Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Research

Chemotherapy induces ACE2 expression in breast cancer via the ROS-AKT-HIF-1α signaling pathway: a potential prognostic marker for breast cancer patients receiving chemotherapy

verfasst von: Xiaoyan Zuo, Sixin Ren, He Zhang, Jianfei Tian, Ruinan Tian, Baoai Han, Hui Liu, Qian Dong, Zhiyong Wang, Yanfen Cui, Ruifang Niu, Fei Zhang

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

insite
INHALT
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Angiotensin-converting enzyme 2 (ACE2) is a key enzyme of the renin-angiotensin system and a well-known functional receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells. The COVID-19 pandemic has brought ACE2 into the spotlight, and ACE2 expression in tumors and its relationship with SARS-COV-2 infection and prognosis of cancer patients have received extensive attention. However, the association between ACE2 expression and tumor therapy and prognosis, especially in breast cancer, remains ambiguous and requires further investigation. We have previously reported that ACE2 is elevated in drug-resistant breast cancer cells, but the exact function of ACE2 in drug resistance and progression of this malignant disease has not been explored.

Methods

The expression of ACE2 and HIF-1α in parental and drug-resistant breast cancer cells under normoxic and hypoxic conditions was analyzed by Western blot and qRT-PCR methods. The protein levels of ACE2 in plasma samples from breast cancer patients were examined by ELISA. The relationship between ACE2 expression and breast cancer treatment and prognosis was analyzed using clinical specimens and public databases. The reactive oxygen species (ROS) levels in breast cancer cells were measured by using a fluorescent probe. Small interfering RNAs (siRNAs) or lentivirus-mediated shRNA was used to silence ACE2 and HIF-1α expression in cellular models. The effect of ACE2 knockdown on drug resistance in breast cancer was determined by Cell Counting Kit 8 (CCK-8)-based assay, colony formation assay, apoptosis and EdU assay.

Results

ACE2 expression is relatively low in breast cancer cells, but increases rapidly and specifically after exposure to anticancer drugs, and remains high after resistance is acquired. Mechanistically, chemotherapeutic agents increase ACE2 expression in breast cancer cells by inducing intracellular ROS production, and increased ROS levels enhance AKT phosphorylation and subsequently increase HIF-1α expression, which in turn upregulates ACE2 expression. Although ACE2 levels in plasma and cancer tissues are lower in breast cancer patients compared with healthy controls, elevated ACE2 in patients after chemotherapy is a predictor of poor treatment response and an unfavorable prognostic factor for survival in breast cancer patients.

Conclusion

ACE2 is a gene in breast cancer cells that responds rapidly to chemotherapeutic agents through the ROS-AKT-HIF-1α axis. Elevated ACE2 modulates the sensitivity of breast cancer cells to anticancer drugs by optimizing the balance of intracellular ROS. Moreover, increased ACE2 is not only a predictor of poor response to chemotherapy, but is also associated with a worse prognosis in breast cancer patients. Thus, our findings provide novel insights into the spatiotemporal differences in the function of ACE2 in the initiation and progression of breast cancer.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12967-022-03716-w.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ACE2
Angiotensin-converting enzyme 2
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
COVID-19
Coronavirus disease 2019
RAS
Renin-angiotensin system
Ang-II
Angiotensin-II
BRCA-DRGs
Breast cancer drug-resistant genes
IGV
Integrative Genomics Viewer
EPI
Epirubicin
PTX
Paclitaxel
5-FU
5-Fluorouracil
RFS
Recurrence-free survival
DMFS
Distant metastasis-free survival

Introduction

As the key functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into host cells [1], the global pandemic of COVID-19 has brought angiotensin-converting enzyme 2 (ACE2) into the spotlight. ACE2, a zinc metallopeptidase, is a major regulatory enzyme of the vascular protective axis of the renin-angiotensin system (RAS) [2]. The activation of ACE2 catalyzes the production of Angiotensin-(1–7) (Ang-(1–7)) from the peptide hormone Angiotensin-II (Ang-II), which is generated by ACE cleavage of the C-terminus of Ang-I [2]. Generally, the binding of Ang-II to its receptor AT1 acts to constrict blood vessels to increase blood pressure, as well as activates and amplifies the inflammatory response [3]. Conversely, Ang-(1–7) exerts vasodilatory, anti-inflammatory, anti-proliferative and anti-fibrotic effects by binding to its receptor MasR [2, 46]. Therefore, the ACE2/Ang-(1–7)/MasR signal pathway physiologically functions as a negative modulator of the classical ACE/Ang-II/AT1R axis [7]. The balance between these two axes of the RAS is critical for maintaining cardiovascular homeostasis, brain and renal function [810]. Dysregulation of the RAS is associated with a variety of diseases, including hypertension, atherosclerosis, diabetic nephropathy and even malignancies [1114]. However, the exact function and mechanism of ACE/ACE2 in the development and progression of these diseases remain unclear and require further investigation.
Altered expression of ACE or ACE2 is associated with initiation and progression of many cancers. In most cases, elevated expression of ACE and its downstream receptor AT1R is related with adverse characteristics and poor outcomes in cancer patients [15]. Consistently, the activation of ACE/Ang-II/AT1R axis promotes proliferation, invasion, angiogenesis, epithelial-mesenchymal transition (EMT), and resistance in several cancer models [1517]. In addition, ACE-targeted inhibitors have been used in preclinical trials with some promising results [18]. In contrast, ACE2 expression is decreased in most types of cancer tissue, and reduced ACE2 is often associated with a poorer prognosis [1921]. Functional studies have found that the activation of ACE2/Ang-(1–7)/MasR axis can inhibit proliferation, angiogenesis, invasion and metastasis of cancer cells, thereby counteracting the biological effects of the ACE/Ang II system [19, 22, 23]. Nevertheless, not all reports consider ACE2 as a tumor suppressor. Notably, several studies have shown that upregulation of ACE2 is a marker of poor prognosis in some cancer patients [24, 25]. Thus, the function of ACE2 may be multifaceted, and its specific role in tumors may depend on tissue type and context.
Recently, several papers have reported the correlation between ACE2 expression and the prognosis of breast cancer. Overall, ACE2 expression was significantly lower in tumor tissues than in normal tissues, and patients with higher ACE2 expression have a favorable outcome [2628]. In addition, in vitro studies found that ACE2 upregulation inhibited the invasion and metastasis of breast cancer cells and vice versa [26, 29]. Hence, ACE2 appears to act a tumor suppressor in breast cancer. However, there are different views on the relationship between ACE2 expression and patient prognosis. A recent study reported inconsistent results that ACE2 upregulation is a marker of poor prognosis in HER2 subtype breast cancer [24]. It is well known that the same signaling pathway may play different roles in different cellular contexts. Thus, the effect of ACE2 on cancer progression varies by tumor entity or subtype. Taken together, these findings suggest that the biological effect of ACE2 on breast cancer progression may be subtypical and stage-specific.
Considering the critical role of ACE2 in tumorigenesis and progression, the mechanisms that regulate ACE2 expression have received much attention. Recent studies have found that several external stimuli, such as SARS-COV-2 infection and smoking, can upregulate the expression of ACE2 in respiratory epithelial cells. In addition, inflammation-related signaling pathways can also result in the upregulation of ACE2 in some epithelial cells [3033]. These results suggest that the mechanisms regulating ACE2 expression are complex and diverse, and may be related to cell type and stimuli. To date, the regulatory mechanism of altered ACE2 expression in cancer cells remains unclear. In addition, few previous studies on breast cancer have addressed the correlation between ACE2 expression and treatment response. These issues should be clarified. In the present study, we investigated the relationship between ACE2 expression and treatment resistance and prognosis of breast cancer. We identified a potential mechanism by which chemotherapeutic agents induce ACE2 expression in breast cancer cells. We explored the role of elevated ACE2 in predicting chemotherapy response and prognosis in breast cancer patients.

