Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 4/2018

21.06.2018 | Original Article

Capabilities of the Monte Carlo Simulation Codes for Modeling of a Small Animal SPECT Camera

verfasst von: Alireza Sadremomtaz, Zeinab Telikani

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study aims to compare Monte Carlo-based codes’ characteristics in the determination of the basic parameters of a high-resolution single photon emission computed tomography (HiReSPECT) scanner.

Methods

The geometry of this dual-head gamma camera equipped with a pixelated CsI(Na) scintillator and lead hexagonal hole collimator were accurately described in the GEANT4 Application for the Tomographic Emission (GATE), Monte Carlo N-particle extended (MCNP-X), and simulation of imaging nuclear detectors (SIMIND) codes. We implemented simulation procedures similar to the experimental test for calculation of the energy spectra, spatial resolution, and sensitivity of HiReSPECT by using 99mTc sources.

Results

The energy resolutions simulated by SIMIND, MCNP-X, and GATE were 17.53, 19.24, and 18.26%, respectively, while it was calculated at 19.15% in experimental test. The average spatial resolutions of the HiReSPECT camera at 2.5 cm from the collimator surface simulated by SIMIND, MCNP-X, and GATE were 3.18, 2.9, and 2.62 mm, respectively, while this parameter was reported at 2.82 mm in the experiment test. The sensitivities simulated by SIMIND, MCNP-X, and GATE were 1.44, 1.27, and 1.38 cps/μCi, respectively, on the collimator surface.

