Skip to main content
Erschienen in: Current Treatment Options in Neurology 3/2020

01.03.2020 | Critical Care Neurology (H Hinson, Section Editor)

Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy

verfasst von: Benjamin E. Zusman, BSc, Patrick M. Kochanek, MD, Ruchira M. Jha, MD MSc

Erschienen in: Current Treatment Options in Neurology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of review

The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets.

Recent findings

Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1.

Summary

This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Literatur
1.
Zurück zum Zitat Tucker B, Aston J, Dines M, Caraman E, Yacyshyn M, McCarthy M, et al. Early brain edema is a predictor of in-hospital mortality in traumatic brain injury. J Emerg Med. 2017;53:18–29.CrossRefPubMed Tucker B, Aston J, Dines M, Caraman E, Yacyshyn M, McCarthy M, et al. Early brain edema is a predictor of in-hospital mortality in traumatic brain injury. J Emerg Med. 2017;53:18–29.CrossRefPubMed
3.
Zurück zum Zitat Hudak AM, Peng L, Marquez de la Plata C, Thottakara J, Moore C, Harper C, et al. Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: assessment with FLAIR and DWI imaging. Brain Inj. 2014;28:1602–9.CrossRefPubMed Hudak AM, Peng L, Marquez de la Plata C, Thottakara J, Moore C, Harper C, et al. Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: assessment with FLAIR and DWI imaging. Brain Inj. 2014;28:1602–9.CrossRefPubMed
4.
Zurück zum Zitat Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145:230–46.CrossRefPubMed Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145:230–46.CrossRefPubMed
5.
Zurück zum Zitat Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21(Suppl 2):S64–84.CrossRefPubMed Chesnut R, Videtta W, Vespa P, Le Roux P. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care. 2014;21(Suppl 2):S64–84.CrossRefPubMed
6.
Zurück zum Zitat Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.CrossRefPubMed Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.CrossRefPubMed
7.
Zurück zum Zitat Eisenberg HM, Gary HE, Aldrich EF, Saydjari C, Turner B, Foulkes MA, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73:688–98.CrossRefPubMed Eisenberg HM, Gary HE, Aldrich EF, Saydjari C, Turner B, Foulkes MA, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990;73:688–98.CrossRefPubMed
8.
Zurück zum Zitat Feickert HJ, Drommer S, Heyer R. Severe head injury in children: impact of risk factors on outcome. J Trauma. 1999;47:33–8.CrossRefPubMed Feickert HJ, Drommer S, Heyer R. Severe head injury in children: impact of risk factors on outcome. J Trauma. 1999;47:33–8.CrossRefPubMed
9.
Zurück zum Zitat Feldmann H, Klages G, Gärtner F, Scharfenberg J. The prognostic value of intracranial pressure monitoring after severe head injuries. Acta Neurochir Suppl (Wien). 1979;28:74–7. Feldmann H, Klages G, Gärtner F, Scharfenberg J. The prognostic value of intracranial pressure monitoring after severe head injuries. Acta Neurochir Suppl (Wien). 1979;28:74–7.
10.
Zurück zum Zitat Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.CrossRef Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.CrossRef
11.
Zurück zum Zitat Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979;50:20–5.CrossRefPubMed Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979;50:20–5.CrossRefPubMed
12.
Zurück zum Zitat Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977;47:503–16.CrossRefPubMed Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ. Significance of intracranial hypertension in severe head injury. J Neurosurg. 1977;47:503–16.CrossRefPubMed
13.
Zurück zum Zitat Stocchetti N, Zanaboni C, Colombo A, Citerio G, Beretta L, Ghisoni L, et al. Refractory intracranial hypertension and “second-tier” therapies in traumatic brain injury. Intensive Care Med. 2008;34:461–7.CrossRefPubMed Stocchetti N, Zanaboni C, Colombo A, Citerio G, Beretta L, Ghisoni L, et al. Refractory intracranial hypertension and “second-tier” therapies in traumatic brain injury. Intensive Care Med. 2008;34:461–7.CrossRefPubMed
14.
Zurück zum Zitat Nirula R, Millar D, Greene T, McFadden M, Shah L, Scalea TM, et al. Decompressive craniectomy or medical management for refractory intracranial hypertension: an AAST-MIT propensity score analysis. J Trauma Acute Care Surg. 2014;76:944–52 discussion 952.CrossRefPubMed Nirula R, Millar D, Greene T, McFadden M, Shah L, Scalea TM, et al. Decompressive craniectomy or medical management for refractory intracranial hypertension: an AAST-MIT propensity score analysis. J Trauma Acute Care Surg. 2014;76:944–52 discussion 952.CrossRefPubMed
15.
Zurück zum Zitat Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:171–91.CrossRefPubMedPubMedCentral Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13:171–91.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, et al. Therapeutic whole-body hypothermia reduces death in severe traumatic brain injury if the cooling index is sufficiently high: meta-analyses of the effect of single cooling parameters and their integrated measure. J Neurotrauma. 2018;35:2407–17.CrossRefPubMed Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, et al. Therapeutic whole-body hypothermia reduces death in severe traumatic brain injury if the cooling index is sufficiently high: meta-analyses of the effect of single cooling parameters and their integrated measure. J Neurotrauma. 2018;35:2407–17.CrossRefPubMed
17.
Zurück zum Zitat Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2018;42:499–509.CrossRefPubMed Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2018;42:499–509.CrossRefPubMed
18.
Zurück zum Zitat Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90:1042–52.CrossRefPubMed Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90:1042–52.CrossRefPubMed
19.
Zurück zum Zitat Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.CrossRefPubMedPubMedCentral Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Sheth KN, Elm JJ, Molyneaux BJ, Hinson H, Beslow LA, Sze GK, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–9.CrossRefPubMed Sheth KN, Elm JJ, Molyneaux BJ, Hinson H, Beslow LA, Sze GK, et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–9.CrossRefPubMed
21.
Zurück zum Zitat •• Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375:1119–30 This study, also known as the RESCUEicp trial, is a recent landmark RCT specifically assessing the use of decompressive craniectomy for management of intracranial hypertension after TBI. The investigators found that decompressive craniectomy is associated with decreased mortality but has a debatable impact on functional outcomes.CrossRefPubMed •• Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375:1119–30 This study, also known as the RESCUEicp trial, is a recent landmark RCT specifically assessing the use of decompressive craniectomy for management of intracranial hypertension after TBI. The investigators found that decompressive craniectomy is associated with decreased mortality but has a debatable impact on functional outcomes.CrossRefPubMed
22.
Zurück zum Zitat Asehnoune K, Lasocki S, Seguin P, Geeraerts T, Perrigault PF, Dahyot-Fizelier C, et al. Association between continuous hyperosmolar therapy and survival in patients with traumatic brain injury—a multicentre prospective cohort study and systematic review. Crit Care. 2017;21:328.CrossRefPubMedPubMedCentral Asehnoune K, Lasocki S, Seguin P, Geeraerts T, Perrigault PF, Dahyot-Fizelier C, et al. Association between continuous hyperosmolar therapy and survival in patients with traumatic brain injury—a multicentre prospective cohort study and systematic review. Crit Care. 2017;21:328.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Monro A. Chapter 1: of the circulation of the blood within the head. Observations on the structure and functions of the nervous system. Edinburgh: William Creech; 1783. p. 5. Monro A. Chapter 1: of the circulation of the blood within the head. Observations on the structure and functions of the nervous system. Edinburgh: William Creech; 1783. p. 5.
24.
Zurück zum Zitat Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefPubMed Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefPubMed
25.
Zurück zum Zitat Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury. Brain Res. 1611;2015:18–28. Blixt J, Svensson M, Gunnarson E, Wanecek M. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury. Brain Res. 1611;2015:18–28.
26.
Zurück zum Zitat Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129:1021–9.CrossRefPubMed Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience. 2004;129:1021–9.CrossRefPubMed
27.
Zurück zum Zitat Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am. 2016;27:473–88.CrossRefPubMed Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am. 2016;27:473–88.CrossRefPubMed
28.
Zurück zum Zitat Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg. 2006;104:720–30.CrossRefPubMed Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg. 2006;104:720–30.CrossRefPubMed
29.
Zurück zum Zitat Barzó P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg. 1997;87:900–7.CrossRefPubMed Barzó P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg. 1997;87:900–7.CrossRefPubMed
31.
Zurück zum Zitat Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep. 2015;12:7351–7.CrossRefPubMedPubMedCentral Zhang C, Chen J, Lu H. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury. Mol Med Rep. 2015;12:7351–7.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Wallisch J, Jha R, Vagni V, Feldman K, Dixon C, Farr G, et al. Effect of the novel aquaporin-4 antagonist AER-271 in combined TBI plus hemorrhagic shock in mice. Crit Care Med. 2015;43:6–7.CrossRef Wallisch J, Jha R, Vagni V, Feldman K, Dixon C, Farr G, et al. Effect of the novel aquaporin-4 antagonist AER-271 in combined TBI plus hemorrhagic shock in mice. Crit Care Med. 2015;43:6–7.CrossRef
34.
Zurück zum Zitat Hou J, Kshettry VR, Selman WR, Bambakidis NC. Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus. 2013;35:E2.CrossRefPubMed Hou J, Kshettry VR, Selman WR, Bambakidis NC. Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus. 2013;35:E2.CrossRefPubMed
35.
Zurück zum Zitat Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K. Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer. 1999;85:936–44.CrossRefPubMed Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K. Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer. 1999;85:936–44.CrossRefPubMed
36.
Zurück zum Zitat Liaquat I, Dunn LT, Nicoll JAR, Teasdale GM, Norrie JD. Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg. 2002;96:90–6.CrossRefPubMed Liaquat I, Dunn LT, Nicoll JAR, Teasdale GM, Norrie JD. Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg. 2002;96:90–6.CrossRefPubMed
37.
