Skip to main content
Erschienen in: neurogenetics 3-4/2013

Open Access 01.11.2013 | Original Article

Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington’s disease motor onset

verfasst von: Eliana Marisa Ramos, Jeanne C. Latourelle, Tammy Gillis, Jayalakshmi S. Mysore, Ferdinando Squitieri, Alba Di Pardo, Stefano Di Donato, Cinzia Gellera, Michael R. Hayden, Patrick J. Morrison, Martha Nance, Christopher A. Ross, Russell L. Margolis, Estrella Gomez-Tortosa, Carmen Ayuso, Oksana Suchowersky, Ronald J. Trent, Elizabeth McCusker, Andrea Novelletto, Marina Frontali, Randi Jones, Tetsuo Ashizawa, Samuel Frank, Marie-Helene Saint-Hilaire, Steven M. Hersch, Herminia D. Rosas, Diane Lucente, Madaline B. Harrison, Andrea Zanko, Ruth K. Abramson, Karen Marder, James F. Gusella, Jong-Min Lee, Isabel Alonso, Jorge Sequeiros, Richard H. Myers, Marcy E. MacDonald

Erschienen in: Neurogenetics | Ausgabe 3-4/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and behavioral disturbances. It is caused by the expansion of the HTT CAG repeat, which is the major determinant of age at onset (AO) of motor symptoms. Aberrant function of N-methyl-D-aspartate receptors and/or overexposure to dopamine has been suggested to cause significant neurotoxicity, contributing to HD pathogenesis. We used genetic association analysis in 1,628 HD patients to evaluate candidate polymorphisms in N-methyl-D-aspartate receptor subtype genes (GRIN2A rs4998386 and rs2650427, and GRIN2B rs1806201) and functional polymorphisms in genes in the dopamine pathway (DAT1 3′ UTR 40-bp variable number tandem repeat (VNTR), DRD4 exon 3 48-bp VNTR, DRD2 rs1800497, and COMT rs4608) as potential modifiers of the disease process. None of the seven polymorphisms tested was found to be associated with significant modification of motor AO, either in a dominant or additive model, after adjusting for ancestry. The results of this candidate-genetic study therefore do not provide strong evidence to support a modulatory role for these variations within glutamatergic and dopaminergic genes in the AO of HD motor manifestations.

Introduction

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder, usually of adult onset, characterized by involuntary choreiform movements, cognitive impairment, and behavioral changes. HD is caused by the expansion of an unstable polymorphic CAG repeat in HTT [1]. Age at onset (AO) of diagnostic clinical symptoms is inversely correlated with the size of the expanded CAG repeat. It explains about 50–70 % of the variance in motor AO [24], while the remainder is highly heritable, strongly implying the existence of genetic factors that modulate the rate of the pathogenic process that leads to onset of symptoms [57].
The neuropathological changes that comprise the pathological grading system for HD are found in the striatum, where there is a selective and progressive neuronal loss of medium spiny neurons (MSNs) [8, 9]. Glutamatergic and dopaminergic pathways are well known to regulate striatal neuronal function by interacting and modulating each other, suggesting that both glutamate and dopamine receptors may act coordinately in causing deregulation of calcium homeostasis [1012] with consequent mitochondrial depolarization and caspase activation [13, 14]. Both pathways have been implicated in HD pathogenesis, suggesting that variation in function or expression of glutamate receptor subunits and/or dopamine pathway genes might modulate excitotoxic cell death, thereby modulating AO of symptoms. Indeed, polymorphisms within the genes that encode the NR2A and NR2B glutamate receptors (GRIN2A and GRIN2B) have been implicated in genetic studies with HD patients as potential modifiers of clinical AO [1518].
Based upon these observations, the aim of the present study was to utilize common and multi-allele functional polymorphisms to test the possibility that genetic variation in genes of the glutamatergic (GRIN2A and GRIN2B) and dopaminergic (COMT, DRD2, DRD4, and DAT1) pathways may explain some of the variation in AO of HD motor manifestations, in a large and well-described cohort of 1,628 HD patients of European ancestry.