Materials and methods

Reagents and drugs

RPMI 1640 and DMEM/F12 medium, Fetal bovine serum (FBS) and Trypsin for cell culture were obtained from Hyclone (Logan, UT, USA). Drugs used in this study are as follows: Epirubicin (EPI) was obtained from Hanhui Pharmaceuticals (Jiangsu, China). 5-Fluorouracil (5-FU) was purchased from Sigma. Paclitaxel (PTX) was obtained from Aosaikang Pharmaceuticals (Zhejiang, China). The AKT inhibitor MK-2206 (HY-10358) and HIF-1α inhibitor YC-1 (HY-14927) were purchased from MCE. Cell counting kit-8 (CCK8) was obtained from Bimake (Houston, TX, USA). HiScript II Q RT SuperMix for qPCR and Ace qPCR SYBR Green Master Mix were obtained from Vazyme (Nanjing, China). Trizol reagent was purchased from Invitrogen (Carlsbad, CA, USA). Enhanced chemiluminescence (ECL) was performed using ECL kit (Bio-Rad). The antibodies are listed as follows: ACE2 (ab108252) and HIF-1α (ab51608) were purchased from Abcam (Cambridge, MA, USA), AKT (#9272) and phospho-Akt (Thr308 #4370s) were obtained from Cell Signaling Technology (CST, Beverly, MA, USA), and β-actin was purchased from Sigma-Aldrich (St. Louis, MO, USA). These antibodies were diluted in 5% BSA, the diluted ratio of ACE2 was 1:2000, HIF-1α was 1:1000, AKT and Phospho-Akt (Thr308) were 1:2500, and β-actin was 1:5000.

Cell culture

Human breast cancer cell lines (MDA-MB-468, SK-BR-3, MDA-MB-231, BT-474, T47D and MCF-7), colorectal cancer cell lines (SW620 and SW480) and pancreatic cancer cell lines (SU86.86 and SW1990) were purchased from American Type Culture Collection (ATCC). Chemoresistant cancer cell lines SK-BR-3/Epirubicin (SK/EPR), MDA-MB-468/Epirubicin (468/EPR), MDA-MB-468/Paclitaxel (468/PTR) and BT-474/Lapatinib (BT-474/Lapa) were previously established by our group [34, 35]. MDA-MB-468, 468/EPR and 468/PTR cells were cultured in DMEM/F12 medium, other cells were cultured in RPMI-1640 medium, and all medium contains 10% fetal bovine serum. All the cells were maintained in an incubator containing 5% CO2 at 37 °C.

Western blotting

Western blotting assay was carried out as previously described [36]. Briefly, cultured cells in the dish were washed with ice-cold phosphate-buffered saline and then lysed in cell lysis buffer (50 mM Tris, 150 mM NaCl, 2% SDS, 10% glycerol, 5% 2-mercaptoethanol, and 1× protease inhibitor cocktail at pH 6.8) on ice. After 30 min, the cell lysates were collected, boiled at 95 ℃ for 10 min, and then resolved by SDS–PAGE using a 10% gel. Subsequently, the proteins were transferred onto a polyvinylidene fluoride membrane (Millipore). The membranes were blocked with 5% nonfat milk in TBST, and incubated with primary antibodies overnight at 4 ℃, followed by detection with horseradish peroxidase-conjugated secondary antibodies. The protein bands were detected by chemiluminescence using an ECL kit. β-actin was used as a loading control.

Quantitative reverse transcription PCR (qRT-PCR)

Quantitative reverse transcription PCR (qRT-PCR) analysis was performed with a AceQ qPCR SYBR Green Master Mix (Vazyme, China) as previously described [37]. In brief, cells treated with different doses of drugs (EPI, PTX and 5-FU) were lysed in Trizol, then total RNA were extracted according to the manufacturer’s instructions and reverse transcribed into cDNA by HiScript II Q RT SuperMix for qPCR (Vazyme, China). The qPCR was performed using AceQ qPCR SYBR Green Master Mix (Vazyme, China) following the manufacturer’s protocol. For analyzing relative changes in gene expression, the 2− ΔΔct method was used. The expression levels of ACE2 and HIF-1α were normalized to β-actin. The primer sequences were shown in Additional file 1: Table S1.

siRNA and cell transfection

Small interference RNAs (siRNAs) specifically targeting ACE2 or HIF-1α mRNA were synthesized by GenePharma (Tianjin, China). The siRNAs were transfected into the cells cultured in 6-well plates using lipofectamine RNAiMax (Thermal Fisher Scientific) following the manufacturer’s instructions. The sequences of the siRNAs are shown in Additional file 1: Table S2.

IC50 assay

The IC50 assay was performed as described previously [34]. In brief, cells were seeded in 96-wells plate at a density of 6 × 103 cells per well for 24 h. Then, the cells were cultured for 48 h in the presence of different concentrations of EPI (0, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, and 256 µM). CCK-8 reagent was added into each well (10 µL/well) and the plate was incubated for additional 3 h at 37 °C. The cell viability was calculated by using a micro-ELISA reader with a 450 nm filter. The half-maximal inhibitory concentration (IC50) was calculated based on the relative survival curve using the GraphPad Prism v. 8.0.

Cell proliferation assay and colony formation assay

The CCK-8 and colony formation assay were used to evaluate cell proliferative activity. For CCK-8 assay, 1 × 103 cells per well were seeded in 96-well plates and incubated for 24 h, 48 h, 72 h, 96 and 120 h. Then, 10 µL of CCK-8 solution was added to each well and incubated for another 3 h in the incubator. Finally, the optical density (OD) value was read at 450 nm using a 96-well plate reader. Colony formation assay was carried out as described previously [36]. In brief, 1 × 103 cells were seeded in 6-well plates and cultured for 10–14 days. Then the cells were washed with PBS, fixed with formaldehyde and stained using crystal violet staining buffer. The number of colonies was counted under an inverted microscope. EdU incorporation assay was performed according to the previous method [36]. In brief, cells in a 96-well plate were cultured overnight, then 10 µM EdU solution was added to the medium, and the cells were incubated for 2 h before measurement. Afterwards, the cells were fixed with 4% paraformaldehyde for 15 min and permeabilized with 0.3% Triton X-100 for another 15 min. Then, the cells were incubated with the Click Reaction Mixture for 30 min at room temperature in dark, followed by incubation with Hoechst 33342 for 10 min to stain the nuclei. Finally, the percentage of EdU-positive cells was used to determine the cell proliferation activity. Apoptosis assay was performed using an Annexin V-FITC/PI Apoptosis Detection Kit (Vazyme, China). Briefly, cells in 6-well plates were treated with EPI for 72 h, then the cells were digested with trypsin, washed with PBS, and resuspended in 300 µL of binding buffer. Subsequently, the resuspended cells were stained with 5 µl of FITC-conjugated Annexin V and 5 µl of PI according to the manufacturer’s instruction, followed by flow cytometric analysis with the FITC and PE channels.

Measurement of intracellular ROS

Intracellular ROS levels were measured using a Reactive Oxygen Species Assay Kit (Beyotime, China) in accordance with the manufacturer’s instructions. In brief, cells were seeded in 6-well plates, treated with EPI for 72 h, then washed with PBS and incubated with DCFH-DA ROS probe (diluted 1:1000 in serum-free medium) for 20 min at 37 ℃. Afterwards, the cells were trypsinized and washed, and then the stained cells were analyzed by a flow cytometer using the FITC channel. Cells treated with H2O2 (100 µM) or ROS scavenger NAC (500 µM) were used as positive and negative controls, respectively.

