Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 3/2008

01.03.2008 | Original article

Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis

verfasst von: Christian Boy, Philipp T. Meyer, Gerald Kircheis, Marcus H. Holschbach, Hans Herzog, David Elmenhorst, Hans Juergen Kaiser, Heinz H. Coenen, Dieter Haussinger, Karl Zilles, Andreas Bauer

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A1 adenosine receptors (A1AR), is likely to be involved. The present study investigates changes of cerebral A1AR binding in cirrhotic patients by means of positron emission tomography (PET) and [18F]CPFPX, a novel selective A1AR antagonist.

Methods

PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan’s non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B max/K D).

Results

Cortical and subcortical regions showed lower A1AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (−50.0%), precentral gyrus (−40.9%), postcentral gyrus (−38.6%), insular cortex (−38.6%), thalamus (−32.9%), parietal cortex (−31.7%), frontal cortex (−28.6), lateral temporal cortex (−28.2%), orbitofrontal cortex (−27.9%), occipital cortex (−24.6), putamen (−22.7%) and mesial temporal lobe (−22.4%).

Conclusion

Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A1AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A1AR density or affinity, as well as blockade of the A1AR by endogenous adenosine or exogenous xanthines.
Literatur
1.
Zurück zum Zitat Haussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, et al. Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 1994;107:1475–80.PubMed Haussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, et al. Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 1994;107:1475–80.PubMed
2.
Zurück zum Zitat Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral oedema? J Hepatol 2000;32:1035–8.PubMedCrossRef Haussinger D, Kircheis G, Fischer R, Schliess F, vom Dahl S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral oedema? J Hepatol 2000;32:1035–8.PubMedCrossRef
3.
Zurück zum Zitat Haussinger D, Schliess F. Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem Int 2005;47:64–70.PubMedCrossRef Haussinger D, Schliess F. Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem Int 2005;47:64–70.PubMedCrossRef
4.
Zurück zum Zitat Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy-definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002;35:716–21.PubMedCrossRef Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy-definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002;35:716–21.PubMedCrossRef
5.
Zurück zum Zitat Butterworth RF. Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular studies. J Hepatol 2003;39:278–85.PubMedCrossRef Butterworth RF. Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular studies. J Hepatol 2003;39:278–85.PubMedCrossRef
6.
Zurück zum Zitat Butterworth R. Metabolic encephalopathies. In: Siegel GJ, Albers RW, Brady ST, Price DL, editors. Basic neurochemistry: molecular, cellular, and medical aspects. 7th ed. San Diego: Academic; 2006. p. 596–8. Butterworth R. Metabolic encephalopathies. In: Siegel GJ, Albers RW, Brady ST, Price DL, editors. Basic neurochemistry: molecular, cellular, and medical aspects. 7th ed. San Diego: Academic; 2006. p. 596–8.
7.
Zurück zum Zitat Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A. Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 2003;61:689–92.PubMed Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A. Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 2003;61:689–92.PubMed
8.
Zurück zum Zitat Lockwood AH, Weissenborn K, Bokemeyer M, Tietge U, Burchert W. Correlations between cerebral glucose metabolism and neuropsychological test performance in nonalcoholic cirrhotics. Metab Brain Dis 2002;17:29–40.PubMedCrossRef Lockwood AH, Weissenborn K, Bokemeyer M, Tietge U, Burchert W. Correlations between cerebral glucose metabolism and neuropsychological test performance in nonalcoholic cirrhotics. Metab Brain Dis 2002;17:29–40.PubMedCrossRef
9.
Zurück zum Zitat Zafiris O, Kircheis G, Rood HA, Boers F, Haussinger D, Zilles K. Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an fMRI study. Neuroimage 2004;22:541–52.PubMedCrossRef Zafiris O, Kircheis G, Rood HA, Boers F, Haussinger D, Zilles K. Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an fMRI study. Neuroimage 2004;22:541–52.PubMedCrossRef
10.
Zurück zum Zitat Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Haussinger D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 2002;35:357–66.PubMedCrossRef Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Haussinger D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 2002;35:357–66.PubMedCrossRef
11.
Zurück zum Zitat O’Carroll RE, Hayes PC, Ebmeier KP, Dougall N, Murray C, Best JJ, et al. Regional cerebral blood flow and cognitive function in patients with chronic liver disease. Lancet 1991;337:1250–3.PubMedCrossRef O’Carroll RE, Hayes PC, Ebmeier KP, Dougall N, Murray C, Best JJ, et al. Regional cerebral blood flow and cognitive function in patients with chronic liver disease. Lancet 1991;337:1250–3.PubMedCrossRef