Zurück zum Zitat Jha RM, Puccio AM, Okonkwo DO, Zusman BE, Park S-Y, Wallisch J, et al. ABCC8 single nucleotide polymorphisms are associated with cerebral edema in severe TBI. Neurocrit Care. 2017;26:213–24.CrossRefPubMedPubMedCentral Jha RM, Puccio AM, Okonkwo DO, Zusman BE, Park S-Y, Wallisch J, et al. ABCC8 single nucleotide polymorphisms are associated with cerebral edema in severe TBI. Neurocrit Care. 2017;26:213–24.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Jha RM, Koleck TA, Puccio AM, Okonkwo DO, Park S-Y, Zusman BE, et al. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2018;89:1152–62.CrossRefPubMed Jha RM, Koleck TA, Puccio AM, Okonkwo DO, Park S-Y, Zusman BE, et al. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2018;89:1152–62.CrossRefPubMed
39.
Zurück zum Zitat Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, et al. Downstream TRPM4 polymorphisms are associated with intracranial hypertension and statistically interact with ABCC8 polymorphisms in a prospective cohort of severe traumatic brain injury. J Neurotrauma. 2019. Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, et al. Downstream TRPM4 polymorphisms are associated with intracranial hypertension and statistically interact with ABCC8 polymorphisms in a prospective cohort of severe traumatic brain injury. J Neurotrauma. 2019.
40.
Zurück zum Zitat Hadjigeorgiou GM, Paterakis K, Dardiotis E, Dardioti M, Aggelakis K, Tasiou A, et al. IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology. 2005;65:1077–82.CrossRefPubMed Hadjigeorgiou GM, Paterakis K, Dardiotis E, Dardioti M, Aggelakis K, Tasiou A, et al. IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology. 2005;65:1077–82.CrossRefPubMed
41.
Zurück zum Zitat Robertson CS, Gopinath SP, Valadka AB, Van M, Swank PR, Goodman JC. Variants of the endothelial nitric oxide gene and cerebral blood flow after severe traumatic brain injury. J Neurotrauma. 2011;28:727–37.CrossRefPubMedPubMedCentral Robertson CS, Gopinath SP, Valadka AB, Van M, Swank PR, Goodman JC. Variants of the endothelial nitric oxide gene and cerebral blood flow after severe traumatic brain injury. J Neurotrauma. 2011;28:727–37.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Maeda T, Katayama Y, Kawamata T, Koyama S, Sasaki J. Ultra-early study of edema formation in cerebral contusion using diffusion MRI and ADC mapping. In: Kuroiwa T, Baethmann A, Czernicki Z, Hoff JT, Ito U, Katayama Y, et al., editors. Brain Edema XII. Vienna: Springer Vienna; 2003. p. 329–31.CrossRef Maeda T, Katayama Y, Kawamata T, Koyama S, Sasaki J. Ultra-early study of edema formation in cerebral contusion using diffusion MRI and ADC mapping. In: Kuroiwa T, Baethmann A, Czernicki Z, Hoff JT, Ito U, Katayama Y, et al., editors. Brain Edema XII. Vienna: Springer Vienna; 2003. p. 329–31.CrossRef
43.
Zurück zum Zitat Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 1998;71:289–92.PubMed Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 1998;71:289–92.PubMed
44.
Zurück zum Zitat Torre-Healy A, Marko NF, Weil RJ. Hyperosmolar therapy for intracranial hypertension. Neurocrit Care. 2012;17:117–30.CrossRefPubMed Torre-Healy A, Marko NF, Weil RJ. Hyperosmolar therapy for intracranial hypertension. Neurocrit Care. 2012;17:117–30.CrossRefPubMed
45.
Zurück zum Zitat Rajagopal R, Swaminathan G, Nair S, Joseph M. Hyponatremia in traumatic brain injury: a practical management protocol. World Neurosurg. 2017;108:529–33.CrossRefPubMed Rajagopal R, Swaminathan G, Nair S, Joseph M. Hyponatremia in traumatic brain injury: a practical management protocol. World Neurosurg. 2017;108:529–33.CrossRefPubMed
46.
Zurück zum Zitat von Bismarck P, Ankermann T, Eggert P, Claviez A, Fritsch MJ, Krause MF. Diagnosis and management of cerebral salt wasting (CSW) in children: the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Childs Nerv Syst. 2006;22:1275–81.CrossRef von Bismarck P, Ankermann T, Eggert P, Claviez A, Fritsch MJ, Krause MF. Diagnosis and management of cerebral salt wasting (CSW) in children: the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Childs Nerv Syst. 2006;22:1275–81.CrossRef
48.
Zurück zum Zitat Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One. 2018;13:e0195526.CrossRefPubMedPubMedCentral Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One. 2018;13:e0195526.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.CrossRefPubMedPubMedCentral Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–68.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: Quo Vadis? Curr Neurol Neurosci Rep. 2018;18:105.CrossRefPubMedPubMedCentral Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: Quo Vadis? Curr Neurol Neurosci Rep. 2018;18:105.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Hirose T, Matsumoto N, Tasaki O, Nakamura H, Akagaki F, Shimazu T. Delayed progression of edema formation around a hematoma expressing high levels of VEGF and mmp-9 in a patient with traumatic brain injury: case report. Neurol Med Chir (Tokyo). 2013;53:609–12.CrossRef Hirose T, Matsumoto N, Tasaki O, Nakamura H, Akagaki F, Shimazu T. Delayed progression of edema formation around a hematoma expressing high levels of VEGF and mmp-9 in a patient with traumatic brain injury: case report. Neurol Med Chir (Tokyo). 2013;53:609–12.CrossRef
52.
Zurück zum Zitat Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, et al. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004;21:1090–102.CrossRefPubMed Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, et al. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004;21:1090–102.CrossRefPubMed
53.
Zurück zum Zitat Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425–9.CrossRefPubMed
54.
Zurück zum Zitat Dash PK, Zhao J, Kobori N, Redell JB, Hylin MJ, Hood KN, et al. Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J Neurosci. 2016;36:2809–18.CrossRefPubMedPubMedCentral Dash PK, Zhao J, Kobori N, Redell JB, Hylin MJ, Hood KN, et al. Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J Neurosci. 2016;36:2809–18.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Kochanek PM, Clark RSB, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1:4–19.CrossRefPubMed Kochanek PM, Clark RSB, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, et al. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1:4–19.CrossRefPubMed
56.
Zurück zum Zitat Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.CrossRefPubMed Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.CrossRefPubMed
57.
Zurück zum Zitat Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin N Am. 2001;48:661–81.CrossRef Kochanek PM, Clark RS, Ruppel RA, Dixon CE. Cerebral resuscitation after traumatic brain injury and cardiopulmonary arrest in infants and children in the new millennium. Pediatr Clin N Am. 2001;48:661–81.CrossRef
58.
Zurück zum Zitat Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 2015;71:289–92. Katayama Y, Mori T, Maeda T, Kawamata T. Pathogenesis of mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl. 2015;71:289–92.
59.
Zurück zum Zitat Katayama Y, Kawamata T. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patients. Acta Neurochir Suppl. 2003;86:323–7.PubMed Katayama Y, Kawamata T. Edema fluid accumulation within necrotic brain tissue as a cause of the mass effect of cerebral contusion in head trauma patients. Acta Neurochir Suppl. 2003;86:323–7.PubMed
60.
Zurück zum Zitat de Lores Arnaiz GR, Ordieres MGL. Brain Na(+), K(+)-ATPase activity in aging and disease. Int J Biomed Sci. 2014;10:85–102.PubMedPubMedCentral de Lores Arnaiz GR, Ordieres MGL. Brain Na(+), K(+)-ATPase activity in aging and disease. Int J Biomed Sci. 2014;10:85–102.PubMedPubMedCentral
61.
Zurück zum Zitat Lester HA, Mager S, Quick MW, Corey JL. Permeation properties of neurotransmitter transporters. Annu Rev Pharmacol Toxicol. 1994;34:219–49.CrossRefPubMed Lester HA, Mager S, Quick MW, Corey JL. Permeation properties of neurotransmitter transporters. Annu Rev Pharmacol Toxicol. 1994;34:219–49.CrossRefPubMed
62.
Zurück zum Zitat Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg. 2010;113:622–9.CrossRefPubMedPubMedCentral Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury—synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg. 2010;113:622–9.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Xu W, Mu X, Wang H, Song C, Ma W, Jolkkonen J, et al. Chloride co-transporter NKCC1 inhibitor bumetanide enhances neurogenesis and behavioral recovery in rats after experimental stroke. Mol Neurobiol. 2017;54:2406–14.CrossRefPubMed Xu W, Mu X, Wang H, Song C, Ma W, Jolkkonen J, et al. Chloride co-transporter NKCC1 inhibitor bumetanide enhances neurogenesis and behavioral recovery in rats after experimental stroke. Mol Neurobiol. 2017;54:2406–14.CrossRefPubMed
64.
Zurück zum Zitat Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.CrossRefPubMed Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80:6–15.CrossRefPubMed
65.
Zurück zum Zitat Marmarou A, Fatouros PP, Barzó P, Portella G, Yoshihara M, Tsuji O, et al. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg. 2000;93:183–93.CrossRefPubMed Marmarou A, Fatouros PP, Barzó P, Portella G, Yoshihara M, Tsuji O, et al. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg. 2000;93:183–93.CrossRefPubMed
66.
