlsson J. Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with (131)I labeled ligands or antibodies. Int J Radiat Oncol Biol Phys 2000;46:1025–36.PubMed
10.
Zurück zum Zitat Champion C, Zanotti-Fregonara P, Hindié E. CELLDOSE: a Monte Carlo code to assess electron dose distribution—S values for 131-I in spheres of various sizes. J Nucl Med 2008;49:151–7.PubMedCrossRef Champion C, Zanotti-Fregonara P, Hindié E. CELLDOSE: a Monte Carlo code to assess electron dose distribution—S values for 131-I in spheres of various sizes. J Nucl Med 2008;49:151–7.PubMedCrossRef
11.
Zurück zum Zitat Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol 1994;39:961–81.PubMedCrossRef Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol 1994;39:961–81.PubMedCrossRef
12.
Zurück zum Zitat Li WB, Friedland W, Pomplun E, Jacob P, Paretzke HG, Lassmann M, et al. Track structures and dose distributions from decays of (131)I and (125)I in and around water spheres simulating micrometastases of differentiated thyroid cancer. Radiat Res 2001;156:419–29.PubMedCrossRef Li WB, Friedland W, Pomplun E, Jacob P, Paretzke HG, Lassmann M, et al. Track structures and dose distributions from decays of (131)I and (125)I in and around water spheres simulating micrometastases of differentiated thyroid cancer. Radiat Res 2001;156:419–29.PubMedCrossRef
13.
Zurück zum Zitat Dunn JT, Dunn AD. Update on intrathyroidal iodine metabolism. Thyroid 2001;11:407–14. Review.PubMedCrossRef Dunn JT, Dunn AD. Update on intrathyroidal iodine metabolism. Thyroid 2001;11:407–14. Review.PubMedCrossRef
14.
Zurück zum Zitat Zanzonico PB. Age-dependent thyroid absorbed doses for radiobiologically significant radioisotopes of iodine. Health Phys 2000;78:60–7.PubMed Zanzonico PB. Age-dependent thyroid absorbed doses for radiobiologically significant radioisotopes of iodine. Health Phys 2000;78:60–7.PubMed
15.
Zurück zum Zitat Lowenstein JE, Wollman SH. Distribution of organic 125-I and 127-I in the rat thyroid gland during equilibrium labeling as determined by autoradiography. Endocrinology 1967;81:1074–85.PubMedCrossRef Lowenstein JE, Wollman SH. Distribution of organic 125-I and 127-I in the rat thyroid gland during equilibrium labeling as determined by autoradiography. Endocrinology 1967;81:1074–85.PubMedCrossRef
16.
Zurück zum Zitat Hindie E, Petiet A, Bourahla K, Colas-Linhart N, Slodzian G, Dennebouy R, et al. Microscopic distribution of iodine radioisotopes in the thyroid of the iodine deficient new-born rat: insight concerning the Chernobyl accident. Cell Mol Biol (Noisy-le-grand) 2001;47:403–10. Hindie E, Petiet A, Bourahla K, Colas-Linhart N, Slodzian G, Dennebouy R, et al. Microscopic distribution of iodine radioisotopes in the thyroid of the iodine deficient new-born rat: insight concerning the Chernobyl accident. Cell Mol Biol (Noisy-le-grand) 2001;47:403–10.
17.
Zurück zum Zitat Wilson JD, Foster DW. Williams textbook of endocrinology. 8th ed. Philadelphia: Saunders; 1992. Wilson JD, Foster DW. Williams textbook of endocrinology. 8th ed. Philadelphia: Saunders; 1992.
18.
Zurück zum Zitat Champion C. Theoretical cross sections for electron collisions in water: structure of electron tracks. Phys Med Biol 2003;48(14):2147–68. Jul 21.PubMedCrossRef Champion C. Theoretical cross sections for electron collisions in water: structure of electron tracks. Phys Med Biol 2003;48(14):2147–68. Jul 21.PubMedCrossRef
19.
Zurück zum Zitat Cross WG, Freedman NO, Wong PY. Beta-ray dose distributions from point sources in an infinite water medium. Health Phys 1992;63:160–71.PubMed Cross WG, Freedman NO, Wong PY. Beta-ray dose distributions from point sources in an infinite water medium. Health Phys 1992;63:160–71.PubMed
20.
Zurück zum Zitat Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S–36S.PubMed Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S–36S.PubMed
21.
Zurück zum Zitat ICRU Report 67. Absorbed-dose specification in nuclear medicine. By ICRU, p. 110, 2002. Nuclear Technology, Ashford, UK. ICRU Report 67. Absorbed-dose specification in nuclear medicine. By ICRU, p. 110, 2002. Nuclear Technology, Ashford, UK.
22.
Zurück zum Zitat Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005;46(Suppl 1):18S–27S. Jan, Review.PubMed Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005;46(Suppl 1):18S–27S. Jan, Review.PubMed
23.
Zurück zum Zitat Barthe N, Chatti K, Coulon P, Maîtrejean S, Basse-Cathalinat B. Recent technologic developments on high-resolution beta imaging systems for quantitative autoradiography and double labeling applications. Nucl Instrum Methods Phys Res A 2004;527:41–5.CrossRef Barthe N, Chatti K, Coulon P, Maîtrejean S, Basse-Cathalinat B. Recent technologic developments on high-resolution beta imaging systems for quantitative autoradiography and double labeling applications. Nucl Instrum Methods Phys Res A 2004;527:41–5.CrossRef
24.