Construction of ACE2 stable knockdown cell line

ACE2 stable knockdown cell line was constructed using a lentiviral system as described below. The ACE2 shRNA oligo DNAs were designed, synthesized, and cloned into the Age I and BamH I cloning sites of the lentiviral vector pLKO.1-hygromycin to construct the pLKO.1-shACE2 plasmids (Additional file 1: Table S3). The pLKO.1-hygromycin vector expressing scrambled shRNA was used as a negative control (shControl). The lentiviral plasmids and packaging plasmids were co-transfected into HEK293T cells to generate lentivirus. The virus in the medium was collected 48 and 72 h after transfection. Afterward, the drug-resistant breast cancer cell line MDA-MB-468/EPR cells were infected with lentivirus overnight and further selected by using Hygromycin B (200 µg/mL).

Data resource

The publicly available TCGA-BRCA (http://​portal.​gdc.​cancer.​gov/​) database and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort data (http://​www.​cbioportal.​org/​) were used to determine the mRNA expression of ACE2, and we conducted a systematic search in the GEO (https://​www.​ncbi.​nlm.​nih.​gov/​gds) database to identify breast cancer drug-resistant gene expression datasets. The independent cohorts analysis was performed by the online tool named GEO2R (www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r). To more systematically investigate ACE2 expression in breast cancer, gene expression normalized to RPKM (Reads Per Kilobase Million) for breast cancer cell lines (n = 57) was downloaded from the Cancer Cell Line Encyclopedia (CCLE) (https://​portals.​broadinstitute.​org/​ccle). We also obtained a set of genes associated with chemoresistance of breast cancer in Genecards database (https://​www.​genecards.​org/​).

Bioinformatics analysis

GSCALite [38] (http://​bioinfo.​life.​hust.​edu.​cn/​web/​GSCALite/​), a web-based analysis platform for gene set cancer analysis, was performed to evaluate the association of a 28 genes signature (named BRCA-DRGs) with drug sensitivity to validate the efficacy of this genes signature in predicting drug sensitivity. We used the Gene Expression Profiling Interactive Analysis (GEPIA) (http://​gepia.​cancer-pku.​cn/​) database to analyze differential ACE2 expression in breast cancer. The freely available online tool EVenn (http://​www.​ehbio.​com/​test/​venn/​) was employed to explore and generate Venn diagrams of five sets. As for survival analysis, we analyzed the relationship of ACE2 expression with relapse-free survival (RFS) and distant metastasis-free survival (DMFS) in breast cancer (BRCA) using Kaplan-Meier Plotter (https://​kmplot.​com/​analysis/​).

Patients and plasma samples

Plasma samples were collected from 111 BRCA patients, including 57 patients who received chemotherapy or neoadjuvant therapy, 54 patients who did not receive chemotherapy, and 20 age-matched healthy controls. All samples were obtained at the Tianjin Medical University Cancer Institute and Hospital (China) between December 2020 and January 2021. Clinical data including sex, age, TNM stage, recurrence and surgery were collected (Additional file 1: Table S4). This study was approved by the Ethics Committee of Tianjin Medical University Cancer Institute and Hospital. Written informed consent was obtained from all participants.

Enzyme-linked immunosorbent assays (Elisa) for human ACE2

Plasma ACE2 levels were measured with the Elabscience #E-EL-H0281c ELISA kit following the manufacturer’s protocol. 96-well ELISA plates were previously coated with anti-human ACE2 antibodies. Briefly, 100 µL of standard or plasma sample were added into each well and incubated for 90 min at 37 °C. Then, the liquid was discarded and incubated with 100 µL of biotinylated detection antibodies for 60 min at 37 °C. After aspirating and washing the plate three times, 100 µL of HRP conjugate working solution was added and further incubated for 30 min at 37 °C. After another three times washing, the substrate reagent was added (90 µL/well), and the plate was incubated in the dark at room temperature for 15 min. The reaction was stopped with 50 µL/well of stop solution, and the absorbance at 450 nm was measured using an ELISA reader.

Statistical analysis and visualizations

Statistical software R (version 3.4.1) and GraphPad Prism (version 8.0) were used for statistical analysis. R packages “ggplot2”, “ggrepel”, “ggpubr”, “corrplot” and “grid” were used for data visualization [39]. One-way or two-way ANOVA were used to compare the statistical significance between different groups. For all analyses, P < 0.05 was considered statistically significant. All the data were presented as mean ± SD.

Results

ACE2 is specifically upregulated in drug-resistant breast cancer cells

We previously showed that ACE2 is elevated in EPI-resistant breast cancer MDA-MB-468/EPR cells [35]. To investigate whether elevated ACE2 expression in resistant breast cancer cells is a common phenomenon, we analyzed transcriptome-sequencing data from several parental and resistant cells. These cells resistant to chemotherapeutics and targeted drugs (named as 468/EPR, 468/PTR, SK-BR-3/EPR and BT-474/Lapa) were previously established and sequenced by our group [34, 35]. We first analyzed the RAW data of RNA-seq, which showed that drug-resistant cells had more reads mapping to exons of ACE2 than parental cells, suggesting that ACE2 may be upregulated in drug-resistant breast cancer cells (Fig. 1A). Indeed, as shown in boxplot, the mRNA expression of ACE2 was significantly upregulated in drug-resistant breast cancer cells (LogFC > 1, FDR < 0.05, Fig. 1B). Consistently, Western blot analysis also confirmed that ACE2 expression was substantially increased in the drug-resistant cells compared with parental cells (Fig. 1C). In addition, ACE2 is also drastically elevated in the methotrexate-resistant MDA-MB-468 cell line and the EPI-resistant SK-BR-3 cell line by analyzing two independent cohorts GSE16080 [40] and GSE54326 [41] using the Gene Expression Omnibus (GEO) database. Collectively, these data indicate that the upregulation of ACE2 is a common phenomenon in drug-resistant breast cancer cells.

The high expression of ACE2 is associated with drug resistance in breast cancer patients

Previous studies have demonstrated that the expression of ACE2 is reduced in breast cancer tissues compared to normal tissues. Consistently, the result based on the analysis of the TCGA-BRCA and GTEx database showed that the expression of ACE2 in normal tissues was higher than that in breast cancer patients (Fig. 2A). Moreover, we compared the protein expression of ACE2 between breast cancer cells and human normal breast epithelial cells MCF-10 A using western blot assay. As shown in Fig. 2B, breast cancer cells indeed expressed lower levels of ACE2 compared to normal breast cell MCF-10A. In addition, as revealed by CCLE analysis, the expression level of ACE2 was lower in breast cancer cell lines than in other cancer cell lines, including colorectal, lung, and kidney cancers (Fig. 2C). To further determine the role of ACE2 in breast cancer, we collected plasma samples from breast cancer patients and healthy donors and measured the level of ACE2 by ELISA. As shown in Fig. 2D, the overall level of ACE2 in the plasma of breast cancer patients is still lower than that of healthy control. Intriguingly, when classifying breast cancer patients according to their sensitivity to chemotherapy, we found that plasma ACE2 levels were significantly higher in chemotherapy-insensitive patients than in sensitive patients (Fig. 2E; Table 1, P < 0.0001). In agreement with this finding, we also observed a similar association between upregulation of ACE2 levels and sensitivity to chemotherapy in breast cancer patients in the METABRIC and TCGA-BRCA database (Fig. 2F and G). Altogether, these results indicate that although ACE2 expression is decreased in breast cancer patients compared with the normal population, elevated ACE2 after chemotherapy is a predictor of poor response to treatment.
Table 1
The level of ACE2 in plasma of breast cancer patients
Group
Breast cancer patients
ACE2 (ng/mL)
P-value
Chemo-resistant
57
17.46
< 0.0001
Chemo-sensitive
54
13.47