Material and methods

Subjects
We analyzed 1,628 DNA samples from HD patients participating in research from collaborating investigators (HD-MAPS), the HD observational study COHORT, the Harvard Tissue Resource Center Bank (McLean’s Hospital, Belmont, MA) and the National Neurological Research Bank (VAMC Wadsworth Division, Los Angeles, CA). Our cohort comprises a well-described set of HD samples [19] with CAG repeat sizes ranging from 40 to 53 repeats, known motor AO, ancestry, and familial relationship.
Genotyping
Repeat sizes of the HTT CAG alleles and DAT1 and DRD4 variable number tandem repeats (VNTRs) were determined using previously established polymerase chain reaction (PCR) amplification assays [2022]. The size of the products was determined using the ABI PRISM 3730xl automated DNA Sequencer (Applied Biosystems, Foster City, CA) and GeneMapper version 3.7 software. Genotyping of the polymorphisms in GRIN2A (rs4998386 and rs2650427), GRIN2B (rs1806201), COMT (rs4680), and DRD2 (rs1800497) was performed by real-time PCR using commercially available TaqMan Genotyping probes (Applied Biosystems, Foster City, CA) and carried out on the LightCycler® 480 (Roche Diagnostics, Mannheim), following the manufacturer’s instructions.
Statistical analysis
Multivariate analyses were conducted using generalized estimating equations (GEE) to assess the association of the different polymorphisms with residual HD motor onset, adjusting for familial component and ancestry. The weighted GEE was computed assuming an independent correlation structure and using the robust estimator of the variance to account for familial relationships. All statistical analyses were performed using PASW Statistics (version 18).

Results

Association with GRIN2A and GRIN2B
The genetic evidence supporting a role for GRIN2A or GRIN2B in modulating AO of HD symptoms is equivocal. A candidate gene study with 167 German HD patients reported an association between AO and rs1969060 in GRIN2A and two polymorphisms in GRIN2B (rs1806201 and rs890) [17]. However, in a follow-up study, the same authors found that two other SNPs, rs8057394 and rs2650427, in GRIN2A had a stronger association with AO [16]. A subsequent study in 1,211 European HD individuals found an association of GRIN2A rs2650427, and when stratified by AO subtypes, they found a nominally significant association with rs1969060 (GRIN2A) and rs1806201 (GRIN2B) [15]. On the other hand, in a Venezuelan sample, no evidence was found for the GRIN2B polymorphisms, and a weak association was found for GRIN2A rs1969060 [18]. We attempted to replicate the apparent genetic association of the polymorphisms with the greatest evidence of association with HD AO, namely rs2650427 in GRIN2A and rs1806201 in GRIN2B, as well as an interesting GRIN2A polymorphism associated with decreased Parkinson’s disease (PD) risk in conjunction with heavy coffee consumption (rs4998386) [23]. However, the results of association analysis for each polymorphism failed to demonstrate significant association with HD motor AO (Table 1).
Table 1
Multivariate correlation of the polymorphisms in the glutamatergic (GRIN2A and GRIN2B) and dopaminergic (COMT, DRD2, DRD4, and DAT1) pathway genes with residual age at motor onset
Gene
Polymorphism
Number of samples
Dominant model
Additive model
Standardized coefficient
p valuea
Standardized coefficient
p valuea
Glutamatergic pathway
GRIN2A
rs4998386
1,585
0.087
0.108
0.074
0.144
rs2650427
1,619
−0.014
0.739
0.004
0.878
GRIN2B
rs1806201
1,602
−0.056
0.164
−0.060
0.053
Dopaminergic pathway
COMT
rs4680
1,620
−0.047
0.222
0.025
0.333
DRD2
rs1800497
1,625
0.051
0.196
0.035
0.326
DRD4
Exon 3 48-bp VNTR
1,527
−0.043
0.322
−0.035
0.322
DAT1
3′ UTR 40-bp VNTR
1,614
0.062
0.363
0.022
0.487
a p values were derived using GEE to account for familial relationships and ancestry
Association with dopamine pathway genes
Dopamine pathway genes have not previously been assessed as genetic HD AO modifiers. Therefore, we tested functional polymorphisms in DRD2 and DAT1 believed to affect neurotransmission primarily in the striatum, in addition to polymorphisms in COMT and DRD4, known to have an impact on the frontal cortex function. The Val158Met COMT polymorphism has been shown to affect, in a codominant mode, the activity level of the COMT enzyme that metabolizes dopamine [2426]. The TaqIA polymorphism in the vicinity of DRD2 is reported to be a genetic marker for D2 receptor density in the brain, with the minor allele being associated with a lower density of this receptor especially in the striatum [2730]. However, the results of our genetic analysis failed to reveal significant evidence of association of the functional polymorphism in DRD2 or in COMT with HD motor AO (Table 1).
We then evaluated the DRD4 gene, as it has been suggested that different repeat sequences of the multi-allele 48-bp VNTR in DRD4 may differentially affect the gene’s expression and consequently alter D4 receptor density in the brain. The seven-repeat allele had a lower expression compared with two- and four-repeat alleles [31]. Given this observation, our analysis specifically tested the potential association of the seven-repeat allele with motor HD AO. The results demonstrated that the presence of this allele did not explain any variance of AO in our cohort of HD patients (Table 1).
We also assessed the DAT1 gene by evaluating the multi-allele 40-bp VNTR polymorphism. This polymorphism was chosen because it has been reported that individuals with 10/10 repeats have lower dopamine transporter density than individuals with at least one copy of the nine-repeat allele who exhibit more effective dopamine removal at the synapse [32, 33]. However, despite evidence for biological effects, the results of our analysis did not reveal a significant association of the ten-repeat allele with HD motor AO (Table 1).