Zurück zum Zitat Lafrenaye AD, Krahe TE, Povlishock JT. Moderately elevated intracranial pressure after diffuse traumatic brain injury is associated with exacerbated neuronal pathology and behavioral morbidity in the rat. J Cereb Blood Flow Metab. 2014;34:1628–36.CrossRefPubMedPubMedCentral Lafrenaye AD, Krahe TE, Povlishock JT. Moderately elevated intracranial pressure after diffuse traumatic brain injury is associated with exacerbated neuronal pathology and behavioral morbidity in the rat. J Cereb Blood Flow Metab. 2014;34:1628–36.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med. 2018;46:1792–802.CrossRefPubMedPubMedCentral Jha RM, Elmer J, Zusman BE, Desai S, Puccio AM, Okonkwo DO, et al. Intracranial pressure trajectories: a novel approach to informing severe traumatic brain injury phenotypes. Crit Care Med. 2018;46:1792–802.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Calviello LA, de Riva N, Donnelly J, Czosnyka M, Smielewski P, Menon DK, et al. Relationship between brain pulsatility and cerebral perfusion pressure: replicated validation using different drivers of CPP change. Neurocrit Care. 2017;27:392–400.CrossRefPubMedPubMedCentral Calviello LA, de Riva N, Donnelly J, Czosnyka M, Smielewski P, Menon DK, et al. Relationship between brain pulsatility and cerebral perfusion pressure: replicated validation using different drivers of CPP change. Neurocrit Care. 2017;27:392–400.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35:1107–15.CrossRefPubMed Zeiler FA, Donnelly J, Smielewski P, Menon DK, Hutchinson PJ, Czosnyka M. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury. J Neurotrauma. 2018;35:1107–15.CrossRefPubMed
70.
Zurück zum Zitat Candanedo C, Doron O, Hemphill JC, Ramirez de Noriega F, Manley GT, Patal R, et al. Characterizing the response to cerebrospinal fluid drainage in patients with an external ventricular drain: the pressure equalization ratio. Neurocrit Care. 2019;30:340–7.CrossRefPubMed Candanedo C, Doron O, Hemphill JC, Ramirez de Noriega F, Manley GT, Patal R, et al. Characterizing the response to cerebrospinal fluid drainage in patients with an external ventricular drain: the pressure equalization ratio. Neurocrit Care. 2019;30:340–7.CrossRefPubMed
72.
Zurück zum Zitat Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth. 2014;112:35–46.CrossRefPubMed Kirkman MA, Smith M. Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth. 2014;112:35–46.CrossRefPubMed
73.
Zurück zum Zitat Mouchtouris N, Turpin J, Chalouhi N, Al Saiegh F, Theofanis T, Das S, et al. Statewide trends in intracranial pressure monitor use in 36,915 patients with severe traumatic brain injury in a mature trauma system over the past 18 years. World Neurosurg. 2019;130:e166–71. Mouchtouris N, Turpin J, Chalouhi N, Al Saiegh F, Theofanis T, Das S, et al. Statewide trends in intracranial pressure monitor use in 36,915 patients with severe traumatic brain injury in a mature trauma system over the past 18 years. World Neurosurg. 2019;130:e166–71.
74.
Zurück zum Zitat Ahl R, Sarani B, Sjolin G, Mohseni S. The association of intracranial pressure monitoring and mortality: a propensity score-matched cohort of isolated severe blunt traumatic brain injury. J Emerg Trauma Shock. 2019;12:18–22.PubMedPubMedCentral Ahl R, Sarani B, Sjolin G, Mohseni S. The association of intracranial pressure monitoring and mortality: a propensity score-matched cohort of isolated severe blunt traumatic brain injury. J Emerg Trauma Shock. 2019;12:18–22.PubMedPubMedCentral
75.
Zurück zum Zitat Newman WC, Chivukula S, Grandhi R. From mystics to modern times: a history of craniotomy & religion. World Neurosurg. 2016;92:148–50.CrossRefPubMed Newman WC, Chivukula S, Grandhi R. From mystics to modern times: a history of craniotomy & religion. World Neurosurg. 2016;92:148–50.CrossRefPubMed
76.
Zurück zum Zitat Missios S. Hippocrates, Galen, and the uses of trepanation in the ancient classical world. Neurosurg Focus. 2007;23:1–9.CrossRef Missios S. Hippocrates, Galen, and the uses of trepanation in the ancient classical world. Neurosurg Focus. 2007;23:1–9.CrossRef
77.
Zurück zum Zitat Panourias IG, Skiadas PK, Sakas DE, Marketos SG. Hippocrates: a pioneer in the treatment of head injuries. Neurosurgery. 2005;57:181–9 discussion 181.CrossRefPubMed Panourias IG, Skiadas PK, Sakas DE, Marketos SG. Hippocrates: a pioneer in the treatment of head injuries. Neurosurgery. 2005;57:181–9 discussion 181.CrossRefPubMed
79.
Zurück zum Zitat Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.CrossRefPubMed Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.CrossRefPubMed
80.
Zurück zum Zitat Münch E, Horn P, Schürer L, Piepgras A, Paul T, Schmiedek P. Management of severe traumatic brain injury by decompressive craniectomy. Neurosurgery. 2000;47:315–22 discussion 322.CrossRefPubMed Münch E, Horn P, Schürer L, Piepgras A, Paul T, Schmiedek P. Management of severe traumatic brain injury by decompressive craniectomy. Neurosurgery. 2000;47:315–22 discussion 322.CrossRefPubMed
81.
Zurück zum Zitat Timofeev I, Kirkpatrick PJ, Corteen E, Hiler M, Czosnyka M, Menon DK, et al. Decompressive craniectomy in traumatic brain injury: outcome following protocol-driven therapy. Acta Neurochir Suppl. 2006;96:11–6.CrossRefPubMed Timofeev I, Kirkpatrick PJ, Corteen E, Hiler M, Czosnyka M, Menon DK, et al. Decompressive craniectomy in traumatic brain injury: outcome following protocol-driven therapy. Acta Neurochir Suppl. 2006;96:11–6.CrossRefPubMed
82.
Zurück zum Zitat Whitfield PC, Patel H, Hutchinson PJ, Czosnyka M, Parry D, Menon D, et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg. 2001;15:500–7.CrossRefPubMed Whitfield PC, Patel H, Hutchinson PJ, Czosnyka M, Parry D, Menon D, et al. Bifrontal decompressive craniectomy in the management of posttraumatic intracranial hypertension. Br J Neurosurg. 2001;15:500–7.CrossRefPubMed
83.
Zurück zum Zitat Chibbaro S, Tacconi L. Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surg Neurol. 2007;68:632–8.CrossRefPubMed Chibbaro S, Tacconi L. Role of decompressive craniectomy in the management of severe head injury with refractory cerebral edema and intractable intracranial pressure. Our experience with 48 cases. Surg Neurol. 2007;68:632–8.CrossRefPubMed
84.
Zurück zum Zitat Olivecrona M, Rodling-Wahlström M, Naredi S, Koskinen L-OD. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma. 2007;24:927–35.CrossRefPubMed Olivecrona M, Rodling-Wahlström M, Naredi S, Koskinen L-OD. Effective ICP reduction by decompressive craniectomy in patients with severe traumatic brain injury treated by an ICP-targeted therapy. J Neurotrauma. 2007;24:927–35.CrossRefPubMed
85.
Zurück zum Zitat Amorim RL, Bor-Seng-Shu E, Gattás GS, Paiva W, de Andrade AF, Teixeira MJ. Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. J Neuroradiol. 2012;39:346–9.CrossRefPubMed Amorim RL, Bor-Seng-Shu E, Gattás GS, Paiva W, de Andrade AF, Teixeira MJ. Decompressive craniectomy and cerebral blood flow regulation in head injured patients: a case studied by perfusion CT. J Neuroradiol. 2012;39:346–9.CrossRefPubMed
86.
Zurück zum Zitat Ho CL, Wang CM, Lee KK, Ng I, Ang BT. Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg. 2008;108:943–9.CrossRefPubMed Ho CL, Wang CM, Lee KK, Ng I, Ang BT. Cerebral oxygenation, vascular reactivity, and neurochemistry following decompressive craniectomy for severe traumatic brain injury. J Neurosurg. 2008;108:943–9.CrossRefPubMed
87.
Zurück zum Zitat Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104:469–79.CrossRefPubMed Aarabi B, Hesdorffer DC, Ahn ES, Aresco C, Scalea TM, Eisenberg HM. Outcome following decompressive craniectomy for malignant swelling due to severe head injury. J Neurosurg. 2006;104:469–79.CrossRefPubMed
88.
Zurück zum Zitat Kunze E, Meixensberger J, Janka M, Sörensen N, Roosen K. Decompressive craniectomy in patients with uncontrollable intracranial hypertension. Acta Neurochir Suppl. 1998;71:16–8.PubMed Kunze E, Meixensberger J, Janka M, Sörensen N, Roosen K. Decompressive craniectomy in patients with uncontrollable intracranial hypertension. Acta Neurochir Suppl. 1998;71:16–8.PubMed
89.
Zurück zum Zitat Eberle BM, Schnüriger B, Inaba K, Gruen JP, Demetriades D, Belzberg H. Decompressive craniectomy: surgical control of traumatic intracranial hypertension may improve outcome. Injury. 2010;41:894–8.CrossRefPubMed Eberle BM, Schnüriger B, Inaba K, Gruen JP, Demetriades D, Belzberg H. Decompressive craniectomy: surgical control of traumatic intracranial hypertension may improve outcome. Injury. 2010;41:894–8.CrossRefPubMed
90.