12.
Zurück zum Zitat Shawcross D, Jalan R. Dispelling myths in the treatment of hepatic encephalopathy. Lancet 2005;365:431–33.PubMed Shawcross D, Jalan R. Dispelling myths in the treatment of hepatic encephalopathy. Lancet 2005;365:431–33.PubMed
13.
14.
Zurück zum Zitat Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VL. GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 2002;68:730–7.PubMedCrossRef Song G, Dhodda VK, Blei AT, Dempsey RJ, Rao VL. GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of portacaval shunted rats. J Neurosci Res 2002;68:730–7.PubMedCrossRef
15.
Zurück zum Zitat Brambilla D, Chapman D, Greene R. Adenosine mediation of presynaptic feedback inhibition of glutamate release. Neuron 2005;46:275–83.PubMedCrossRef Brambilla D, Chapman D, Greene R. Adenosine mediation of presynaptic feedback inhibition of glutamate release. Neuron 2005;46:275–83.PubMedCrossRef
16.
Zurück zum Zitat Jodynis-Liebert J, Flieger J, Matuszewska A, Juszczyk J. Serum metabolite/caffeine ratios as a test for liver function. J Clin Pharmacol 2004;44:338–47.PubMedCrossRef Jodynis-Liebert J, Flieger J, Matuszewska A, Juszczyk J. Serum metabolite/caffeine ratios as a test for liver function. J Clin Pharmacol 2004;44:338–47.PubMedCrossRef
17.
Zurück zum Zitat Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep–wake regulation. Prog Neurobiol 2004;73:379–96.PubMedCrossRef Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep–wake regulation. Prog Neurobiol 2004;73:379–96.PubMedCrossRef
18.
Zurück zum Zitat Cordoba J, Cabrera J, Lataif L, Penev P, Zee P, Blei AT. High prevalence of sleep disturbance in cirrhosis. Hepatology 1998;27:339–45.PubMedCrossRef Cordoba J, Cabrera J, Lataif L, Penev P, Zee P, Blei AT. High prevalence of sleep disturbance in cirrhosis. Hepatology 1998;27:339–45.PubMedCrossRef
19.
Zurück zum Zitat Schneider C, Fulda S, Schulz H. Daytime variation in performance and tiredness/sleepiness ratings in patients with insomnia, narcolepsy, sleep apnea and normal controls. J Sleep Res 2004;13:373–83.PubMedCrossRef Schneider C, Fulda S, Schulz H. Daytime variation in performance and tiredness/sleepiness ratings in patients with insomnia, narcolepsy, sleep apnea and normal controls. J Sleep Res 2004;13:373–83.PubMedCrossRef
20.
Zurück zum Zitat Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001;24:31–55.PubMedCrossRef Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001;24:31–55.PubMedCrossRef
21.
Zurück zum Zitat Santschi LA, Zhang XL, Stanton PK. Activation of receptors negatively coupled to adenylate cyclase is required for induction of long-term synaptic depression at Schaffer collateral-CA1 synapses. J Neurobiol 2006;66:205–19.PubMedCrossRef Santschi LA, Zhang XL, Stanton PK. Activation of receptors negatively coupled to adenylate cyclase is required for induction of long-term synaptic depression at Schaffer collateral-CA1 synapses. J Neurobiol 2006;66:205–19.PubMedCrossRef
22.
Zurück zum Zitat Rodrigo R, Montoliu C, Chatauret N, Butterworth R, Behrends S, Del Olmo JA, et al. Alterations in soluble guanylate cyclase content and modulation by nitric oxide in liver disease. Neurochem Int 2004;45:947–53.PubMedCrossRef Rodrigo R, Montoliu C, Chatauret N, Butterworth R, Behrends S, Del Olmo JA, et al. Alterations in soluble guanylate cyclase content and modulation by nitric oxide in liver disease. Neurochem Int 2004;45:947–53.PubMedCrossRef
23.
Zurück zum Zitat Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 2002;45:5150–56.PubMedCrossRef Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 2002;45:5150–56.PubMedCrossRef
24.
Zurück zum Zitat Conn HO. Quantifying the severity of hepatic encephalopathy. In: Conn HO, Bircher J, editors. Hepatic encephalopathy: syndromes and therapies. East Lansing, MI: Medi-Ed; 1993. p. 13–26. Conn HO. Quantifying the severity of hepatic encephalopathy. In: Conn HO, Bircher J, editors. Hepatic encephalopathy: syndromes and therapies. East Lansing, MI: Medi-Ed; 1993. p. 13–26.
25.
Zurück zum Zitat Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 1997;38:1818–23.PubMed Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 1997;38:1818–23.PubMed
27.
Zurück zum Zitat Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.PubMedCrossRef Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.PubMedCrossRef
28.
Zurück zum Zitat Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834–40.PubMedCrossRef Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834–40.PubMedCrossRef
29.
Zurück zum Zitat Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 2003;19:1760–9.PubMedCrossRef Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 2003;19:1760–9.PubMedCrossRef
30.
Zurück zum Zitat Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage 2005;24:1192–204.PubMedCrossRef Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage 2005;24:1192–204.PubMedCrossRef
31.