Chemotherapy-induced expression of ACE2 is specifically detected in breast cancer

It is well known that the acquisition of resistance is a gradual process. To explore whether the upregulation of ACE2 occurs immediately when cells are exposed to anti-cancer drugs or after they acquire resistance. During the establishment of the lapatinib-resistant BT-474/Lapa cell model, we collected total RNA from cells resistant to different concentrations of the drug and performed transcriptome sequencing. As shown in Fig. 3A, the response of elevated ACE2 started at exposure to low concentrations of lapatinib (0.6 µM), peaked at increasing drug concentrations (1 µM), then partially subsided (2 µM) and maintained high-level of expression after acquisition of a stable resistant phenotype (5 µM). This data suggested that ACE2 expression is elevated when cancer cells are initially exposed to drugs and may play a role in acquiring a drug-resistant phenotype. Therefore, we hypothesized that ACE2 might be a chemotherapeutic drug-responsive gene. To prove our conjecture, we exposed breast cancer cells (MDA-468, MDA-231, MCF-7, T47D) with low doses of chemotherapeutic drugs for 72 h and examined ACE2 expression by qRT-PCR and western blot. The concentrations of these drugs were lower than the IC50 of cells collected from GDSC (Additional file 1: Table S5). As shown in Fig. 3B, the mRNA levels of ACE2 were significantly increased in EPI-exposed breast cancer cells (MDA-468) compared with the controls (Fig. 3B). Similarly, significant increases of ACE2 mRNA were also observed in MDA-468, MDA-231, MCF-7 and T47D cells exposed to PTX or 5-FU, which strongly supports our hypothesis (Fig. 3B–E). Consistently, chemotherapy-induced ACE2 expression was also detected at the protein level by Western blot assay (Fig. 3F). However, in colorectal and pancreatic cancer cells, the expression of ACE2 was not significantly increased after exposure to EPI, PTX or 5-FU (Additional file 2: Fig. S1). Taken together, these results demonstrate that ACE2 is a chemotherapeutic drug-responsive gene specifically for breast cancer.

Chemotherapeutic drug-induced expression of ACE2 in breast cancer cells is ROS-dependent

Considering that chemotherapeutic drugs induce oxidative stress in cancer cells, and the level of reactive oxygen species (ROS) is related to the expression of ACE2 [32, 42], we hypothesized that the expression of ACE2 induced by chemotherapeutic drugs might be related to ROS. Thus, ROS levels in EPI-treated breast cancer cells were evaluated using H2O2 (100 µM) as a positive control and the ROS scavenger NAC (500 µM) as a negative control. As shown in Fig. 4A, drug treatment significantly increased the level of ROS in breast cancer cells, while ROS levels increased after the addition of H2O2 and decreased after NAC treatment. To identify the dependence of drug-induced ACE2 elevation on ROS, breast cancer cells were treated with EPI in the presence or absence of the ROS scavenger NAC for 72 h. The results showed that the drug-induced increase in ROS levels was inhibited by the addition of NAC (Fig. 4A). Moreover, the expression of ACE2 in EPI-treated breast cancer cells was measured by qRT-PCR and western blotting in the presence or absence of NAC (Fig. 4B, C). The results showed that the EPI-induced increase in ACE2 in breast cancer cells was significantly attenuated by the ROS scavenger NAC. Together, these data suggest that chemotherapeutic drug-induced expression of ACE2 in breast cancer cells is dependent on its upregulation of intracellular ROS levels.

HIF-1α is directly involved in the regulation of ACE2 expression in breast cancer cells by drug-induced ROS

Recently, some evidence suggests an association between HIF-1α and ACE2 expression [31, 43]. ROS is known to regulate HIF-1α stabilization [44]. This raises a possibility that the increase in ACE2 expression induced by anticancer agents may involve ROS-mediated HIF-1α expression. Hence, we first analyzed the relationship between increased ROS levels by chemotherapeutic drugs and HIF-1α expression in breast cancer cells. Figure 5A showed that the mRNA and protein expression levels of HIF-1α were upregulated in four breast cancer cells after EPI treatment, while quenching of ROS with NAC counteracted the EPI-induced elevation of HIF-1α expression. Thus, we hypothesized that HIF-1α promotes EPI-induced ACE2 expression. It is known that HIF-1α protein is stable under hypoxic conditions. We then cultured breast cancer cells under normoxic and hypoxic conditions, respectively. As expected, the abundance of HIF-1α protein was significantly increased in breast cancer cells under hypoxic conditions, and the expression of ACE2 was also significantly upregulated. To further confirm the role of HIF-1α in regulating ACE2 expression, we knocked down HIF-1α expression using small interfering RNA (siRNA) in 468 cells, and then treated the cells with EPI for 72 h. As shown in Fig. 5C, EPI-induced upregulation of ACE2 was suppressed by siHIF-1α under either normoxic or hypoxic conditions. Consistently, the HIF-1α inhibitor YC-1 also blocked chemotherapy-induced expression of ACE2 (Fig. 5D). These results further demonstrate that HIF-1α is directly involved in the regulation of chemotherapeutics-induced ACE2 expression. We next investigated the effect of HIF-1α on ACE2 expression in drug-resistant breast cancer cells (468/EPR cells). Knockdown of HIF-1α expression with siRNA resulted in a decrease in ACE2 protein level in 468/EPR cells (Fig. 5E). Consistently, treatment of 468/EPR cells with YC-1 also reduced the expression of ACE2 (Fig. 5E). Nevertheless, the protein level of HIF-1α did not appear to be altered by overexpression of ACE2 in parental 468 cells and knockdown of ACE2 in resistant 468/EPR cells (Fig. 5F). Hence, HIF-1α acts upstream of ACE2 to regulate its expression. Collectively, these data suggest that HIF-1α is required for chemotherapeutic agent-induced, ROS-mediated ACE2 expression in breast cancer cells.

ROS-dependent AKT activation mediates chemotherapeutic drug-induced ACE2 expression in breast cancer cells through regulation of HIF-1α

We next sought to identify the cellular mechanism by which chemotherapeutic drugs regulate ACE2 expression via HIF-1α. Several studies have suggested that high levels of ROS act as signaling molecules to affect the activation of intracellular pathways, such as promoting the phosphorylation of AKT [45]. Therefore, the relationship between AKT activation and ROS levels was assayed by Western blotting. As expected, increased levels of phospho-AKT were detected after EPI treatment, whereas the addition of the ROS scavenger NAC counteracted the EPI-induced increase in AKT phosphorylation (Fig. 6A). To determine whether AKT activity is required for chemotherapeutic drug-induced expression of HIF-1α and ACE2, we first treated parental breast cancer cells with the AKT inhibitor MK-2206 to determine the expression of AKT and HIF-1α and ACE2. As shown in Fig. 6B, MK-2206 significantly suppressed EPI-induced AKT phosphorylation and completely inhibited EPI-induced expression of HIF-1α and ACE2. Then, 468/EPR cells were exposed to MK-2206. As shown in Fig. 6C and D, inhibition of AKT phosphorylation reduced the expression of HIF-1α and ACE2 at the protein and mRNA levels. Taken together, these results suggest that EPI-induced expression of HIF-1α and ACE2 in breast cancer cells is highly dependent on ROS-mediated AKT activation.