Discussion

The circuitry of the striatum, where MSNs are particularly vulnerable to the effects of the HD mutation [8, 9], has provided a rich source of candidate HD genetic modifiers. Aberrant function of N-methyl-d-aspartate receptors (NMDAR) and overexposure of MSNs to dopamine cause neurotoxicity [3436], suggesting that variation in expression or function of glutamate receptor subunits and/or dopamine pathway genes could modulate excitotoxic death and thereby affect HD AO.
Association of AO with specific polymorphisms in NR2A and NR2B, encoding NMDAR subunits, has been previously reported [1518]. However, in our sample of European ancestry, we found no definitive evidence of association for either of the two GRIN2A or for the GRIN2B SNPs that were tested with the residual AO after accounting for the effect of HTT CAG repeat length. One SNP, rs1806201 in GRIN2B, was close to nominal significance (p = 0.053 in the additive model). Though this value would not survive correction for the multiple hypotheses tested in our study, it may be of interest for future modifier studies given the effects previously reported [1517]. The lack of replication in our sample of the reported associations might be explained by different study designs, including the patient populations and definition of the phenotypic trait. We have previously shown that stringent sample selection and analysis criteria are critical factors in HD association studies. Indeed, genetic background related to ancestry [19] and non-normal distribution of CAG allele size [37] can have a profound confounding effect when testing for the effects of potential genetic modifiers.
Our test of the GRIN2A rs4998386 polymorphism that has been recently associated with decreased risk of developing PD in individuals who are heavy coffee drinkers [23] was an attempt to assess a neurodegenerative disease-associated risk allele that may interact with a common environmental factor. We did not find evidence of association of this particular SNP with AO of HD motor symptoms. Though coffee consumption data are not available on our study subjects, this negative result is consistent with previous genetic findings showing that the HTT CAG repeat polymorphism is not a modifier of PD onset [38], strongly suggesting that the pathogenic process that culminates in HD manifestations may be distinct from the neurodegenerative disease process that leads to PD symptoms.
Genes in the dopamine pathway have not previously been evaluated as potential modifiers of the AO of overt motor symptoms in HD. We selected polymorphisms in four dopaminergic pathway genes that have been investigated in other neurological disorders because they are believed to affect neurotransmission by affecting the level of the enzyme that metabolizes dopamine, the density of dopamine receptors, and the activity of dopamine transporter. Our results did not reveal a significant modifying effect of any of the four polymorphisms, in COMT, DRD2, DRD4, or DAT1, on the onset of HD motor symptoms and therefore fail to support a role for these functional variants in the disease process that leads to the onset of neurological symptoms in HD.
In summary, the results of our study did not provide evidence for an association of DNA variants that affect the biology of particular genes in the glutaminergic pathway (GRIN2A, GRIN2B) or the dopaminergic pathway (DRD2, DRD4, DAT1, COMT) with the HTT CAG repeat length-dependent disease process that leads to the onset of clinical motor manifestations of HD. However, our study does not preclude the possibility that other DNA variants in these genes, or in other genes involved in these pathways, may act as genetic AO modifiers. Moreover, it is also possible that genes in the glutaminergic and dopaminergic pathways may serve to modify the rate of progression of the distinct processes that determine the rate of decline in the ∼18-year period between the age at clinical diagnosis of HD and death, which is independent of the size of the HTT CAG repeat [39].