Zurück zum Zitat Nambiar M, MacIsaac C, Grabinski R, Liew D, Kavar B. Outcomes of decompressive craniectomy in patients after traumatic brain injury. Crit Care Resusc. 2015;17:67–72.PubMed Nambiar M, MacIsaac C, Grabinski R, Liew D, Kavar B. Outcomes of decompressive craniectomy in patients after traumatic brain injury. Crit Care Resusc. 2015;17:67–72.PubMed
91.
Zurück zum Zitat Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al. Consensus statement from the International Consensus Meeting on the role of decompressive craniectomy in the management of traumatic brain injury: consensus statement. Acta Neurochir. 2019;161:1261–74.CrossRefPubMed Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al. Consensus statement from the International Consensus Meeting on the role of decompressive craniectomy in the management of traumatic brain injury: consensus statement. Acta Neurochir. 2019;161:1261–74.CrossRefPubMed
93.
Zurück zum Zitat Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120:228–36.CrossRefPubMed Srinivasan VM, O’Neill BR, Jho D, Whiting DM, Oh MY. The history of external ventricular drainage. J Neurosurg. 2014;120:228–36.CrossRefPubMed
94.
Zurück zum Zitat Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.PubMed Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–193.PubMed
95.
Zurück zum Zitat Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg. 1965;22:581–90.CrossRefPubMed Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg. 1965;22:581–90.CrossRefPubMed
96.
Zurück zum Zitat Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.CrossRefPubMed Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.CrossRefPubMed
97.
Zurück zum Zitat Farahvar A, Gerber LM, Chiu Y-L, Carney N, Härtl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012;117:729–34.CrossRefPubMed Farahvar A, Gerber LM, Chiu Y-L, Carney N, Härtl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012;117:729–34.CrossRefPubMed
98.
Zurück zum Zitat Rønning P, Helseth E, Skaga N-O, Stavem K, Langmoen IA. The effect of ICP monitoring in severe traumatic brain injury: a propensity score-weighted and adjusted regression approach. J Neurosurg. 2018;131:1896–904. Rønning P, Helseth E, Skaga N-O, Stavem K, Langmoen IA. The effect of ICP monitoring in severe traumatic brain injury: a propensity score-weighted and adjusted regression approach. J Neurosurg. 2018;131:1896–904.
99.
Zurück zum Zitat Shen L, Wang Z, Su Z, Qiu S, Xu J, Zhou Y, et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: a meta-analysis. PLoS One. 2016;11:e0168901.CrossRefPubMedPubMedCentral Shen L, Wang Z, Su Z, Qiu S, Xu J, Zhou Y, et al. Effects of intracranial pressure monitoring on mortality in patients with severe traumatic brain injury: a meta-analysis. PLoS One. 2016;11:e0168901.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang Y-F, Shutter LA, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20:49–53.CrossRefPubMed Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang Y-F, Shutter LA, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20:49–53.CrossRefPubMed
101.
Zurück zum Zitat Akbik OS, Krasberg M, Nemoto EM, Yonas H. Effect of cerebrospinal fluid drainage on brain tissue oxygenation in traumatic brain injury. J Neurotrauma. 2017;34:3153–7.CrossRefPubMed Akbik OS, Krasberg M, Nemoto EM, Yonas H. Effect of cerebrospinal fluid drainage on brain tissue oxygenation in traumatic brain injury. J Neurotrauma. 2017;34:3153–7.CrossRefPubMed
102.
Zurück zum Zitat Lescot T, Boroli F, Reina V, Chauvet D, Boch AL, Puybasset L. Effect of continuous cerebrospinal fluid drainage on therapeutic intensity in severe traumatic brain injury. Neurochirurgie. 2012;58:235–40.CrossRefPubMed Lescot T, Boroli F, Reina V, Chauvet D, Boch AL, Puybasset L. Effect of continuous cerebrospinal fluid drainage on therapeutic intensity in severe traumatic brain injury. Neurochirurgie. 2012;58:235–40.CrossRefPubMed
103.
Zurück zum Zitat Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus. 2001;11:E1.CrossRefPubMed Kerr ME, Weber BB, Sereika SM, Wilberger J, Marion DW. Dose response to cerebrospinal fluid drainage on cerebral perfusion in traumatic brain-injured adults. Neurosurg Focus. 2001;11:E1.CrossRefPubMed
104.
Zurück zum Zitat Kinoshita K, Sakurai A, Utagawa A, Ebihara T, Furukawa M, Moriya T, et al. Importance of cerebral perfusion pressure management using cerebrospinal drainage in severe traumatic brain injury. Acta Neurochir Suppl. 2006;96:37–9.CrossRefPubMed Kinoshita K, Sakurai A, Utagawa A, Ebihara T, Furukawa M, Moriya T, et al. Importance of cerebral perfusion pressure management using cerebrospinal drainage in severe traumatic brain injury. Acta Neurochir Suppl. 2006;96:37–9.CrossRefPubMed
105.
Zurück zum Zitat Bales JW, Bonow RH, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary external ventricular drainage catheter versus intraparenchymal ICP monitoring: outcome analysis. Neurocrit Care. 2019;31:11–21.CrossRefPubMed Bales JW, Bonow RH, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary external ventricular drainage catheter versus intraparenchymal ICP monitoring: outcome analysis. Neurocrit Care. 2019;31:11–21.CrossRefPubMed
106.
Zurück zum Zitat Liu H, Wang W, Cheng F, Yuan Q, Yang J, Hu J, et al. External ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic brain injury: a prospective observational study. World Neurosurg. 2015;83:794–800.CrossRefPubMed Liu H, Wang W, Cheng F, Yuan Q, Yang J, Hu J, et al. External ventricular drains versus intraparenchymal intracranial pressure monitors in traumatic brain injury: a prospective observational study. World Neurosurg. 2015;83:794–800.CrossRefPubMed
107.
Zurück zum Zitat Weed LH, McKibben PS. Experimental alteration of brain bulk. Am J Physiol-Leg Content. 1919;48:531–58.CrossRef Weed LH, McKibben PS. Experimental alteration of brain bulk. Am J Physiol-Leg Content. 1919;48:531–58.CrossRef
108.
Zurück zum Zitat Weed LH, McKibben PS. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various concentrations. Am J Phys. 1919;48:512–30.CrossRef Weed LH, McKibben PS. Pressure changes in the cerebrospinal fluid following intravenous injection of solutions of various concentrations. Am J Phys. 1919;48:512–30.CrossRef
109.
Zurück zum Zitat Kellie G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans Med Chir Soc Edinburgh. 1823;1. Kellie G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans Med Chir Soc Edinburgh. 1823;1.
110.
Zurück zum Zitat Otvos B, Kshettry VR, Benzel EC. The history of urea as a hyperosmolar agent to decrease brain swelling. Neurosurg Focus. 2014;36:E3.CrossRefPubMed Otvos B, Kshettry VR, Benzel EC. The history of urea as a hyperosmolar agent to decrease brain swelling. Neurosurg Focus. 2014;36:E3.CrossRefPubMed
111.
Zurück zum Zitat Javid M, Settlage P. Clinical use of urea for reduction of intracranial pressure. Trans Am Neurol Assoc. 1957;82nd Meeting:151–3.PubMed Javid M, Settlage P. Clinical use of urea for reduction of intracranial pressure. Trans Am Neurol Assoc. 1957;82nd Meeting:151–3.PubMed
112.
Zurück zum Zitat Javid M. Effect of urea on cerebrospinal fluid pressure in human subjects. JAMA. 1956;160:943.CrossRef Javid M. Effect of urea on cerebrospinal fluid pressure in human subjects. JAMA. 1956;160:943.CrossRef
113.
Zurück zum Zitat Javid M, Settlage P. Use of hypertonic urea for the reduction of intracranial pressure. Trans Am Neurol Assoc. 1955:204–6. Javid M, Settlage P. Use of hypertonic urea for the reduction of intracranial pressure. Trans Am Neurol Assoc. 1955:204–6.
114.
Zurück zum Zitat Wise BL, Chater N. Effect of mannitol on cerebrospinal fluid pressure. The actions of hypertonic mannitol solutions and of urea compared. Arch Neurol. 1961;4:200–2.CrossRefPubMed Wise BL, Chater N. Effect of mannitol on cerebrospinal fluid pressure. The actions of hypertonic mannitol solutions and of urea compared. Arch Neurol. 1961;4:200–2.CrossRefPubMed
115.
Zurück zum Zitat Worthley LI, Cooper DJ, Jones N. Treatment of resistant intracranial hypertension with hypertonic saline. Report of two cases. J Neurosurg. 1988;68:478–81.CrossRefPubMed Worthley LI, Cooper DJ, Jones N. Treatment of resistant intracranial hypertension with hypertonic saline. Report of two cases. J Neurosurg. 1988;68:478–81.CrossRefPubMed
116.
Zurück zum Zitat Favre JB, Ravussin P, Chiolero R, Bissonnette B. Hypertonic solutions and intracranial pressure. Schweiz Med Wochenschr. 1996;126:1635–43.PubMed Favre JB, Ravussin P, Chiolero R, Bissonnette B. Hypertonic solutions and intracranial pressure. Schweiz Med Wochenschr. 1996;126:1635–43.PubMed
117.
Zurück zum Zitat Horn P, Münch E, Vajkoczy P, Herrmann P, Quintel M, Schilling L, et al. Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999;21:758–64.CrossRefPubMed Horn P, Münch E, Vajkoczy P, Herrmann P, Quintel M, Schilling L, et al. Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999;21:758–64.CrossRefPubMed
118.
Zurück zum Zitat Härtl R, Ghajar J, Hochleuthner H, Mauritz W. Hypertonic/hyperoncotic saline reliably reduces ICP in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl. 1997;70:126–9.PubMed Härtl R, Ghajar J, Hochleuthner H, Mauritz W. Hypertonic/hyperoncotic saline reliably reduces ICP in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl. 1997;70:126–9.PubMed
119.