Knockdown of ACE2 reverses resistance to Epirubicin but promotes proliferation of drug-resistant breast cancer cells

To determine the functional role of ACE2 in drug-resistant breast cancer cells, we next stably silenced the expression of ACE2 in 468/EPR cells using lentivirus expressing ACE2-specific shRNAs. As shown in Fig. 7A and B, Western blot and qRT-PCR analysis showed that ACE2 expression was substantially reduced in ACE2 shRNA-infected cells compared with that of control shRNA-infected cells. Then, the sensitivity of ACE2-silenced cells to EPI was investigated. As shown in Fig. 7C and Table 2, the survival rate of resistant cells exposed to EPI was decreased after ACE2 knockdown, and the IC50 value of EPI was significantly reduced in ACE2-silenced cells compared with control cells. By contrast, CCK8-based assay showed that ACE2 silencing significantly increased the proliferative activity of resistant cells (Fig. 7D). Similarly, 468/EPR-shACE2 cells also showed remarkably increased colony-forming capacity in vitro compared with control cells (Fig. 7E). EdU staining also confirmed that decreased expression of ACE2 significantly increased the cell proliferation index (Fig. 7F). Hence, knockdown of ACE2 in resistant cancer cells resulted in increased proliferative capacity compared to control cells. Since chemotherapeutic drug-induced ACE2 elevation was related to increased ROS levels, we therefore determined the changes in intracellular ROS levels in 468/EPR-shACE2 cells. Interestingly, knockdown of ACE2 resulted in an approximately 2-fold increase in intracellular ROS levels in 468/EPR cells compared to control cells (Fig. 7G). Moreover, ROS levels were increased approximately 4-fold in 468/EPR-shACE2 cells treated with 0.05 µM EPI for 72 h compared to control cells (Fig. 7H). Thus, knockdown of ACE2 resulted in increased intracellular ROS levels, and EPI induced a large increase in ROS levels in ACE2 knockdown cells. Furthermore, Annexin-V/PI staining assay displayed that the apoptosis rate of 468/EPR-shACE2 cells was significantly increased after 3 days of EPI treatment compared with the controls (Fig. 7I). Collectively, these results suggest that although ACE2 knockdown accelerates cell proliferation, it may lead to an excessive elevation of EPI-induced intracellular ROS, which in turn induces apoptosis and thus enhances cell sensitivity to chemotherapeutic agents.
Table 2
IC50 values in control and ACE2 knockdown 468/EPR cells
Cell
IC50
95% CI (profile likelihood)
P-value
468/EPR shControl
11.53
10.89 to 12.21
 
468/EPR shACE2 #1
0.47
0.3717 to 0.5565
0.0316
468/EPR shACE2 #2
0.94
0.8993 to 0.9837
0.0347
468/EPR shACE2 #3
0.68
0.2337 to 1.085
0.0345

ACE2 is strongly positively correlated with breast cancer drug resistance genes

Although we have initially established a positive correlation between ACE2 elevation and chemotherapy resistance in breast cancer, whether ACE2 is involved in chemoresistance in breast cancer still requires further investigation. To determine the relationship between ACE2 and drug resistance, we first constructed a drug resistance gene set using bioinformatics analysis based on the above transcriptome sequencing data and public database. As shown in Fig. 8A, a 28 genes signature (named as BRCA-DRGs, Table 3) was identified by combined analysis of the upregulated genes (LogFC > 1 and FDR < 0.05) in the four groups of drug-resistant/parental RNA-Seq data and drug-resistant genes defined by GeneCards. Expectedly, a strong positive correlation pattern was observed among these genes in our RNA-sequencing results of the four drug-resistant/parental cells, indicating that these genes are closely interconnected in drug-resistant cells (Fig. 8B). We next validated the correlation between BRCA-DRGs and drug sensitivity of cancer cells in the GDSC database. As shown in Fig. 8C, most of these genes were positively correlated with increased resistance of cancer cells to anticancer drugs, indicating that our constructed BRCA-DRGs could well predict the sensitivity of cancer cells to drugs. Moreover, survival analysis based on TCGA-BRCA and METABRIC database further showed that patients with high expression of BRCA-DRGs had poorer overall survival time (Fig. 8D and E). Notably, we also identified a strong positive correlation between ACE2 and BRCA-DRGs (R = 0.858, P = 8.25e−08) (Fig. 8F), indicating that ACE2 may be involved in regulating drug resistance in breast cancer.
Table 3
The list of breast cancer drug-resistant genes set (BRCA-DRGs).
Gene name
Gene description
Chrom
FUT4
Fucosyltransferase 4
chr11
PARD6B
Par-6 family cell polarity regulator beta
chr20
HLA-DRB1
Major histocompatibility complex class II DR beta 1
chr6
HUNK
Hormonally up-regulated Neu-associated kinase
chr21
EFEMP1
EGF containing fibulin-like extracellular matrix protein 1
chr2
COL27A1
Collagen type XXVII alpha 1
chr9
NR2F1
Nuclear receptor subfamily 2 group F member 1
chr5
MEIS3
Meis homeobox 3
chr19
PSMB10
Proteasome subunit beta 10
chr16
COL4A5
Collagen type IV alpha 5
chrX
F2RL1
Coagulation factor II (thrombin) receptor-like 1
chr5
KCNQ5
Potassium channel voltage gated KQT-like subfamily Q member 5
chr6
TNFAIP3
TNF alpha induced protein 3
chr6
COL12A1
Collagen type XII alpha 1
chr6
PTK2B
Protein tyrosine kinase 2 beta
chr8
S100A10
S100 calcium binding protein A10
chr1
LCN2
Lipocalin 2
chr9
ADAM22
ADAM metallopeptidase domain 22
chr7
LAMP3
Lysosomal-associated membrane protein 3
chr3
MYBL1
v-myb avian myeloblastosis viral oncogene homolog-like 1
chr8
HMOX1
Heme oxygenase 1
chr22
FER
fer (fps/fes related) tyrosine kinase
chr5
SAA1
Serum amyloid A1
chr11
SATB1
SATB homeobox 1
chr3
OAS3
2′-5′-oligoadenylate synthetase 3
chr12
MARVELD1
MARVEL domain containing 1
chr10
LAMC1
Laminin subunit gamma 1
chr1
COTL1
Coactosin-like F-actin binding protein 1
chr16

Elevated ACE2 expression is a marker of poor prognosis in breast cancer patients receiving chemotherapy

To investigate the relationship between ACE2 expression in plasma and clinical prognostic parameters of breast cancer, we chose the median value of ACE2 expression as the cutoff value and divided the samples into ACE2 high and low groups (Table 4). Waffle Chart was generated based on prognostic parameters and ACE2 expression (Fig. 9A). The results showed that higher ACE2 expression was positively correlated with poor differentiation (P = 0.031, Table 4), large tumor volume (P = 0.004, Table 4) and poor response to chemotherapy (P = 0.006 Table 4). Due to the short follow-up time of the patients whose plasma was collected in this study, the effect of ACE2 expression on breast cancer prognosis could not be analyzed. Therefore, we analyzed the prognostic impact of ACE2 expression by Kaplan-Meier plotter from public databases including GEO, EGA, and TCGA. As shown in Fig. 9B, among breast cancer patients receiving chemotherapy, both recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) were significantly lower in patients with high ACE2 expression than in those with low expression. However, there was no significant association between ACE2 expression and survival in breast cancer patients who did not receive chemotherapy and were systematically untreated (Fig. 9C, D). Furthermore, we verified the same results in another database, METABRIC. As shown in Fig. 9E, in breast cancer patients receiving chemotherapy, high ACE2 expression was associated with poorer overall survival, whereas ACE2 expression was not significantly associated with overall survival in patients who did not receive chemotherapy. Altogether, these results suggest that elevated ACE2 expression is a marker of poor prognosis in breast cancer patients receiving chemotherapy.
Table 4
Clinicopathological characteristics of breast cancer patients with high and low ACE2 expression
Variables
ACE2
P-value
Higher (> 14.78)
Lower (< 14.78)
N = 56
 N = 55
Mean-Age (years)
52.89
50.2
 