Acknowledgments

The authors thank Drs. Ignacio Muñoz-Sanjuan, Seung Kwak, and Jamshid Arjomand from CHDI Foundation, Inc., as well as the HD families, whose participation in genetic studies made this work possible; the COHORT co-investigators and contributors (see “Appendix”); contributors to the HD-MAPS study, Drs. Alexandra Durr, Adam Rosenblatt, Luigi Frati, Susan Perlman, P. Michael Conneally, Mary Lou Klimek, Melissa Diggin, Tiffany Hadzi, and Ayana Duckett; the Harvard Brain Tissue Resource Center at McLean Hospital; and the National Neurological Research Specimen Bank at the VA West Los Angeles Healthcare Center. EMR is the recipient of a scholarship from the Fundação para a Ciência e a Tecnologia of Portugal (SFRH/BD/44335/2008). Study funding was supported by NIH grants from the NINDS NS16367 (The Massachusetts HD Center Without Walls) and NS32765, and the CHDI Foundation, Inc.

Ethical standards

This study used only deidentified, previously collected DNA samples and phenotypic data in a manner approved by the Institutional Review Board of Partners HealthCare, Inc.

Conflict of interest

The authors declare that they have no conflict of interest.
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Anhänge

Appendix

Huntington Study Group COHORT investigators

Steering committee

University of Rochester, Rochester, NY: Ira Shoulson, MD (principal investigator), James Gusella, PhD (co-principal investigator), Tatiana Foroud (co-principal investigator), Irina Antonijevic, Dan van Kammen (CHDI Foundation Inc.)

Publications and data use committee

Tatiana Foroud (Chair), Ray Dorsey (Co-Chair), John Warner (CHDI), Joe Giuliano, Louise Vetter, Oksana Suchowersky, Christopher Beck, David Oakes

Participating investigators and coordinators

F. Marshall, University of Rochester;
K. Marder, S. Frucht, C. Moskowitz, R. Clouse, P. Wasserman, Columbia University Medical Center;
K. Shannon, J. Jaglin, Rush University Medical Center;
J. Jankovic, A. Palao, Baylor College of Medicine;
M. Harrison University of Virginia;
C. Singer, M. Quesada, University of Miami;
S. Hersch, D. Rosas, K. Tanev, K. Malarick, Massachusetts General Hospital;
A. Colcher University of Pennsylvania;
J. Sanchez-Ramos, University of South Florida;
S. Kostyk, Ohio State University;
J. Paulsen, University of Iowa;
J. Perlmutter, S. Tabbal, Washington University;
C. Ross, F. Nucifora, Johns Hopkins University;
R. Dubinsky, H. Dubinsky University of Kansas Medical Center;
O. Suchowersky, M.L. Klimek, University of Calgary;
R. Jones, C. Testa, S. Factor, Emory University School of Medicine;
D. Jennings, Institute for Neurological Disorders;
J. Morgan Medical College of Georgia;
D. Higgins, E. Mohlo, Albany Medical College;
J. Adams, The Centre for Addiction and Mental Health, Toronto, Canada;
S. Frank, M. Saint-Hilaire, M. Diggin, Boston University;
S. Furtado, University of Alberta;
F. Walker, C. O’Neill, V. Hunt, Wake Forest University School of Medicine;
K. Quaid, Indiana University School of Medicine;
M. LeDoux, University of Tennessee Health Science Center;
L. Raymond, B. Leavitt, J. Decolongon, University of British Columbia, Canada;
S. Perlman, University of California, Los Angeles;
J. Corey-Bloom, G. Peavy, J. Goldstein, University of California San Diego;
R. Kumar, Colorado Neurological Institute;
E. McCusker, J. Griffith, C. Loy, Westmead Hospital, NSW, Australia;
V. Wheelock, T. Tempkin, A. Martin, University of California Davis;
M. Nance, Hennepin County Medical Center;
U. Kang, University of Chicago;
W. Mallonee, G. Suter, Hereditary Neurological Disease Center, Kansas;
F. Revilla, M. Gartner University of Cincinnati/Cincinnati Children’s Hospital;
C. Drazinic, M.J. Fitzpatrick, University of Connecticut;
M. Panisset, Hôtel-Dieu Hôpital-CHUM, Canada;
K. Duff, University of Utah;
B. Scott, Duke University Medical Center;
W. Weiner, B. Robottom, University of Maryland School of Medicine;
E. Chiu, O. Yastrubetskaya, A. Churchyard, St Vincent’s Aged Mental Health Service (SVAMHS) Melbourne, Australia;
T. J. Greenamyre; University of Pittsburgh;
P. Agarwal, Booth Gardner Parkinson’s Care Center, WA;
Biostatistics/Coordination Center: University of Rochester—D. Oakes, C. Beck, S. Robertson, K. Eaton, P. Lindsay, L. Deuel;
DNA Genotyping Center: M. MacDonald, Center for Human Genetic Research, Massachusetts General Hospital