Zurück zum Zitat Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol. 1992;4:4–10.CrossRefPubMed Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol. 1992;4:4–10.CrossRefPubMed
120.
Zurück zum Zitat Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med. 2000;28:1136–43.CrossRefPubMed Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med. 2000;28:1136–43.CrossRefPubMed
121.
Zurück zum Zitat Kamel H, Navi BB, Nakagawa K, Hemphill JC, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39:554–9.CrossRefPubMed Kamel H, Navi BB, Nakagawa K, Hemphill JC, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med. 2011;39:554–9.CrossRefPubMed
122.
Zurück zum Zitat Li M, Chen T, Chen S, Cai J, Hu Y-H. Comparison of equimolar doses of mannitol and hypertonic saline for the treatment of elevated intracranial pressure after traumatic brain injury: a systematic review and meta-analysis. Medicine. 2015;94:e736.CrossRef Li M, Chen T, Chen S, Cai J, Hu Y-H. Comparison of equimolar doses of mannitol and hypertonic saline for the treatment of elevated intracranial pressure after traumatic brain injury: a systematic review and meta-analysis. Medicine. 2015;94:e736.CrossRef
123.
Zurück zum Zitat Anstey JR, Taccone FS, Udy AA, Citerio G, Duranteau J, Ichai C, et al. Early osmotherapy in severe traumatic brain injury: an international multicenter study. J Neurotrauma. 2020;37:178–84. Anstey JR, Taccone FS, Udy AA, Citerio G, Duranteau J, Ichai C, et al. Early osmotherapy in severe traumatic brain injury: an international multicenter study. J Neurotrauma. 2020;37:178–84.
124.
Zurück zum Zitat Patil H, Gupta R. A comparative study of bolus dose of hypertonic saline, mannitol, and mannitol plus glycerol combination in patients with severe traumatic brain injury. World Neurosurg. 2019;125:e221–8. Patil H, Gupta R. A comparative study of bolus dose of hypertonic saline, mannitol, and mannitol plus glycerol combination in patients with severe traumatic brain injury. World Neurosurg. 2019;125:e221–8.
125.
Zurück zum Zitat Jagannatha AT, Sriganesh K, Devi BI, Rao GSU. An equiosmolar study on early intracranial physiology and long term outcome in severe traumatic brain injury comparing mannitol and hypertonic saline. J Clin Neurosci. 2016;27:68–73.CrossRefPubMed Jagannatha AT, Sriganesh K, Devi BI, Rao GSU. An equiosmolar study on early intracranial physiology and long term outcome in severe traumatic brain injury comparing mannitol and hypertonic saline. J Clin Neurosci. 2016;27:68–73.CrossRefPubMed
126.
Zurück zum Zitat Mangat HS, Wu X, Gerber LM, Schwarz JT, Fakhar M, Murthy SB, et al. Hypertonic saline is superior to mannitol for the combined effect on intracranial pressure and cerebral perfusion pressure burdens in patients with severe traumatic brain injury. Neurosurgery. 2020;86:221–30. Mangat HS, Wu X, Gerber LM, Schwarz JT, Fakhar M, Murthy SB, et al. Hypertonic saline is superior to mannitol for the combined effect on intracranial pressure and cerebral perfusion pressure burdens in patients with severe traumatic brain injury. Neurosurgery. 2020;86:221–30.
127.
Zurück zum Zitat Kumar SA, Devi BI, Reddy M, Shukla D. Comparison of equiosmolar dose of hyperosmolar agents in reducing intracranial pressure—a randomized control study in pediatric traumatic brain injury. Childs Nerv Syst. 2019;35:999–1005.CrossRefPubMed Kumar SA, Devi BI, Reddy M, Shukla D. Comparison of equiosmolar dose of hyperosmolar agents in reducing intracranial pressure—a randomized control study in pediatric traumatic brain injury. Childs Nerv Syst. 2019;35:999–1005.CrossRefPubMed
128.
Zurück zum Zitat Boone MD, Oren-Grinberg A, Robinson TM, Chen CC, Kasper EM. Mannitol or hypertonic saline in the setting of traumatic brain injury: what have we learned? Surg Neurol Int. 2015;6:177.CrossRefPubMedPubMedCentral Boone MD, Oren-Grinberg A, Robinson TM, Chen CC, Kasper EM. Mannitol or hypertonic saline in the setting of traumatic brain injury: what have we learned? Surg Neurol Int. 2015;6:177.CrossRefPubMedPubMedCentral
129.
Zurück zum Zitat Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: implications for emergency department management. Ann Pharmacother. 2016;50:291–300.CrossRefPubMed Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: implications for emergency department management. Ann Pharmacother. 2016;50:291–300.CrossRefPubMed
130.
Zurück zum Zitat Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80:916–20.CrossRefPubMed Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80:916–20.CrossRefPubMed
131.
Zurück zum Zitat Fatima N, Ayyad A, Shuaib A, Saqqur M. Hypertonic solutions in traumatic brain injury: a systematic review and meta-analysis. Asian J Neurosurg. 2019;14:382–91.CrossRefPubMedPubMedCentral Fatima N, Ayyad A, Shuaib A, Saqqur M. Hypertonic solutions in traumatic brain injury: a systematic review and meta-analysis. Asian J Neurosurg. 2019;14:382–91.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Shein SL, Ferguson NM, Kochanek PM, Bayir H, Clark RSB, Fink EL, et al. Effectiveness of pharmacological therapies for intracranial hypertension in children with severe traumatic brain injury—results from an automated data collection system time-synched to drug administration. Pediatr Crit Care Med. 2016;17:236–45.CrossRefPubMedPubMedCentral Shein SL, Ferguson NM, Kochanek PM, Bayir H, Clark RSB, Fink EL, et al. Effectiveness of pharmacological therapies for intracranial hypertension in children with severe traumatic brain injury—results from an automated data collection system time-synched to drug administration. Pediatr Crit Care Med. 2016;17:236–45.CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines. Pediatr Crit Care Med. 2019;20:S1–S82.CrossRefPubMed Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines. Pediatr Crit Care Med. 2019;20:S1–S82.CrossRefPubMed
136.
Zurück zum Zitat Sold M, Gaab MR, Poch B, Heller V. Brain protection by barbiturate after head injury? clinical and experimental results. In: Wiedemann K, Hoyer S, editors. Brain protection. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. p. 134–45.CrossRef Sold M, Gaab MR, Poch B, Heller V. Brain protection by barbiturate after head injury? clinical and experimental results. In: Wiedemann K, Hoyer S, editors. Brain protection. Berlin, Heidelberg: Springer Berlin Heidelberg; 1983. p. 134–45.CrossRef
137.
Zurück zum Zitat Singbartl G, Cunitz G. Pathophysiologic principles, emergency medical aspects and anesthesiologic measures in severe brain trauma. Anaesthesist. 1987;36:321–32.PubMed Singbartl G, Cunitz G. Pathophysiologic principles, emergency medical aspects and anesthesiologic measures in severe brain trauma. Anaesthesist. 1987;36:321–32.PubMed
138.
Zurück zum Zitat Horvat CM, Au AK, Conley YL, Kochanek PM, Li L, Poloyac SL, et al. ABCB1 genotype is associated with fentanyl requirements in critically Ill children. Pediatr Res. 2017;82:29–35.CrossRefPubMedPubMedCentral Horvat CM, Au AK, Conley YL, Kochanek PM, Li L, Poloyac SL, et al. ABCB1 genotype is associated with fentanyl requirements in critically Ill children. Pediatr Res. 2017;82:29–35.CrossRefPubMedPubMedCentral
139.
Zurück zum Zitat Saiz-Rodríguez M, Ochoa D, Herrador C, Belmonte C, Román M, Alday E, et al. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic Clin Pharmacol Toxicol. 2019;124:321–9.CrossRefPubMed Saiz-Rodríguez M, Ochoa D, Herrador C, Belmonte C, Román M, Alday E, et al. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic Clin Pharmacol Toxicol. 2019;124:321–9.CrossRefPubMed
140.
Zurück zum Zitat Grimsrud KN, Ivanova X, Sherwin CM, Palmieri TL, Tran NK. Identification of cytochrome P450 polymorphisms in burn patients and impact on fentanyl pharmacokinetics: a pilot study. J Burn Care Res. 2019;40:91–6.CrossRefPubMed Grimsrud KN, Ivanova X, Sherwin CM, Palmieri TL, Tran NK. Identification of cytochrome P450 polymorphisms in burn patients and impact on fentanyl pharmacokinetics: a pilot study. J Burn Care Res. 2019;40:91–6.CrossRefPubMed
141.
Zurück zum Zitat Xie W, Zhuang W, Chen L, Xie W, Jiang C, Liu N. 4218T/C polymorphism associations with post-cesarean patient-controlled epidural fentanyl consumption and pain perception. Acta Anaesthesiol Scand. 2018;62:376–83.CrossRefPubMed Xie W, Zhuang W, Chen L, Xie W, Jiang C, Liu N. 4218T/C polymorphism associations with post-cesarean patient-controlled epidural fentanyl consumption and pain perception. Acta Anaesthesiol Scand. 2018;62:376–83.CrossRefPubMed
142.
Zurück zum Zitat Yan Q, Su Y, Gao L, Ding N, Zhang H-Y, E W, et al. Impact of CYP3A4*1G polymorphism on fentanyl analgesia assessed by analgesia nociception index in Chinese patients undergoing hysteroscopy. Chin Med J. 2018;131:2693–8.CrossRefPubMedPubMedCentral Yan Q, Su Y, Gao L, Ding N, Zhang H-Y, E W, et al. Impact of CYP3A4*1G polymorphism on fentanyl analgesia assessed by analgesia nociception index in Chinese patients undergoing hysteroscopy. Chin Med J. 2018;131:2693–8.CrossRefPubMedPubMedCentral
143.