ACE2 (ng/mL)
21.23
9.71
 
Chemotherapy
   
 Chemotherapy-resistant
36(64.29%)
21(38.18%)
0.0059
 Chemotherapy-sensitive
20(35.71%)
34(61.81%)
Grade
   
 I
11(19.64%)
21(38.18%)
0.0311
 II–III
45(80.36%)
34(61.82%)
T
   
 T1
9(16.07%)
20(36.36%)
0.0040
 T2–T3
41(73.21%)
24(43.64%)
 Tx
2(3.57%)
11(20.00%)
 
N
   
 N0
19(33.93%)
28(3.63%)
0.0700
 N1–N2–N3
37(66.07%)
27(96.37%)
 
M
   
 M0
10(17.86%)
11(20.00%)
0.0077
 M1
36(64.29%)
9(16.36%)
 MX
10(17.86%)
35(63.63%)
 
Surgery
   
 Yes
33 (58.93%)
15 (27.27%)
0.0008
 No
23 (41.07%)
40 (72.72%)
Recurrence
   
 Yes
0 (0%)
1 (1.82%)
0.3108
 No
56 (100%)
54 (98.18%)
Metastasis
   
 Yes
6 (10.71%)
23 (41.82%)
0.0002
 No
50 (89.29%)
32 (58.18%)

Discussion

The most significant findings of this study provide novel insights into the role of ACE2 in the acquisition of drug resistance and progression of breast cancer. As illustrated in Fig. 10, we demonstrate that ACE2 expression is relatively low in breast cancer cells, but its expression increases specifically and rapidly after exposure to anticancer drugs, and stabilizes at a high level after acquisition of drug resistance. Mechanistically, chemotherapeutic agents induce ACE2 expression in breast cancer cells by increasing intracellular ROS production, while increased ROS levels enhance AKT phosphorylation and subsequently upregulate HIF-1α expression. Although ACE2 levels in plasma and cancer tissues are significantly lower in breast cancer patients compared with healthy controls, elevated ACE2 in patients after chemotherapy is a predictor of poor response to treatment. Importantly, patients with high ACE2 expression had significantly lower RFS and DMFS compared with patients with low expression. Moreover, ACE2 may be involved in regulating drug resistance and proliferation of breast cancer cells by optimizing the balance of intracellular ROS. Collectively, our results highlight the key functional role of ACE2 in breast cancer progression and treatment.
Aberrant expression of ACE2 is observed in several cancers and correlates with patient prognosis. In most cases, ACE2 expression is lower in tumor tissues than in normal tissues, and patients with high ACE2 levels in cancer tissues appear to be associated with a favorable prognosis [27, 28, 46]. Nevertheless, other studies have reported opposite results that ACE2 upregulation promotes tumor progression, and even that ACE2 may play distinct roles in different subtypes of the same tumor [47, 48]. This feature seems to be more pronounced in breast cancer [24, 49, 50]. Despite previous studies have reported the relationship between ACE2 expression and breast cancer prognosis, a systemic investigation of the association between ACE2 expression and chemotherapy and prognosis is still lacking. Herein, we found reduced ACE2 expression in plasma of breast cancer patients compared with healthy controls, which is similar to the results of our analysis in the TCGA database. These data are consistent with previous studies showing that ACE2 is higher in normal tissues than in cancer tissues. Hence, ACE2 may act a tumor suppressor during cancer initiation. Interestingly, patients with high plasma ACE2 were less sensitive to chemotherapy. Similarly, analysis from the METABRIC database also revealed an inverse relationship between ACE2 expression and response to chemotherapy in breast cancer patients. Additionally, ACE2 was also specifically upregulated in drug-resistant breast cancer cells. Thus, our study identified a novel link between ACE2 and breast cancer, whereby elevated ACE2 in tumors is associated with treatment resistance in patients. These findings also indicate temporal and spatial differences in the role of ACE2 in tumorigenesis and progression. To our knowledge, this is the first report on ACE2 expression and treatment resistance in breast cancer.
Our findings suggest that ACE2 is a specific drug response gene in breast cancer. Anti-cancer agents are known to increase ROS and cause oxidative stress in cancer cells, and ACE2 is able to maintain cell viability by reducing oxidative stress in certain cell types [51, 52]. Therefore, elevated ACE2 is likely induced by drug-caused oxidative stress and has a protective effect on cancer cells after chemotherapy. Consistently, ACE2 expression persisted until the cells acquired a drug-resistant phenotype, suggesting that elevated ACE2 may promote cell survival by reducing ROS and maintaining intracellular redox homeostasis, as excessive production of ROS may lead to oxidative stress and cell death. Subsequent studies confirmed this possibility, with intracellular ROS levels significantly increased in ACE2-silenced cells and anticancer drugs inducing higher levels of ROS production in ACE2-knockdown cells. These findings also raised a possibility that ACE2 upregulation in breast cancer cells may modulate the sensitivity of cells to drugs. As expected, silencing ACE2 significantly reversed the resistance of breast cancer cells to chemotherapeutic drugs. Likewise, ACE2-silenced cells showed enhanced apoptosis rate after EPI treatment. Interestingly, cell proliferation was enhanced after knockdown of ACE2 in drug-resistant cells under normal culture conditions. We speculate that this may be partly due to the elevated intracellular ROS levels caused by ACE2 knockdown, as moderate ROS facilitates cell survival and proliferation. Nevertheless, ACE2 silencing deprives cells of the ability to reduce the excess ROS induced by anticancer drugs, thereby increasing the rate of apoptosis and decreasing drug resistance. Consistently, ACE2 expression was strongly correlated with drug-resistant genes signature (BRCA-DRGs) constructed in our study, further supporting the involvement of ACE2 in the regulation of drug resistance in breast cancer. Consequently, ACE2 promotes drug resistance by regulating intracellular ROS-induced oxidative stress. Notably, oxidative stress-induced ACE2 upregulation was also seen in other cell types and stimuli [53]. Smoking is known to induce oxidative stress and ROS production in respiratory cells [54]. A recent study showed that smoking can lead to ACE2 overexpression in bronchial and alveolar epithelial cells [31]. In addition, inflammation-related stress can also contribute to ACE2 upregulation [55]. Several consistent findings suggest that certain inflammatory cytokines also trigger upregulation of ACE2 in different models [32]. Thus, ACE2 expression tends to be elevated when cells are subjected to noxious stimuli, suggesting a functional response of ACE2 to external stimuli. Collectively, these findings suggest that anticancer drugs induce ACE2 expression by increasing intracellular ROS, which in turn reduces excessive elevation of ROS, thereby maintaining the balance of intracellular oxidative stress, sustaining cell survival and promoting drug resistance.
The molecular mechanism of ACE2 upregulation in response to chemotherapeutic drug is worth investigating. Here, we demonstrated that drug-induced elevation of ACE2 in breast cancer cells is ROS-dependent. ROS is known to play a double-edged role in cell viability [42]. Moderate ROS can promote cell survival and proliferation by activating a number of intracellular signaling pathways [56]. Excessive ROS levels can cause cell damage and death [57]. Our current results suggest that a low-dose drug-induced rise in ROS is a key factor contributing to elevated ACE2 expression. This scenario is most likely to exist in cancer patients during chemotherapy, as the anti-cancer drugs are not evenly distributed within the tumor, then cancer cells exposed to lower concentrations of drugs may upregulate ACE2 through this mechanism, and the elevated ACE2 allows the cells to survive by reducing oxidative stress damage caused by ROS. We further confirmed that this drug-induced, ROS-dependent upregulation of ACE2 was associated with the elevation of HIF-1α. Similarly, a recent study showed that HIF-1α could bind to the promoter region of ACE2 in respiratory cells and promote its transcription in response to smoking stimulation [31]. Although several reports have shown that HIF-1α negatively regulates the expression of ACE2 in some cells [58], this may be due to the differences in cell type or context as well as induction factors. In addition, HIF-1α is well-known to be regulated by the AKT pathway, and ROS as a signaling molecule can induce the activation of AKT [45, 59]. Consistently, EPI-induced elevation of AKT phosphorylation in breast cancer cells was counteracted by the ROS scavenger NAC. Meanwhile, AKT inhibition by MK-2206 reduced the expression of HIF-1α and ACE2 in both parental and resistant breast cancer cells. Collectively, our results suggest that EPI-induced ACE2 expression in breast cancer cells is dependent on the ROS-AKT-HIF-1α signaling pathway.
Another important clinical implication of this study is that elevated ACE2 expression is also a marker of poor prognosis in breast cancer patients receiving chemotherapy. Although previous reports have analyzed the relationship between ACE2 expression and the prognosis of breast cancer patients, few studies have focused on the association between its expression and clinical treatment and prognosis. Herein, we found that ACE2 expression did not appear to be significantly associated with overall prognosis in breast cancer patients who did not receive chemotherapy or systematically untreated. Nevertheless, in patients receiving chemotherapy, elevated ACE2 was correlated with worse RFS and DMFS compared with patients with low ACE2 expression. This finding is inconsistent with the result reported in a recent publication showing that elevated ACE2 immunostaining is unrelated to the outcome in nonspecific types of invasive breast cancer [49]. This inconsistency may be due to the fact that the aforementioned study only focused on the expression level of ACE2, but did not include the treatment modality of the patients. Our findings also imply that upregulation of ACE2 in cancer tissues with originally low ACE2 expression may be a driver of cancer progression. This possibility is partly supported by a recent study showing that higher ACE2 expression appears to be associated with higher histological grade, HER2-enriched and Basal-like subtypes [49]. These indicators are known to be associated with poor prognosis in breast cancer. Collectively, these results indicate spatiotemporal differences in the function of ACE2 in cancer initiation and progression.
In summary, our study demonstrated that ACE2 is a gene that responds rapidly to chemotherapeutic drugs via the ROS-AKT-HIF-1α axis, and specifically in breast cancer. The function of upregulated ACE2 in breast cancer cells may differ from normal cells. Elevated ACE2 modulates the sensitivity of breast cancer cells to anticancer regents. Moreover, elevated ACE2 was not only a predictor of poor response to chemotherapy, but is also correlated with worsen outcomes in breast cancer patients. In addition, it is worth noting that due to the COVID-19 pandemic, our study also suggests that breast cancer patients may exhibit higher ACE2 expression after chemotherapy, which increases the risk of infection with SARS-CoV-2 and contributes to high COVID-19 mortality in cancer patients [60].