Zurück zum Zitat Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 2004;24:323–33.PubMedCrossRef Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 2004;24:323–33.PubMedCrossRef
32.
Zurück zum Zitat Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 2006;32:1100–5.PubMedCrossRef Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A. A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 2006;32:1100–5.PubMedCrossRef
33.
Zurück zum Zitat Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 2005;55:212–23.PubMedCrossRef Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 2005;55:212–23.PubMedCrossRef
34.
Zurück zum Zitat Elmenhorst D, Meyer PT, Matusch A, Winz OH, Zilles K, Bauer A. Test–retest stability of cerebral A(1) adenosine receptor quantification using [(18)F]CPFPX and PET. Eur J Nucl Med Mol Imaging 2007;34:1061–70.PubMedCrossRef Elmenhorst D, Meyer PT, Matusch A, Winz OH, Zilles K, Bauer A. Test–retest stability of cerebral A(1) adenosine receptor quantification using [(18)F]CPFPX and PET. Eur J Nucl Med Mol Imaging 2007;34:1061–70.PubMedCrossRef
35.
Zurück zum Zitat Matusch A, Meyer PT, Bier D, Holschbach MH, Woitalla D, Elmenhorst D, et al. Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol 2006;33:891–8.PubMedCrossRef Matusch A, Meyer PT, Bier D, Holschbach MH, Woitalla D, Elmenhorst D, et al. Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol 2006;33:891–8.PubMedCrossRef
36.
Zurück zum Zitat Kril JJ, Butterworth RF. Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology 1997;26:837–41.PubMedCrossRef Kril JJ, Butterworth RF. Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology 1997;26:837–41.PubMedCrossRef
37.
Zurück zum Zitat Meerlo P, Roman V, Farkas E, Keijser JN, Nyakas C, Luiten PG. Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J Neurosci Res 2004;78:742–8.PubMedCrossRef Meerlo P, Roman V, Farkas E, Keijser JN, Nyakas C, Luiten PG. Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J Neurosci Res 2004;78:742–8.PubMedCrossRef
38.
Zurück zum Zitat Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, et al. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 2003 Nov;38:1219–26.PubMedCrossRef Shah NJ, Neeb H, Zaitsev M, Steinhoff S, Kircheis G, Amunts K, et al. Quantitative T1 mapping of hepatic encephalopathy using magnetic resonance imaging. Hepatology 2003 Nov;38:1219–26.PubMedCrossRef
39.
Zurück zum Zitat Kril JJ, Halliday GM. Brain shrinkage in alcoholics: a decade on and what have we learned? Prog Neurobiol 1999;58:381–7.PubMedCrossRef Kril JJ, Halliday GM. Brain shrinkage in alcoholics: a decade on and what have we learned? Prog Neurobiol 1999;58:381–7.PubMedCrossRef
40.
Zurück zum Zitat Gao Z, Robeva AS, Linden J. Purification of A1 adenosine receptor-G-protein complexes: effects of receptor down-regulation and phosphorylation on coupling. Biochem J 1999;338:729–36.PubMedCrossRef Gao Z, Robeva AS, Linden J. Purification of A1 adenosine receptor-G-protein complexes: effects of receptor down-regulation and phosphorylation on coupling. Biochem J 1999;338:729–36.PubMedCrossRef
41.
Zurück zum Zitat Palomero-Gallagher N, Reiffenberger G, Kostopulos G, Kircheis G, Haussinger D, Zilles K. Neurotransmitter receptor alterations in hepatic encephalopathy. In: Haussinger D, Kirchels G, Schliess F, editors. Hepatic encephalopathy and nitrogen metabolism. Dordrecht: Springer; 2006. p. 255–72.CrossRef Palomero-Gallagher N, Reiffenberger G, Kostopulos G, Kircheis G, Haussinger D, Zilles K. Neurotransmitter receptor alterations in hepatic encephalopathy. In: Haussinger D, Kirchels G, Schliess F, editors. Hepatic encephalopathy and nitrogen metabolism. Dordrecht: Springer; 2006. p. 255–72.CrossRef
42.
Zurück zum Zitat Keiding S, Sorensen M, Bender D, Munk OL, Ott P, Vilstrup H. Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 2006;43:42–50.PubMedCrossRef Keiding S, Sorensen M, Bender D, Munk OL, Ott P, Vilstrup H. Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 2006;43:42–50.PubMedCrossRef
43.
Zurück zum Zitat Vogels BA, Maas MA, Daalhuisen J, Quack G, Chamuleau RA. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 1997;25:820–7.PubMedCrossRef Vogels BA, Maas MA, Daalhuisen J, Quack G, Chamuleau RA. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 1997;25:820–7.PubMedCrossRef
44.
Zurück zum Zitat Erceg S, Monfort P, Hernandez-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 2005;41:299–306.PubMedCrossRef Erceg S, Monfort P, Hernandez-Viadel M, Rodrigo R, Montoliu C, Felipo V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 2005;41:299–306.PubMedCrossRef
Metadaten
Titel
Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis
verfasst von
Christian Boy
Philipp T. Meyer
Gerald Kircheis
Marcus H. Holschbach
Hans Herzog
David Elmenhorst
Hans Juergen Kaiser
Heinz H. Coenen
Dieter Haussinger
Karl Zilles
Andreas Bauer
Publikationsdatum
01.03.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 3/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0586-z

Weitere Artikel der Ausgabe 3/2008

European Journal of Nuclear Medicine and Molecular Imaging 3/2008 Zur Ausgabe