Zurück zum Zitat Ma J, Li W, Chai Q, Tan X, Zhang K. Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer. Medicine. 2019;98:e14445.CrossRefPubMedPubMedCentral Ma J, Li W, Chai Q, Tan X, Zhang K. Correlation of P2RX7 gene rs1718125 polymorphism with postoperative fentanyl analgesia in patients with lung cancer. Medicine. 2019;98:e14445.CrossRefPubMedPubMedCentral
144.
Zurück zum Zitat Phelps C. Traumatic injuries of the brain and its membranes. New York, NY: D. Appleton & Co; 1897. p. 223–4. Phelps C. Traumatic injuries of the brain and its membranes. New York, NY: D. Appleton & Co; 1897. p. 223–4.
145.
Zurück zum Zitat Ahmed AI, Bullock MR, Dietrich WD. Hypothermia in traumatic brain injury. Neurosurg Clin N Am. 2016;27:489–97.CrossRefPubMed Ahmed AI, Bullock MR, Dietrich WD. Hypothermia in traumatic brain injury. Neurosurg Clin N Am. 2016;27:489–97.CrossRefPubMed
146.
Zurück zum Zitat Fay T. Early experiences with local and generalized refrigeration of the human brain. J Neurosurg. 1959;16:239–59. discussion 259. Fay T. Early experiences with local and generalized refrigeration of the human brain. J Neurosurg. 1959;16:239–59. discussion 259.
147.
Zurück zum Zitat •• PJD A, Sinclair HL, Rodriguez A, Harris BA, Battison CG, JKJ R, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12. This study, also known as the Eurotherm3235 trial, is a recent landmark RCT assessing the use of hypothermia specifically for the management of intracranial hypertension after TBI. The investigators found that hypothermia reduced the number of additional interventions required to control intracranial hypertension but did not result in an overall reduction of ICP. The trial was stopped early due to lower GOS-E scores in the hypothermia arm vs the standard care arm.CrossRef •• PJD A, Sinclair HL, Rodriguez A, Harris BA, Battison CG, JKJ R, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373:2403–12. This study, also known as the Eurotherm3235 trial, is a recent landmark RCT assessing the use of hypothermia specifically for the management of intracranial hypertension after TBI. The investigators found that hypothermia reduced the number of additional interventions required to control intracranial hypertension but did not result in an overall reduction of ICP. The trial was stopped early due to lower GOS-E scores in the hypothermia arm vs the standard care arm.CrossRef
148.
Zurück zum Zitat Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA. 2018;320:2211–20.CrossRefPubMedPubMedCentral Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA. 2018;320:2211–20.CrossRefPubMedPubMedCentral
149.
Zurück zum Zitat Liu WG, Qiu WS, Zhang Y, Wang WM, Lu F, Yang XF. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res. 2006;34:58–64.CrossRefPubMed Liu WG, Qiu WS, Zhang Y, Wang WM, Lu F, Yang XF. Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res. 2006;34:58–64.CrossRefPubMed
150.
Zurück zum Zitat Villa O, Dimitrov A, Moscote-Salazar LR, Agrawal A. Commentary: therapeutic hypothermia in patients with severe traumatic brain injury: where do we go now? Neurosurgery. 2019;85:E957–8. Villa O, Dimitrov A, Moscote-Salazar LR, Agrawal A. Commentary: therapeutic hypothermia in patients with severe traumatic brain injury: where do we go now? Neurosurgery. 2019;85:E957–8.
151.
Zurück zum Zitat Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag. 2019;9:13–47.CrossRefPubMedPubMedCentral Jackson TC, Kochanek PM. A new vision for therapeutic hypothermia in the era of targeted temperature management: a speculative synthesis. Ther Hypothermia Temp Manag. 2019;9:13–47.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Rashid A, Ahmad M, Minhas MU, Hassan IJ, Malik MZ. Pharmacokinetic studies of metformin and glibenclamide in normal human volunteers. Pak J Pharm Sci. 2014;27:153–9.PubMed Rashid A, Ahmad M, Minhas MU, Hassan IJ, Malik MZ. Pharmacokinetic studies of metformin and glibenclamide in normal human volunteers. Pak J Pharm Sci. 2014;27:153–9.PubMed
153.
Zurück zum Zitat Ghozzi H, Hammami S, Affes H, Ksouda K, Sahnoun Z, Hakim A, et al. Bioequivalence evaluation of glibenclamide 5-mg tablets: diabenil® and daonil® (in 24 healthy volunteers). Tunis Med. 2015;93:96–100.PubMed Ghozzi H, Hammami S, Affes H, Ksouda K, Sahnoun Z, Hakim A, et al. Bioequivalence evaluation of glibenclamide 5-mg tablets: diabenil® and daonil® (in 24 healthy volunteers). Tunis Med. 2015;93:96–100.PubMed
154.
Zurück zum Zitat •• Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem. 2013;288:3655–67. This study identifies and describes properties of the Sur-1/Trpm4 channel, which has been found to play a key role in multiple CNS pathologies. This study highlights the promise of mechanistically driven therapies for cerebral edema, as trials of pharmacologic inhibition of Sur-1 in SAH, TBI, and CVA are ongoing.CrossRefPubMed •• Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem. 2013;288:3655–67. This study identifies and describes properties of the Sur-1/Trpm4 channel, which has been found to play a key role in multiple CNS pathologies. This study highlights the promise of mechanistically driven therapies for cerebral edema, as trials of pharmacologic inhibition of Sur-1 in SAH, TBI, and CVA are ongoing.CrossRefPubMed
155.
Zurück zum Zitat Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69:1177–90.CrossRefPubMed Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol. 2010;69:1177–90.CrossRefPubMed
156.
Zurück zum Zitat Jha RM, Puccio AM, Chou SH-Y, Chang C-CH, Wallisch JS, Molyneaux BJ, et al. Sulfonylurea receptor-1: a novel biomarker for cerebral edema in severe traumatic brain injury. Crit Care Med. 2017;45:e255–64.CrossRefPubMedPubMedCentral Jha RM, Puccio AM, Chou SH-Y, Chang C-CH, Wallisch JS, Molyneaux BJ, et al. Sulfonylurea receptor-1: a novel biomarker for cerebral edema in severe traumatic brain injury. Crit Care Med. 2017;45:e255–64.CrossRefPubMedPubMedCentral
157.
Zurück zum Zitat Tosun C, Kurland DB, Mehta R, Castellani RJ, de Jong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke. 2013;44:3522–8.CrossRefPubMedPubMedCentral Tosun C, Kurland DB, Mehta R, Castellani RJ, de Jong JL, Kwon MS, et al. Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage. Stroke. 2013;44:3522–8.CrossRefPubMedPubMedCentral
158.
Zurück zum Zitat Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.CrossRefPubMed Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.CrossRefPubMed
159.
Zurück zum Zitat Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.CrossRefPubMed Mehta RI, Ivanova S, Tosun C, Castellani RJ, Gerzanich V, Simard JM. Sulfonylurea receptor 1 expression in human cerebral infarcts. J Neuropathol Exp Neurol. 2013;72:871–83.CrossRefPubMed
160.
Zurück zum Zitat Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.CrossRefPubMedPubMedCentral Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab. 2012;32:1699–717.CrossRefPubMedPubMedCentral
161.
Zurück zum Zitat Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, et al. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. 2018;66:108–25.CrossRefPubMed Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, et al. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. 2018;66:108–25.CrossRefPubMed
162.
Zurück zum Zitat Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park S-Y, Poloyac S, et al. Glibenclamide produces region-dependent effects on cerebral edema in a combined injury model of traumatic brain injury and hemorrhagic shock in mice. J Neurotrauma. 2018;35:2125–35.CrossRefPubMedPubMedCentral Jha RM, Molyneaux BJ, Jackson TC, Wallisch JS, Park S-Y, Poloyac S, et al. Glibenclamide produces region-dependent effects on cerebral edema in a combined injury model of traumatic brain injury and hemorrhagic shock in mice. J Neurotrauma. 2018;35:2125–35.CrossRefPubMedPubMedCentral
163.
Zurück zum Zitat Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol. 2012;235:282–96.CrossRefPubMed Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, et al. ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol. 2012;235:282–96.CrossRefPubMed
164.
Zurück zum Zitat Martínez-Valverde T, Vidal-Jorge M, Martínez-Saez E, Castro L, Arikan F, Cordero E, et al. Sulfonylurea receptor 1 in humans with post-traumatic brain contusions. J Neurotrauma. 2015;32:1478–87.CrossRefPubMedPubMedCentral Martínez-Valverde T, Vidal-Jorge M, Martínez-Saez E, Castro L, Arikan F, Cordero E, et al. Sulfonylurea receptor 1 in humans with post-traumatic brain contusions. J Neurotrauma. 2015;32:1478–87.CrossRefPubMedPubMedCentral
165.
Zurück zum Zitat Xu Z-M, Yuan F, Liu Y-L, Ding J, Tian H-L. Glibenclamide attenuates blood-brain barrier disruption in adult mice after traumatic brain injury. J Neurotrauma. 2016;34:925–33.CrossRefPubMed Xu Z-M, Yuan F, Liu Y-L, Ding J, Tian H-L. Glibenclamide attenuates blood-brain barrier disruption in adult mice after traumatic brain injury. J Neurotrauma. 2016;34:925–33.CrossRefPubMed
166.