Acknowledgements

Not applicable.

Declarations

Our study involving blood samples was approved by the Ethics Committee of Tianjin Medical University Cancer Institute and Hospital (bc2020183) and all patients and healthy donors who participated in this study were informed and consented. All procedures performed in this study were conducted in accordance with the ethical standards of the institutional and/or national research committee and the Declaration of Helsinki and its later amendments or comparable ethical standards.
All the authors have reviewed the final version of the manuscript and approved it for publication.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
insite
INHALT
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-80 e278.PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-80 e278.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98:505–53.PubMedCrossRef Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98:505–53.PubMedCrossRef
3.
Zurück zum Zitat Cau SB, Bruder-Nascimento A, Silva MB, Ramalho FNZ, Mestriner F, Alves-Lopes R, Ferreira N, Tostes RC, Bruder-Nascimento T. Angiotensin-II activates vascular inflammasome and induces vascular damage. Vascul Pharmacol. 2021;139:106881.PubMedPubMedCentralCrossRef Cau SB, Bruder-Nascimento A, Silva MB, Ramalho FNZ, Mestriner F, Alves-Lopes R, Ferreira N, Tostes RC, Bruder-Nascimento T. Angiotensin-II activates vascular inflammasome and induces vascular damage. Vascul Pharmacol. 2021;139:106881.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Gironacci MM. Angiotensin-(1–7): beyond its central effects on blood pressure. Ther Adv Cardiovasc Dis. 2015;9:209–16.PubMedCrossRef Gironacci MM. Angiotensin-(1–7): beyond its central effects on blood pressure. Ther Adv Cardiovasc Dis. 2015;9:209–16.PubMedCrossRef
5.
Zurück zum Zitat Nunes-Silva A, Rocha GC, Magalhaes DM, Vaz LN, Salviano de Faria MH, Simoes ESAC. Physical exercise and ACE2-angiotensin-(1–7)-mas receptor axis of the renin angiotensin system. Protein Pept Lett. 2017;24:809–16.PubMedCrossRef Nunes-Silva A, Rocha GC, Magalhaes DM, Vaz LN, Salviano de Faria MH, Simoes ESAC. Physical exercise and ACE2-angiotensin-(1–7)-mas receptor axis of the renin angiotensin system. Protein Pept Lett. 2017;24:809–16.PubMedCrossRef
6.
Zurück zum Zitat Morganstein T, Haidar Z, Trivlidis J, Azuelos I, Huang MJ, Eidelman DH, Baglole CJ. Involvement of the ACE2/Ang-(1–7)/MasR axis in pulmonary fibrosis: implications for COVID-19. Int J Mol Sci. 2021;22:12955PubMedPubMedCentralCrossRef Morganstein T, Haidar Z, Trivlidis J, Azuelos I, Huang MJ, Eidelman DH, Baglole CJ. Involvement of the ACE2/Ang-(1–7)/MasR axis in pulmonary fibrosis: implications for COVID-19. Int J Mol Sci. 2021;22:12955PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Paz Ocaranza M, Riquelme JA, Garcia L, Jalil JE, Chiong M, Santos RAS, Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.PubMedCrossRef Paz Ocaranza M, Riquelme JA, Garcia L, Jalil JE, Chiong M, Santos RAS, Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.PubMedCrossRef
8.
Zurück zum Zitat Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–8.PubMedCrossRef Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–8.PubMedCrossRef
9.
Zurück zum Zitat Yamamoto K, Ohishi M, Katsuya T, Ito N, Ikushima M, Kaibe M, Tatara Y, Shiota A, Sugano S, Takeda S, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47:718–26.PubMedCrossRef Yamamoto K, Ohishi M, Katsuya T, Ito N, Ikushima M, Kaibe M, Tatara Y, Shiota A, Sugano S, Takeda S, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47:718–26.PubMedCrossRef
10.
Zurück zum Zitat Nakagawa P, Gomez J, Grobe JL, Sigmund CD. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr Hypertens Rep. 2020;22:7.PubMedPubMedCentralCrossRef Nakagawa P, Gomez J, Grobe JL, Sigmund CD. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr Hypertens Rep. 2020;22:7.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294.PubMedPubMedCentralCrossRef Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the renin-angiotensin system and the vasopressinergic system interactions in cardiovascular disorders. Curr Hypertens Rep. 2018;20:19.PubMedPubMedCentralCrossRef Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the renin-angiotensin system and the vasopressinergic system interactions in cardiovascular disorders. Curr Hypertens Rep. 2018;20:19.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Rasha F, Ramalingam L, Gollahon L, Rahman RL, Rahman SM, Menikdiwela K, Moustaid-Moussa N. Mechanisms linking the renin-angiotensin system, obesity, and breast cancer. Endocr Relat Cancer. 2019;26:R653–72.PubMedCrossRef Rasha F, Ramalingam L, Gollahon L, Rahman RL, Rahman SM, Menikdiwela K, Moustaid-Moussa N. Mechanisms linking the renin-angiotensin system, obesity, and breast cancer. Endocr Relat Cancer. 2019;26:R653–72.PubMedCrossRef
14.
Zurück zum Zitat George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10:745–59.PubMedCrossRef George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10:745–59.PubMedCrossRef
15.