Contributors

C. Hickey, University of Rochester; L. Muratori, E. Louis, Columbia University Medical Center; A. Leserman, N. Doucette, Ohio State University; E. Uc, R. Rodnitzky, S. Vik, University of Iowa, R. Davis, S. Dietrich, University of Virginia; V. Segro, D. Erickson, Colorado Neurological Institute; V. Hunt, Wake Forest University School of Medicine; N. Lucarelli, University of Pittsburgh; J. Broyles, University of Kansas Medical Center; J. DeLaRosa, University of Texas (Galveston); E. Louis, Columbia University Medical Center; P. Panegyres, Neurodegenerative Disorders Research, WA, AUS; A. Schmidt, S. Barton, Washington University; E. Sperin, C. Testa, Emory University; F. Thiede, University of California, Los Angeles; S. E. Zauber, M. Wesson, Indiana University; R. McInnis, Massachusetts General Hospital; C. Welsh, Johns Hopkins University; M. Wesson, Indiana University School of Medicine; A. Coleman, University of British Columbia, Canada
Literatur
1.
Zurück zum Zitat The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983CrossRef The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983CrossRef
2.
Zurück zum Zitat Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4(4):393–397. doi:10.1038/ng0893-393 PubMedCrossRef Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4(4):393–397. doi:10.​1038/​ng0893-393 PubMedCrossRef
3.
Zurück zum Zitat Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4(4):387–392. doi:10.1038/ng0893-387 PubMedCrossRef Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4(4):387–392. doi:10.​1038/​ng0893-387 PubMedCrossRef
4.
Zurück zum Zitat Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4(4):398–403. doi:10.1038/ng0893-398 PubMedCrossRef Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4(4):398–403. doi:10.​1038/​ng0893-398 PubMedCrossRef
5.
Zurück zum Zitat Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayan J, Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella J, Cha JH, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young AB, Andresen JM, Housman DE, De Young MM, Bonilla E, Stillings T, Negrette A, Snodgrass SR, Martinez-Jaurrieta MD, Ramos-Arroyo MA, Bickham J, Ramos JS, Marshall F, Shoulson I, Rey GJ, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K, Thompson LM, Young A, Dure L, O'Brien CJ, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DS Jr, Landwehrmeyer B (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101(10):3498–3503. doi:10.1073/pnas.0308679101 PubMedCrossRef Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayan J, Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella J, Cha JH, Irizarry M, Rosas D, Hersch S, Hollingsworth Z, MacDonald M, Young AB, Andresen JM, Housman DE, De Young MM, Bonilla E, Stillings T, Negrette A, Snodgrass SR, Martinez-Jaurrieta MD, Ramos-Arroyo MA, Bickham J, Ramos JS, Marshall F, Shoulson I, Rey GJ, Feigin A, Arnheim N, Acevedo-Cruz A, Acosta L, Alvir J, Fischbeck K, Thompson LM, Young A, Dure L, O'Brien CJ, Paulsen J, Brickman A, Krch D, Peery S, Hogarth P, Higgins DS Jr, Landwehrmeyer B (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101(10):3498–3503. doi:10.​1073/​pnas.​0308679101 PubMedCrossRef
7.
Zurück zum Zitat Djousse L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, Margolis RL, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJ, McCusker E, Gomez-Tortosa E, Mayo Cabrero D, Jones R, Zanko A, Nance M, Abramson RK, Suchowersky O, Paulsen JS, Harrison MB, Yang Q, Cupples LA, Mysore J, Gusella JF, MacDonald ME, Myers RH (2004) Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics 5(2):109–114. doi:10.1007/s10048-004-0175-2 PubMedCrossRef Djousse L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, Margolis RL, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJ, McCusker E, Gomez-Tortosa E, Mayo Cabrero D, Jones R, Zanko A, Nance M, Abramson RK, Suchowersky O, Paulsen JS, Harrison MB, Yang Q, Cupples LA, Mysore J, Gusella JF, MacDonald ME, Myers RH (2004) Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics 5(2):109–114. doi:10.​1007/​s10048-004-0175-2 PubMedCrossRef