Zurück zum Zitat Caffes N, Kurland DB, Gerzanich V, Simard JM. Glibenclamide for the treatment of ischemic and hemorrhagic stroke. Int J Mol Sci. 2015;16:4973–84.CrossRefPubMedPubMedCentral Caffes N, Kurland DB, Gerzanich V, Simard JM. Glibenclamide for the treatment of ischemic and hemorrhagic stroke. Int J Mol Sci. 2015;16:4973–84.CrossRefPubMedPubMedCentral
167.
Zurück zum Zitat Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediat Inflamm. 2017;2017:3578702. Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediat Inflamm. 2017;2017:3578702.
168.
Zurück zum Zitat Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello S, Wang KKW, et al. Operation brain trauma therapy: 2016 update. Mil Med. 2018;183:303–12.CrossRefPubMed Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello S, Wang KKW, et al. Operation brain trauma therapy: 2016 update. Mil Med. 2018;183:303–12.CrossRefPubMed
169.
Zurück zum Zitat Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26:2257–67.CrossRefPubMedPubMedCentral Simard JM, Kilbourne M, Tsymbalyuk O, Tosun C, Caridi J, Ivanova S, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma. 2009;26:2257–67.CrossRefPubMedPubMedCentral
170.
Zurück zum Zitat Kurland DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, et al. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J Neuroinflammation. 2016;13:130.CrossRefPubMedPubMedCentral Kurland DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, et al. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J Neuroinflammation. 2016;13:130.CrossRefPubMedPubMedCentral
171.
Zurück zum Zitat Zafardoost P, Ghasemi AA, Salehpour F, Piroti C, Ziaeii E. Evaluation of the effect of glibenclamide in patients with diffuse axonal injury due to moderate to severe head trauma. Trauma Mon. 2016;21:e25113.CrossRefPubMedPubMedCentral Zafardoost P, Ghasemi AA, Salehpour F, Piroti C, Ziaeii E. Evaluation of the effect of glibenclamide in patients with diffuse axonal injury due to moderate to severe head trauma. Trauma Mon. 2016;21:e25113.CrossRefPubMedPubMedCentral
172.
Zurück zum Zitat Khalili H, Derakhshan N, Niakan A, Ghaffarpasand F, Salehi M, Eshraghian H, et al. Effects of oral glibenclamide on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injuries: a randomized double-blind placebo-controlled clinical trial. World Neurosurg. 2017;101:130–6.CrossRefPubMed Khalili H, Derakhshan N, Niakan A, Ghaffarpasand F, Salehi M, Eshraghian H, et al. Effects of oral glibenclamide on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injuries: a randomized double-blind placebo-controlled clinical trial. World Neurosurg. 2017;101:130–6.CrossRefPubMed
173.
Zurück zum Zitat •• Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, et al. Magnetic resonance imaging pilot study of intravenous glyburide in traumatic brain injury. J. Neurotrauma. 2020;37:185–93. This small phase II trial provides an example of the translation of research into the molecular mechanisms of cerebral edema to the bedside in the treatment of traumatic brain injury. Despite the fact that this was a negative trial, likely because it was underpowered due to low enrollment, some of the post hoc radiographic analyses suggest that mechanistic treatments may successfully arrest edema. A larger phase II trial is currently ongoing (NCT03954041). •• Eisenberg HM, Shenton ME, Pasternak O, Simard JM, Okonkwo DO, Aldrich C, et al. Magnetic resonance imaging pilot study of intravenous glyburide in traumatic brain injury. J. Neurotrauma. 2020;37:185–93. This small phase II trial provides an example of the translation of research into the molecular mechanisms of cerebral edema to the bedside in the treatment of traumatic brain injury. Despite the fact that this was a negative trial, likely because it was underpowered due to low enrollment, some of the post hoc radiographic analyses suggest that mechanistic treatments may successfully arrest edema. A larger phase II trial is currently ongoing (NCT03954041).
174.
Zurück zum Zitat Chen J-Q, Zhang C-C, Jiang S-N, Lu H, Wang W. Effects of aquaporin 4 knockdown on brain edema of the uninjured side after traumatic brain injury in rats. Med Sci Monit. 2016;22:4809–19.CrossRefPubMedPubMedCentral Chen J-Q, Zhang C-C, Jiang S-N, Lu H, Wang W. Effects of aquaporin 4 knockdown on brain edema of the uninjured side after traumatic brain injury in rats. Med Sci Monit. 2016;22:4809–19.CrossRefPubMedPubMedCentral
175.
Zurück zum Zitat Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. Hit & run ’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33:834–45.CrossRefPubMedPubMedCentral Ren Z, Iliff JJ, Yang L, Yang J, Chen X, Chen MJ, et al. Hit & run ’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab. 2013;33:834–45.CrossRefPubMedPubMedCentral
176.
Zurück zum Zitat Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, et al. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab. 2013;33:1621–32.CrossRefPubMedPubMedCentral Fukuda AM, Adami A, Pop V, Bellone JA, Coats JS, Hartman RE, et al. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab. 2013;33:1621–32.CrossRefPubMedPubMedCentral
177.
Zurück zum Zitat Chu H, Tang Y, Dong Q. Protection of vascular endothelial growth factor to brain edema following intracerebral hemorrhage and its involved mechanisms: effect of aquaporin-4. PLoS One. 2013;8:e66051.CrossRefPubMedPubMedCentral Chu H, Tang Y, Dong Q. Protection of vascular endothelial growth factor to brain edema following intracerebral hemorrhage and its involved mechanisms: effect of aquaporin-4. PLoS One. 2013;8:e66051.CrossRefPubMedPubMedCentral
178.
Zurück zum Zitat Ding Z, Zhang J, Xu J, Sheng G, Huang G. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys. 2013;67:615–22.CrossRefPubMed Ding Z, Zhang J, Xu J, Sheng G, Huang G. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys. 2013;67:615–22.CrossRefPubMed
179.
Zurück zum Zitat Kitchen P, Day RE, Taylor LHJ, Salman MM, Bill RM, Conner MT, et al. Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel. J Biol Chem. 2015;290:16873–81.CrossRefPubMedPubMedCentral Kitchen P, Day RE, Taylor LHJ, Salman MM, Bill RM, Conner MT, et al. Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel. J Biol Chem. 2015;290:16873–81.CrossRefPubMedPubMedCentral
180.
Zurück zum Zitat Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, et al. Changes in posttraumatic brain edema in craniectomy-selective brain hypothermia model are associated with modulation of aquaporin-4 level. Front Neurol. 2018;9:799.CrossRefPubMedPubMedCentral Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, et al. Changes in posttraumatic brain edema in craniectomy-selective brain hypothermia model are associated with modulation of aquaporin-4 level. Front Neurol. 2018;9:799.CrossRefPubMedPubMedCentral
181.
Zurück zum Zitat Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.CrossRefPubMed Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.CrossRefPubMed
182.
Zurück zum Zitat Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 2015;32:1458–64.CrossRefPubMedPubMedCentral Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 2015;32:1458–64.CrossRefPubMedPubMedCentral
183.
Zurück zum Zitat Liang F, Luo C, Xu G, Su F, He X, Long S, et al. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice. Neurosci Lett. 2015;598:29–35.CrossRefPubMed Liang F, Luo C, Xu G, Su F, He X, Long S, et al. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice. Neurosci Lett. 2015;598:29–35.CrossRefPubMed
184.
Zurück zum Zitat Cartagena CM, Phillips KL, Tortella FC, Dave JR, Schmid KE. Temporal alterations in aquaporin and transcription factor HIF1α expression following penetrating ballistic-like brain injury (PBBI). Mol Cell Neurosci. 2014;60:81–7.CrossRefPubMed Cartagena CM, Phillips KL, Tortella FC, Dave JR, Schmid KE. Temporal alterations in aquaporin and transcription factor HIF1α expression following penetrating ballistic-like brain injury (PBBI). Mol Cell Neurosci. 2014;60:81–7.CrossRefPubMed
185.
Zurück zum Zitat Ke C, Poon WS, Ng HK, Pang JC, Chan Y. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001;301:21–4.CrossRefPubMed Ke C, Poon WS, Ng HK, Pang JC, Chan Y. Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett. 2001;301:21–4.CrossRefPubMed
186.
Zurück zum Zitat Kiening KL, van Landeghem FKH, Schreiber S, Thomale UW, von Deimling A, Unterberg AW, et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett. 2002;324:105–8.CrossRefPubMed Kiening KL, van Landeghem FKH, Schreiber S, Thomale UW, von Deimling A, Unterberg AW, et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett. 2002;324:105–8.CrossRefPubMed
187.
Zurück zum Zitat Liu H, Ping QG, Zhuo F, Hua YW, Quan SS, Hong LF. Lost polarization of aquaporin4 and dystroglycan in the core lesion after traumatic brain injury suggests functional divergence in evolution. Biomed Res Int. et al, 2015;2015:471631. Liu H, Ping QG, Zhuo F, Hua YW, Quan SS, Hong LF. Lost polarization of aquaporin4 and dystroglycan in the core lesion after traumatic brain injury suggests functional divergence in evolution. Biomed Res Int. et al, 2015;2015:471631.
188.
Zurück zum Zitat Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma. 2010;27:229–39.CrossRefPubMedPubMedCentral Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma. 2010;27:229–39.CrossRefPubMedPubMedCentral
189.
Zurück zum Zitat Lopez-Rodriguez AB, Acaz-Fonseca E, Viveros M-P, Garcia-Segura LM. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit. PLoS One. 2015;10:e0128782.CrossRefPubMedPubMedCentral Lopez-Rodriguez AB, Acaz-Fonseca E, Viveros M-P, Garcia-Segura LM. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit. PLoS One. 2015;10:e0128782.CrossRefPubMedPubMedCentral
190.