Conclusions

Comparison between simulation and experimental results showed that among these MC codes, GATE enabled to accurately model realistic SPECT system and electromagnetic physical processes, but it required more time and hardware facilities to run simulations. SIMIND was the most flexible and user-friendly code to simulate a SPECT camera, but it had limitations in defining the non-conventional imaging device. The most important characteristics like time and speed of simulation, preciseness of results, and user-friendliness should be considered during simulations.
Literatur
1.
Zurück zum Zitat Mahani H, Raisali G, Kamali A, Ay MR. Monte Carlo optimization of crystal configuration for pixelated molecular SPECT scanners. Nucl Inst Methods Phys Res A. 2017;844:1–6.CrossRef Mahani H, Raisali G, Kamali A, Ay MR. Monte Carlo optimization of crystal configuration for pixelated molecular SPECT scanners. Nucl Inst Methods Phys Res A. 2017;844:1–6.CrossRef
2.
Zurück zum Zitat Lee YJ, Park SJ, Lee SW, Kim DH, Kim YS, Jo BD, et al. A Monte Carlo simulation study of the feasibility of a high resolution parallel-hole collimator with a CdTe pixelated semiconductor SPECT system. J Instrum. 2013;8:3009. Lee YJ, Park SJ, Lee SW, Kim DH, Kim YS, Jo BD, et al. A Monte Carlo simulation study of the feasibility of a high resolution parallel-hole collimator with a CdTe pixelated semiconductor SPECT system. J Instrum. 2013;8:3009.
3.
Zurück zum Zitat Mahani H, Raisali GR, Kamali-Asl AR, Ay MR. Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework. Iran J Nucl Med. 2017;25:26–34. Mahani H, Raisali GR, Kamali-Asl AR, Ay MR. Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework. Iran J Nucl Med. 2017;25:26–34.
4.
Zurück zum Zitat Sheen H, Im KC, Choi Y, Shin H, Han Y, Chung K, et al. GATE Monte Carlo simulation of GE Discovery 600 and a uniformity phantom. J Korean Phys Soc. 2014;65:1802–8.CrossRef Sheen H, Im KC, Choi Y, Shin H, Han Y, Chung K, et al. GATE Monte Carlo simulation of GE Discovery 600 and a uniformity phantom. J Korean Phys Soc. 2014;65:1802–8.CrossRef
5.
Zurück zum Zitat Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56:881–901.CrossRefPubMed Jan S, Benoit D, Becheva E, Carlier T, Cassol F, Descourt P, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56:881–901.CrossRefPubMed
6.
Zurück zum Zitat Lazaro D, Buvat I, Loudos G, Strul D, Santin G, Giokaris N, et al. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging. Phys Med Biol. 2004;49:271–85.CrossRefPubMed Lazaro D, Buvat I, Loudos G, Strul D, Santin G, Giokaris N, et al. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging. Phys Med Biol. 2004;49:271–85.CrossRefPubMed
7.
Zurück zum Zitat Moji V, Zeraatkar N, Farahani MH, Aghamiri MR, Sajedi S, et al. Performance evaluation of a newly developed high-resolution, dual-head animal SPECT system based on the NEMA NU1-2007 standard. J Appl Clin Med Phys. 2014;6:267–78.CrossRef Moji V, Zeraatkar N, Farahani MH, Aghamiri MR, Sajedi S, et al. Performance evaluation of a newly developed high-resolution, dual-head animal SPECT system based on the NEMA NU1-2007 standard. J Appl Clin Med Phys. 2014;6:267–78.CrossRef
8.
Zurück zum Zitat Sajedi S, Zeraatkar N, Moji V, Farahani MH, Sarkar S, Arabi H, et al. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging. Nucl Inst Methods Phys Res A. 2014;741:169–76.CrossRef Sajedi S, Zeraatkar N, Moji V, Farahani MH, Sarkar S, Arabi H, et al. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging. Nucl Inst Methods Phys Res A. 2014;741:169–76.CrossRef
9.
Zurück zum Zitat Zeraatkar N, Sajedi S, Farahani MH, Arabi H, Sarkar S, Ghafarian P, et al. Resolution-recovery-embedded image reconstruction for a high resolution animal SPECT system. Phys Med. 2014;30:774–81.CrossRefPubMed Zeraatkar N, Sajedi S, Farahani MH, Arabi H, Sarkar S, Ghafarian P, et al. Resolution-recovery-embedded image reconstruction for a high resolution animal SPECT system. Phys Med. 2014;30:774–81.CrossRefPubMed
10.
Zurück zum Zitat Khorshidi A, Ashoor M, Hosseini SH, Rajaee A. Estimation of fan beam and parallel beam parameters in a wire mesh design. J Nucl Med Technol. 2012;40:37–43.CrossRefPubMed Khorshidi A, Ashoor M, Hosseini SH, Rajaee A. Estimation of fan beam and parallel beam parameters in a wire mesh design. J Nucl Med Technol. 2012;40:37–43.CrossRefPubMed
11.
Zurück zum Zitat Khorshidi A, Ashoor M. Modulation transfer function assessment in parallel beam and fan beam collimators with square and cylindrical holes. Ann Nucl Med. 2014;28:363–70.CrossRefPubMed Khorshidi A, Ashoor M. Modulation transfer function assessment in parallel beam and fan beam collimators with square and cylindrical holes. Ann Nucl Med. 2014;28:363–70.CrossRefPubMed