8.
Zurück zum Zitat Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577PubMedCrossRef Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577PubMedCrossRef
9.
11.
Zurück zum Zitat Starling AJ, Andre VM, Cepeda C, de Lima M, Chandler SH, Levine MS (2005) Alterations in N-methyl-d-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington’s disease. J Neurosci Res 82(3):377–386. doi:10.1002/jnr.20651 PubMedCrossRef Starling AJ, Andre VM, Cepeda C, de Lima M, Chandler SH, Levine MS (2005) Alterations in N-methyl-d-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington’s disease. J Neurosci Res 82(3):377–386. doi:10.​1002/​jnr.​20651 PubMedCrossRef
12.
Zurück zum Zitat Cepeda C, Ariano MA, Calvert CR, Flores-Hernandez J, Chandler SH, Leavitt BR, Hayden MR, Levine MS (2001) NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 66(4):525–539PubMedCrossRef Cepeda C, Ariano MA, Calvert CR, Flores-Hernandez J, Chandler SH, Leavitt BR, Hayden MR, Levine MS (2001) NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 66(4):525–539PubMedCrossRef
13.
Zurück zum Zitat Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA (2002) Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33(6):849–860PubMedCrossRef Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA (2002) Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33(6):849–860PubMedCrossRef
14.
Zurück zum Zitat Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA (2004) Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol Cell Neurosci 25(3):469–479. doi:10.1016/j.mcn.2003.11.014 PubMedCrossRef Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA (2004) Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol Cell Neurosci 25(3):469–479. doi:10.​1016/​j.​mcn.​2003.​11.​014 PubMedCrossRef
15.
Zurück zum Zitat Saft C, Epplen JT, Wieczorek S, Landwehrmeyer GB, Roos RA, de Yebenes JG, Dose M, Tabrizi SJ, Craufurd D, Arning L (2011) NMDA receptor gene variations as modifiers in Huntington disease: a replication study. PLoS Curr 3:RRN1247. doi:10.1371/currents.RRN1247 PubMedCrossRef Saft C, Epplen JT, Wieczorek S, Landwehrmeyer GB, Roos RA, de Yebenes JG, Dose M, Tabrizi SJ, Craufurd D, Arning L (2011) NMDA receptor gene variations as modifiers in Huntington disease: a replication study. PLoS Curr 3:RRN1247. doi:10.​1371/​currents.​RRN1247 PubMedCrossRef
16.
Zurück zum Zitat Arning L, Saft C, Wieczorek S, Andrich J, Kraus PH, Epplen JT (2007) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet 122(2):175–182. doi:10.1007/s00439-007-0393-4 PubMedCrossRef Arning L, Saft C, Wieczorek S, Andrich J, Kraus PH, Epplen JT (2007) NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet 122(2):175–182. doi:10.​1007/​s00439-007-0393-4 PubMedCrossRef
18.
Zurück zum Zitat Andresen JM, Gayan J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, Cardon LR, Housman DE, Wexler NS (2007) Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J Med Genet 44(1):44–50. doi:10.1136/jmg.2006.045153 PubMedCrossRef Andresen JM, Gayan J, Cherny SS, Brocklebank D, Alkorta-Aranburu G, Addis EA, Cardon LR, Housman DE, Wexler NS (2007) Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J Med Genet 44(1):44–50. doi:10.​1136/​jmg.​2006.​045153 PubMedCrossRef
19.
Zurück zum Zitat Ramos EM, Latourelle JC, Lee JH, Gillis T, Mysore JS, Squitieri F, Di Pardo A, Di Donato S, Hayden MR, Morrison PJ, Nance M, Ross CA, Margolis RL, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Marder K, Gusella JF, Lee JM, Alonso I, Sequeiros J, Myers RH, Macdonald ME (2012) Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum Genet 131(12):1833–1840. doi:10.1007/s00439-012-1205-z PubMedCrossRef Ramos EM, Latourelle JC, Lee JH, Gillis T, Mysore JS, Squitieri F, Di Pardo A, Di Donato S, Hayden MR, Morrison PJ, Nance M, Ross CA, Margolis RL, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Marder K, Gusella JF, Lee JM, Alonso I, Sequeiros J, Myers RH, Macdonald ME (2012) Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum Genet 131(12):1833–1840. doi:10.​1007/​s00439-012-1205-z PubMedCrossRef
20.