Zurück zum Zitat Puncher MR, Blower PJ. Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography. Eur J Nucl Med 1994;21:1347–65. Review.PubMedCrossRef Puncher MR, Blower PJ. Radionuclide targeting and dosimetry at the microscopic level: the role of microautoradiography. Eur J Nucl Med 1994;21:1347–65. Review.PubMedCrossRef
25.
Zurück zum Zitat Stumpf WE. Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 2005;51:25–40.PubMedCrossRef Stumpf WE. Drug localization and targeting with receptor microscopic autoradiography. J Pharmacol Toxicol Methods 2005;51:25–40.PubMedCrossRef
26.
Zurück zum Zitat Chehade F, de Labriolle-Vaylet C, Moins N, Moreau MF, Papon J, Labarre P, et al. Secondary ion mass spectrometry as a tool for investigating radiopharmaceutical distribution at the cellular level: the example of I-BZA and (14)C-I-BZA. J Nucl Med 2005;46:1701–6.PubMed Chehade F, de Labriolle-Vaylet C, Moins N, Moreau MF, Papon J, Labarre P, et al. Secondary ion mass spectrometry as a tool for investigating radiopharmaceutical distribution at the cellular level: the example of I-BZA and (14)C-I-BZA. J Nucl Med 2005;46:1701–6.PubMed
27.
Zurück zum Zitat Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 2006;5(6):20.PubMedCrossRef Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 2006;5(6):20.PubMedCrossRef
28.
Zurück zum Zitat Prestwich WV, Nunes J, Kwok CS. Beta dose point kernels for radionuclides of potential use in radioimmunotherapy. J Nucl Med 1989;30:1036–46. Erratum in: J Nucl Med 1989;30:1739–40.PubMed Prestwich WV, Nunes J, Kwok CS. Beta dose point kernels for radionuclides of potential use in radioimmunotherapy. J Nucl Med 1989;30:1036–46. Erratum in: J Nucl Med 1989;30:1739–40.PubMed
29.
Zurück zum Zitat Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, et al. MIRD Pamphlet No 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 2003;44:1113–47.PubMed Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, et al. MIRD Pamphlet No 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med 2003;44:1113–47.PubMed
30.
Zurück zum Zitat Clerc J, Kahn E, Fragu P. SIMS evidence that carbimazole enhances spatial heterogeneity of thyroid iodine storage and targeting in a woman with Graves’ disease. Cell Mol Biol (Noisy-le-grand) 2001;47:519–27. Clerc J, Kahn E, Fragu P. SIMS evidence that carbimazole enhances spatial heterogeneity of thyroid iodine storage and targeting in a woman with Graves’ disease. Cell Mol Biol (Noisy-le-grand) 2001;47:519–27.
31.
Zurück zum Zitat Hindie E, Leenhardt L, Vitaux F, Colas-Linhart N, Grosclaude P, Galle P, et al. Non-medical exposure to radioiodines and thyroid cancer. Eur J Nucl Med Mol Imaging 2002;29(Suppl 2):S497–512. Review.PubMed Hindie E, Leenhardt L, Vitaux F, Colas-Linhart N, Grosclaude P, Galle P, et al. Non-medical exposure to radioiodines and thyroid cancer. Eur J Nucl Med Mol Imaging 2002;29(Suppl 2):S497–512. Review.PubMed
32.
Zurück zum Zitat Ashizawa K, Shibata Y, Yamashita S, Namba H, Hoshi M, Yokoyama N, et al. Prevalence of goiter and urinary iodine excretion levels in children around Chernobyl. J Clin Endocrinol Metab 1997;82:3430–3.PubMedCrossRef Ashizawa K, Shibata Y, Yamashita S, Namba H, Hoshi M, Yokoyama N, et al. Prevalence of goiter and urinary iodine excretion levels in children around Chernobyl. J Clin Endocrinol Metab 1997;82:3430–3.PubMedCrossRef
33.
Zurück zum Zitat Gembicki M, Stozharov AN, Arinchin AN, Moschik KV, Petrenko S, Khmara IM, Baverstock KF. Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect 1997;105(Suppl 6):1487–90.PubMedCrossRef Gembicki M, Stozharov AN, Arinchin AN, Moschik KV, Petrenko S, Khmara IM, Baverstock KF. Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect 1997;105(Suppl 6):1487–90.PubMedCrossRef
34.
Zurück zum Zitat Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol 2003;32:584–91.PubMedCrossRef Shakhtarin VV, Tsyb AF, Stepanenko VF, Orlov MY, Kopecky KJ, Davis S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol 2003;32:584–91.PubMedCrossRef
35.
Zurück zum Zitat Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 2005;97:724–32.PubMedCrossRef Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 2005;97:724–32.PubMedCrossRef
36.
Zurück zum Zitat Boltze C, Brabant G, Dralle H, Gerlach R, Roessner A, Hoang-Vu C. Radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: an in vivo model of tumorigenesis in the rat. Endocrinology 2002;143:2584–92.PubMedCrossRef Boltze C, Brabant G, Dralle H, Gerlach R, Roessner A, Hoang-Vu C. Radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: an in vivo model of tumorigenesis in the rat. Endocrinology 2002;143:2584–92.PubMedCrossRef
Metadaten
Titel
Calculation of electron dose to target cells in a complex environment by Monte Carlo code “CELLDOSE”
verfasst von
Elif Hindié
Christophe Champion
Paolo Zanotti-Fregonara
Domenico Rubello
Nicole Colas-Linhart
Laura Ravasi
Jean-Luc Moretti
Publikationsdatum
01.01.2009
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2009
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0893-z

Weitere Artikel der Ausgabe 1/2009

European Journal of Nuclear Medicine and Molecular Imaging 1/2009 Zur Ausgabe