Zurück zum Zitat Lu H, Lei X-Y, Hu H, He Z-P. Relationship between AQP4 expression and structural damage to the blood-brain barrier at early stages of traumatic brain injury in rats. Chin Med J. 2013;126:4316–21.PubMed Lu H, Lei X-Y, Hu H, He Z-P. Relationship between AQP4 expression and structural damage to the blood-brain barrier at early stages of traumatic brain injury in rats. Chin Med J. 2013;126:4316–21.PubMed
191.
Zurück zum Zitat Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011;114:92–101.CrossRefPubMed Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, et al. The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg. 2011;114:92–101.CrossRefPubMed
192.
Zurück zum Zitat Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, et al. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct. 2017;222:1543–56.CrossRefPubMed Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, et al. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct. 2017;222:1543–56.CrossRefPubMed
193.
Zurück zum Zitat Zhang M, Cui Z, Cui H, Cao Y, Zhong C, Wang Y. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci. 2016;17:60.CrossRefPubMedPubMedCentral Zhang M, Cui Z, Cui H, Cao Y, Zhong C, Wang Y. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci. 2016;17:60.CrossRefPubMedPubMedCentral
194.
Zurück zum Zitat Lu K-T, Huang T-C, Tsai Y-H, Yang Y-L. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem. 2017;140:718–27.CrossRefPubMed Lu K-T, Huang T-C, Tsai Y-H, Yang Y-L. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem. 2017;140:718–27.CrossRefPubMed
195.
Zurück zum Zitat Hui H, Rao W, Zhang L, Xie Z, Peng C, Su N, et al. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter-1 attenuates traumatic brain injury-induced neuronal apoptosis via regulation of Erk signaling. Neurochem Int. 2016;94:23–31.CrossRefPubMed Hui H, Rao W, Zhang L, Xie Z, Peng C, Su N, et al. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter-1 attenuates traumatic brain injury-induced neuronal apoptosis via regulation of Erk signaling. Neurochem Int. 2016;94:23–31.CrossRefPubMed
196.
Zurück zum Zitat Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem. 2011;117:437–48.CrossRefPubMed Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem. 2011;117:437–48.CrossRefPubMed
197.
Zurück zum Zitat Halladay SC, Sipes IG, Carter DE. Diuretic effect and metabolism of bumetanide in man. Clin Pharmacol Ther. 1977;22:179–87.CrossRefPubMed Halladay SC, Sipes IG, Carter DE. Diuretic effect and metabolism of bumetanide in man. Clin Pharmacol Ther. 1977;22:179–87.CrossRefPubMed
199.
Zurück zum Zitat Zhang J, Pu H, Zhang H, Wei Z, Jiang X, Xu M, et al. Inhibition of Na+-K+-2Cl- cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int. 2017;111:23–31.CrossRefPubMed Zhang J, Pu H, Zhang H, Wei Z, Jiang X, Xu M, et al. Inhibition of Na+-K+-2Cl- cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int. 2017;111:23–31.CrossRefPubMed
200.
Zurück zum Zitat Yan X, Liu J, Wang X, Li W, Chen J, Sun H. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats. Front Physiol. 2018;9:6.CrossRefPubMedPubMedCentral Yan X, Liu J, Wang X, Li W, Chen J, Sun H. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats. Front Physiol. 2018;9:6.CrossRefPubMedPubMedCentral
201.
Zurück zum Zitat Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, et al. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology. 2017;117:182–94.CrossRefPubMed Römermann K, Fedrowitz M, Hampel P, Kaczmarek E, Töllner K, Erker T, et al. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology. 2017;117:182–94.CrossRefPubMed
202.
Zurück zum Zitat Wilkinson CM, Fedor BA, Aziz JR, Nadeau CA, Brar PS, Clark JJA, et al. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One. 2019;14:e0210660.CrossRefPubMedPubMedCentral Wilkinson CM, Fedor BA, Aziz JR, Nadeau CA, Brar PS, Clark JJA, et al. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One. 2019;14:e0210660.CrossRefPubMedPubMedCentral
203.
Zurück zum Zitat Kleindienst A, Dunbar JG, Glisson R, Marmarou A. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir. 2013;155:151–64.CrossRefPubMed Kleindienst A, Dunbar JG, Glisson R, Marmarou A. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir. 2013;155:151–64.CrossRefPubMed
204.
Zurück zum Zitat Rosenberg GA, Estrada E, Kyner WT. Vasopressin-induced brain edema is mediated by the V1 receptor. Adv Neurol. 1990;52:149–54.PubMed Rosenberg GA, Estrada E, Kyner WT. Vasopressin-induced brain edema is mediated by the V1 receptor. Adv Neurol. 1990;52:149–54.PubMed
205.
Zurück zum Zitat Marmarou CR, Liang X, Abidi NH, Parveen S, Taya K, Henderson SC, et al. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury. Brain Res. 2014;1581:89–102.CrossRefPubMedPubMedCentral Marmarou CR, Liang X, Abidi NH, Parveen S, Taya K, Henderson SC, et al. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury. Brain Res. 2014;1581:89–102.CrossRefPubMedPubMedCentral
206.
Zurück zum Zitat Krieg SM, Trabold R, Plesnila N. Time-dependent effects of arginine-vasopressin V1 receptor inhibition on secondary brain damage after traumatic brain injury. J Neurotrauma. 2017;34:1329–36.CrossRefPubMed Krieg SM, Trabold R, Plesnila N. Time-dependent effects of arginine-vasopressin V1 receptor inhibition on secondary brain damage after traumatic brain injury. J Neurotrauma. 2017;34:1329–36.CrossRefPubMed
207.
Zurück zum Zitat Rauen K, Trabold R, Brem C, Terpolilli NA, Plesnila N. Arginine vasopressin V1a receptor-deficient mice have reduced brain edema and secondary brain damage following traumatic brain injury. J Neurotrauma. 2013;30:1442–8.CrossRefPubMed Rauen K, Trabold R, Brem C, Terpolilli NA, Plesnila N. Arginine vasopressin V1a receptor-deficient mice have reduced brain edema and secondary brain damage following traumatic brain injury. J Neurotrauma. 2013;30:1442–8.CrossRefPubMed
208.
Zurück zum Zitat Allen CJ, Subhawong TK, Hanna MM, Chelala L, Bullock MR, Schulman CI, et al. Does vasopressin exacerbate cerebral edema in patients with severe traumatic brain injury? Am Surg. 2018;84:43–50.PubMed Allen CJ, Subhawong TK, Hanna MM, Chelala L, Bullock MR, Schulman CI, et al. Does vasopressin exacerbate cerebral edema in patients with severe traumatic brain injury? Am Surg. 2018;84:43–50.PubMed
209.
Zurück zum Zitat Van Haren RM, Thorson CM, Ogilvie MP, Valle EJ, Guarch GA, Jouria JA, et al. Vasopressin for cerebral perfusion pressure management in patients with severe traumatic brain injury: preliminary results of a randomized controlled trial. J Trauma Acute Care Surg. 2013;75:1024–30 discussion 1030.CrossRefPubMed Van Haren RM, Thorson CM, Ogilvie MP, Valle EJ, Guarch GA, Jouria JA, et al. Vasopressin for cerebral perfusion pressure management in patients with severe traumatic brain injury: preliminary results of a randomized controlled trial. J Trauma Acute Care Surg. 2013;75:1024–30 discussion 1030.CrossRefPubMed
210.
Zurück zum Zitat Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14:354–60.CrossRefPubMed Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011;14:354–60.CrossRefPubMed
211.
Zurück zum Zitat Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet. 2012;379:1705–11.CrossRefPubMed Roberts JD, Wells GA, Le May MR, Labinaz M, Glover C, Froeschl M, et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet. 2012;379:1705–11.CrossRefPubMed
212.
Zurück zum Zitat Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.CrossRefPubMed Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.CrossRefPubMed
213.
Zurück zum Zitat Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–57.CrossRefPubMedPubMedCentral Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302:849–57.CrossRefPubMedPubMedCentral
214.
Zurück zum Zitat Lee CR, Sriramoju VB, Cervantes A, Howell LA, Varunok N, Madan S, et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ Genom Precis Med. 2018;11:e002069.PubMedPubMedCentral Lee CR, Sriramoju VB, Cervantes A, Howell LA, Varunok N, Madan S, et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ Genom Precis Med. 2018;11:e002069.PubMedPubMedCentral
215.
Zurück zum Zitat Leentjens J, Kox M, Koch RM, Preijers F, Joosten LAB, van der Hoeven JG, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med. 2012;186:838–45.CrossRefPubMed Leentjens J, Kox M, Koch RM, Preijers F, Joosten LAB, van der Hoeven JG, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med. 2012;186:838–45.CrossRefPubMed
216.
Zurück zum Zitat Koo SL, Wang WW, Toh HC. Cancer immunotherapy—the target is precisely on the cancer and also not. Ann Acad Med Singap. 2018;47:381–7.PubMed Koo SL, Wang WW, Toh HC. Cancer immunotherapy—the target is precisely on the cancer and also not. Ann Acad Med Singap. 2018;47:381–7.PubMed
Metadaten
Titel
Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy
verfasst von
Benjamin E. Zusman, BSc
Patrick M. Kochanek, MD
Ruchira M. Jha, MD MSc
Publikationsdatum
01.03.2020
Verlag
Springer US
Erschienen in
Current Treatment Options in Neurology / Ausgabe 3/2020
Print ISSN: 1092-8480
Elektronische ISSN: 1534-3138
DOI
https://doi.org/10.1007/s11940-020-0614-x

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.