Zurück zum Zitat Warner JP, Barron LH, Brock DJ (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosomes. Mol Cell Probes 7(3):235–239. doi:10.1006/mcpr.1993.1034 PubMedCrossRef Warner JP, Barron LH, Brock DJ (1993) A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington’s disease chromosomes. Mol Cell Probes 7(3):235–239. doi:10.​1006/​mcpr.​1993.​1034 PubMedCrossRef
21.
Zurück zum Zitat Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14(4):1104–1106PubMedCrossRef Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14(4):1104–1106PubMedCrossRef
22.
Zurück zum Zitat Biederman J, Petty CR, Ten Haagen KS, Small J, Doyle AE, Spencer T, Mick E, Monuteaux MC, Smoller JW, Faraone SV (2009) Effect of candidate gene polymorphisms on the course of attention deficit hyperactivity disorder. Psychiatr Res 170(2–3):199–203. doi:10.1016/j.psychres.2008.12.016 CrossRef Biederman J, Petty CR, Ten Haagen KS, Small J, Doyle AE, Spencer T, Mick E, Monuteaux MC, Smoller JW, Faraone SV (2009) Effect of candidate gene polymorphisms on the course of attention deficit hyperactivity disorder. Psychiatr Res 170(2–3):199–203. doi:10.​1016/​j.​psychres.​2008.​12.​016 CrossRef
23.
Zurück zum Zitat Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, Tenesa A, Kusel VI, Sheehan P, Eaaswarkhanth M, Yearout D, Samii A, Roberts JW, Agarwal P, Bordelon Y, Park Y, Wang L, Gao J, Vance JM, Kendler KS, Bacanu SA, Scott WK, Ritz B, Nutt J, Factor SA, Zabetian CP, Payami H (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet 7(8):e1002237. doi:10.1371/journal.pgen.1002237 PubMedCrossRef Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, Tenesa A, Kusel VI, Sheehan P, Eaaswarkhanth M, Yearout D, Samii A, Roberts JW, Agarwal P, Bordelon Y, Park Y, Wang L, Gao J, Vance JM, Kendler KS, Bacanu SA, Scott WK, Ritz B, Nutt J, Factor SA, Zabetian CP, Payami H (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet 7(8):e1002237. doi:10.​1371/​journal.​pgen.​1002237 PubMedCrossRef
25.
Zurück zum Zitat Mannisto PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593–628PubMed Mannisto PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593–628PubMed
26.
Zurück zum Zitat Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98(12):6917–6922. doi:10.1073/pnas.111134598 PubMedCrossRef Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, Goldman D, Weinberger DR (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98(12):6917–6922. doi:10.​1073/​pnas.​111134598 PubMedCrossRef
27.
Zurück zum Zitat Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, Morris CM, Perry RH, Ferrier IN, Court JA (1997) D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7(6):479–484PubMedCrossRef Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, Morris CM, Perry RH, Ferrier IN, Court JA (1997) D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 7(6):479–484PubMedCrossRef
28.
Zurück zum Zitat Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28(1):73–82PubMedCrossRef Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28(1):73–82PubMedCrossRef
29.
Zurück zum Zitat Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK, Hietala J (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatr 3(3):256–260CrossRef Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK, Hietala J (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatr 3(3):256–260CrossRef
30.
Zurück zum Zitat Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P, Sedvall GC (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatr 4(3):290–296CrossRef Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P, Sedvall GC (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatr 4(3):290–296CrossRef
32.
Zurück zum Zitat van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M, Baldwin RM, Innis RB, Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med Off Publ Soc Nucl Med 46(5):745–751 van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M, Baldwin RM, Innis RB, Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med Off Publ Soc Nucl Med 46(5):745–751
33.