12.
Zurück zum Zitat Khorshidi A, Ashoor M, Hosseini H, Rajaee A. Evaluation of collimators’ response: round and hexagonal holes in parallel and fan beam. Prog Biophys Mol Biol. 2012;109:59–66.CrossRefPubMed Khorshidi A, Ashoor M, Hosseini H, Rajaee A. Evaluation of collimators’ response: round and hexagonal holes in parallel and fan beam. Prog Biophys Mol Biol. 2012;109:59–66.CrossRefPubMed
13.
Zurück zum Zitat Salgado CM, Brandão EB, Schirru R, Pereira CM, Conti CC. Validation of a NaI(Tl) detector’ s model developed with MCNP-X code. Prog Nucl Energy. 2012;59:19–25.CrossRef Salgado CM, Brandão EB, Schirru R, Pereira CM, Conti CC. Validation of a NaI(Tl) detector’ s model developed with MCNP-X code. Prog Nucl Energy. 2012;59:19–25.CrossRef
14.
Zurück zum Zitat Bahreyni Toossi MT, Pirayesh Islamian J, Momennezhad M, Ljungberg M, Naseri SH. SIMIND Monte Carlo simulation of a single photon emission CT. J Med Phys. 2010;35:42–7.CrossRefPubMedPubMedCentral Bahreyni Toossi MT, Pirayesh Islamian J, Momennezhad M, Ljungberg M, Naseri SH. SIMIND Monte Carlo simulation of a single photon emission CT. J Med Phys. 2010;35:42–7.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Holstensson M, Partridge M, Buckley SE, Flux GD. The effect of energy and source location on gamma camera intrinsic and extrinsic spatial resolution: an experimental and Monte Carlo study. Phys Med Biol. 2010;55:1735–51.CrossRefPubMed Holstensson M, Partridge M, Buckley SE, Flux GD. The effect of energy and source location on gamma camera intrinsic and extrinsic spatial resolution: an experimental and Monte Carlo study. Phys Med Biol. 2010;55:1735–51.CrossRefPubMed
16.
Zurück zum Zitat Momennezhad M, Sadeghi R, Nasseri S. Development of GATE Monte Carlo simulation for a dual-head gamma camera. Radiol Phys Technol. 2012;5:222–8.CrossRefPubMed Momennezhad M, Sadeghi R, Nasseri S. Development of GATE Monte Carlo simulation for a dual-head gamma camera. Radiol Phys Technol. 2012;5:222–8.CrossRefPubMed
17.
Zurück zum Zitat Assie K, Bretonb V, Buvat I, Comtat C, Jan S, Krieguerd M, et al. Monte Carlo simulation in PET and SPECT instrumentation using GATE. Nucl Inst Methods Phys Res A. 2004;527:180–9.CrossRef Assie K, Bretonb V, Buvat I, Comtat C, Jan S, Krieguerd M, et al. Monte Carlo simulation in PET and SPECT instrumentation using GATE. Nucl Inst Methods Phys Res A. 2004;527:180–9.CrossRef
18.
Zurück zum Zitat Descourt P, Carlier T, Du Y, Song X, Buvat I, Frey EC, et al. Implementation of angular response function modeling in SPECT simulations with GATE. Phys Med Biol. 2010;55:253–66.CrossRef Descourt P, Carlier T, Du Y, Song X, Buvat I, Frey EC, et al. Implementation of angular response function modeling in SPECT simulations with GATE. Phys Med Biol. 2010;55:253–66.CrossRef
19.
Zurück zum Zitat Pietrzyk U, Zakhnini A, Axer M, Sauerzapf S, Benoit D, Gaens M. EduGATE—basic examples for educative purpose using the GATE simulation platform. Med Phys. 2013;23:65–70.CrossRef Pietrzyk U, Zakhnini A, Axer M, Sauerzapf S, Benoit D, Gaens M. EduGATE—basic examples for educative purpose using the GATE simulation platform. Med Phys. 2013;23:65–70.CrossRef
20.
Zurück zum Zitat Rasouli M, Takavar A, Ay MR, Saber S, Loudos G. Effects of crystal pixel size and collimator geometry on the performance of a pixelated crystal g-camera using Monte Carlo simulation. J Nucl Med Technol. 2010;38:199–204.CrossRefPubMed Rasouli M, Takavar A, Ay MR, Saber S, Loudos G. Effects of crystal pixel size and collimator geometry on the performance of a pixelated crystal g-camera using Monte Carlo simulation. J Nucl Med Technol. 2010;38:199–204.CrossRefPubMed
21.
Zurück zum Zitat Mahani H, Gh R, Kamali-Asl AR, Ay MR. How crystal configuration affects the position detection accuracy in pixelated molecular SPECT imaging systems? Nucl Sci Tech. 2017;28:28–47.CrossRef Mahani H, Gh R, Kamali-Asl AR, Ay MR. How crystal configuration affects the position detection accuracy in pixelated molecular SPECT imaging systems? Nucl Sci Tech. 2017;28:28–47.CrossRef
22.
Zurück zum Zitat Tavernier S, Gektin A, Grinyov B, William W. Radiation detectors for medical applications. 3rd ed. The Netherlands: Springer; 2006.CrossRef Tavernier S, Gektin A, Grinyov B, William W. Radiation detectors for medical applications. 3rd ed. The Netherlands: Springer; 2006.CrossRef
Metadaten
Titel
Capabilities of the Monte Carlo Simulation Codes for Modeling of a Small Animal SPECT Camera
verfasst von
Alireza Sadremomtaz
Zeinab Telikani
Publikationsdatum
21.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 4/2018
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-018-0530-0

Weitere Artikel der Ausgabe 4/2018

Nuclear Medicine and Molecular Imaging 4/2018 Zur Ausgabe