Zurück zum Zitat van de Giessen E, de Win MM, Tanck MW, van den Brink W, Baas F, Booij J (2009) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med Off Publ Soc Nucl Med 50(1):45–52. doi:10.2967/jnumed.108.053652 van de Giessen E, de Win MM, Tanck MW, van den Brink W, Baas F, Booij J (2009) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med Off Publ Soc Nucl Med 50(1):45–52. doi:10.​2967/​jnumed.​108.​053652
34.
35.
Zurück zum Zitat Perez-Navarro E, Canals JM, Gines S, Alberch J (2006) Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington’s disease. Histol Histopathol 21(11):1217–1232PubMed Perez-Navarro E, Canals JM, Gines S, Alberch J (2006) Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington’s disease. Histol Histopathol 21(11):1217–1232PubMed
37.
Zurück zum Zitat Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, Landwehrmeyer GB, Myers RH, Macdonald ME, Gusella JF (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78(10):690–695. doi:10.1212/WNL.0b013e318249f683 PubMedCrossRef Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, Landwehrmeyer GB, Myers RH, Macdonald ME, Gusella JF (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78(10):690–695. doi:10.​1212/​WNL.​0b013e318249f683​ PubMedCrossRef
38.
Zurück zum Zitat McNicoll CF, Latourelle JC, MacDonald ME, Lew MF, Suchowersky O, Klein C, Golbe LI, Mark MH, Growdon JH, Wooten GF, Watts RL, Guttman M, Racette BA, Perlmutter JS, Ahmed A, Shill HA, Singer C, Saint-Hilaire MH, Massood T, Huskey KW, DeStefano AL, Gillis T, Mysore J, Goldwurm S, Pezzoli G, Baker KB, Itin I, Litvan I, Nicholson G, Corbett A, Nance M, Drasby E, Isaacson S, Burn DJ, Chinnery PF, Pramstaller PP, Al-Hinti J, Moller AT, Ostergaard K, Sherman SJ, Roxburgh R, Snow B, Slevin JT, Cambi F, Gusella JF, Myers RH (2008) Huntington CAG repeat size does not modify onset age in familial Parkinson’s disease: the GenePD study. Mov Disord 23(11):1596–1601. doi:10.1002/mds.22186 PubMedCrossRef McNicoll CF, Latourelle JC, MacDonald ME, Lew MF, Suchowersky O, Klein C, Golbe LI, Mark MH, Growdon JH, Wooten GF, Watts RL, Guttman M, Racette BA, Perlmutter JS, Ahmed A, Shill HA, Singer C, Saint-Hilaire MH, Massood T, Huskey KW, DeStefano AL, Gillis T, Mysore J, Goldwurm S, Pezzoli G, Baker KB, Itin I, Litvan I, Nicholson G, Corbett A, Nance M, Drasby E, Isaacson S, Burn DJ, Chinnery PF, Pramstaller PP, Al-Hinti J, Moller AT, Ostergaard K, Sherman SJ, Roxburgh R, Snow B, Slevin JT, Cambi F, Gusella JF, Myers RH (2008) Huntington CAG repeat size does not modify onset age in familial Parkinson’s disease: the GenePD study. Mov Disord 23(11):1596–1601. doi:10.​1002/​mds.​22186 PubMedCrossRef
39.
Zurück zum Zitat Gusella JF, Persichetti F, MacDonald ME (1997) The genetic defect causing Huntington’s disease: repeated in other contexts? Mol Med 3(4):238–246PubMed Gusella JF, Persichetti F, MacDonald ME (1997) The genetic defect causing Huntington’s disease: repeated in other contexts? Mol Med 3(4):238–246PubMed
Metadaten
Titel
Candidate glutamatergic and dopaminergic pathway gene variants do not influence Huntington’s disease motor onset
verfasst von
Eliana Marisa Ramos
Jeanne C. Latourelle
Tammy Gillis
Jayalakshmi S. Mysore
Ferdinando Squitieri
Alba Di Pardo
Stefano Di Donato
Cinzia Gellera
Michael R. Hayden
Patrick J. Morrison
Martha Nance
Christopher A. Ross
Russell L. Margolis
Estrella Gomez-Tortosa
Carmen Ayuso
Oksana Suchowersky
Ronald J. Trent
Elizabeth McCusker
Andrea Novelletto
Marina Frontali
Randi Jones
Tetsuo Ashizawa
Samuel Frank
Marie-Helene Saint-Hilaire
Steven M. Hersch
Herminia D. Rosas
Diane Lucente
Madaline B. Harrison
Andrea Zanko
Ruth K. Abramson
Karen Marder
James F. Gusella
Jong-Min Lee
Isabel Alonso
Jorge Sequeiros
Richard H. Myers
Marcy E. MacDonald
Publikationsdatum
01.11.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Neurogenetics / Ausgabe 3-4/2013
Print ISSN: 1364-6745
Elektronische ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-013-0364-y

Weitere Artikel der Ausgabe 3-4/2013

neurogenetics 3-4/2013 Zur Ausgabe

ACKNOWLEDGEMENT TO REFEREES

Acknowledgement to Referees 2012/2013

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.