Zurück zum Zitat Han CD, Ge WS. Up-regulation of angiotensin-converting enzyme (ACE) enhances cell proliferation and predicts poor prognosis in laryngeal cancer. Med Sci Monit. 2016;22:4132–8.PubMedPubMedCentralCrossRef Han CD, Ge WS. Up-regulation of angiotensin-converting enzyme (ACE) enhances cell proliferation and predicts poor prognosis in laryngeal cancer. Med Sci Monit. 2016;22:4132–8.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Liu SY, Sima X, Wang CH, Gao M. The association between ACE polymorphism and risk of colorectal cancer in a Chinese population. Clin Biochem. 2011;44:1223–6.PubMedCrossRef Liu SY, Sima X, Wang CH, Gao M. The association between ACE polymorphism and risk of colorectal cancer in a Chinese population. Clin Biochem. 2011;44:1223–6.PubMedCrossRef
17.
Zurück zum Zitat Almutlaq M, Alamro AA, Alamri HS, Alghamdi AA, Barhoumi T. The effect of local renin angiotensin system in the common types of cancer. Front Endocrinol (Lausanne). 2021;12:736361.CrossRef Almutlaq M, Alamro AA, Alamri HS, Alghamdi AA, Barhoumi T. The effect of local renin angiotensin system in the common types of cancer. Front Endocrinol (Lausanne). 2021;12:736361.CrossRef
18.
Zurück zum Zitat Stokes WA, Molina E, McDermott JD, Morgan RL, Bickett T, Fakhoury KR, Amini A, Karam SD. Survival impact of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists in head and neck cancer. Head Neck. 2021;43:3255–75.PubMedPubMedCentralCrossRef Stokes WA, Molina E, McDermott JD, Morgan RL, Bickett T, Fakhoury KR, Amini A, Karam SD. Survival impact of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists in head and neck cancer. Head Neck. 2021;43:3255–75.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Feng Y, Ni L, Wan H, Fan L, Fei X, Ma Q, Gao B, Xiang Y, Che J, Li Q. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep. 2011;26:1157–64.PubMed Feng Y, Ni L, Wan H, Fan L, Fei X, Ma Q, Gao B, Xiang Y, Che J, Li Q. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep. 2011;26:1157–64.PubMed
20.
Zurück zum Zitat Zhou L, Zhang R, Yao W, Wang J, Qian A, Qiao M, Zhang Y, Yuan Y. Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J Exp Med. 2009;217:123–31.PubMedCrossRef Zhou L, Zhang R, Yao W, Wang J, Qian A, Qiao M, Zhang Y, Yuan Y. Decreased expression of angiotensin-converting enzyme 2 in pancreatic ductal adenocarcinoma is associated with tumor progression. Tohoku J Exp Med. 2009;217:123–31.PubMedCrossRef
21.
Zurück zum Zitat Khanna P, Soh HJ, Chen CH, Saxena R, Amin S, Naughton M, Joslin PN, Moore A, Bakouny Z, O’Callaghan C, et al. ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1–7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med. 2021;13:eabc0170PubMedCrossRef Khanna P, Soh HJ, Chen CH, Saxena R, Amin S, Naughton M, Joslin PN, Moore A, Bakouny Z, O’Callaghan C, et al. ACE2 abrogates tumor resistance to VEGFR inhibitors suggesting angiotensin-(1–7) as a therapy for clear cell renal cell carcinoma. Sci Transl Med. 2021;13:eabc0170PubMedCrossRef
22.
Zurück zum Zitat Zhou L, Zhang R, Zhang L, Yao W, Li J, Yuan Y. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy. Cancer Lett. 2011;307:18–25.PubMedCrossRef Zhou L, Zhang R, Zhang L, Yao W, Li J, Yuan Y. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy. Cancer Lett. 2011;307:18–25.PubMedCrossRef
23.
Zurück zum Zitat Qian YR, Guo Y, Wan HY, Fan L, Feng Y, Ni L, Xiang Y, Li QY. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep. 2013;29:2408–14.PubMedCrossRef Qian YR, Guo Y, Wan HY, Fan L, Feng Y, Ni L, Xiang Y, Li QY. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep. 2013;29:2408–14.PubMedCrossRef
24.
Zurück zum Zitat Nair MG, Prabhu JS, Ts S. High expression of ACE2 in HER2 subtype of breast cancer is a marker of poor prognosis. Cancer Treat Res Commun. 2021;27:100321.PubMedPubMedCentralCrossRef Nair MG, Prabhu JS, Ts S. High expression of ACE2 in HER2 subtype of breast cancer is a marker of poor prognosis. Cancer Treat Res Commun. 2021;27:100321.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Bergsneider B, Bailey E, Ahmed Y, Gogineni N, Huntley D, Montano X. Analysis of SARS-CoV-2 infection associated cell entry proteins ACE2, CD147, PPIA, and PPIB in datasets from non SARS-CoV-2 infected neuroblastoma patients, as potential prognostic and infection biomarkers in neuroblastoma. Biochem Biophys Rep. 2021;27:101081.PubMedPubMedCentral Bergsneider B, Bailey E, Ahmed Y, Gogineni N, Huntley D, Montano X. Analysis of SARS-CoV-2 infection associated cell entry proteins ACE2, CD147, PPIA, and PPIB in datasets from non SARS-CoV-2 infected neuroblastoma patients, as potential prognostic and infection biomarkers in neuroblastoma. Biochem Biophys Rep. 2021;27:101081.PubMedPubMedCentral
26.
Zurück zum Zitat Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38:173.PubMedPubMedCentralCrossRef Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res. 2019;38:173.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Niu X, Zhu Z, Shao E, Bao J. ACE2 is a prognostic biomarker and associated with immune infiltration in kidney renal clear cell carcinoma: implication for COVID-19. J Oncol. 2021;2021:8847307.PubMedPubMedCentralCrossRef Niu X, Zhu Z, Shao E, Bao J. ACE2 is a prognostic biomarker and associated with immune infiltration in kidney renal clear cell carcinoma: implication for COVID-19. J Oncol. 2021;2021:8847307.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Wang T, Xie F, Li YH, Liang B. Downregulation of ACE2 is associated with advanced pathological features and poor prognosis in clear cell renal cell carcinoma. Future Oncol. 2021;17:5033–44.PubMedCrossRef Wang T, Xie F, Li YH, Liang B. Downregulation of ACE2 is associated with advanced pathological features and poor prognosis in clear cell renal cell carcinoma. Future Oncol. 2021;17:5033–44.PubMedCrossRef
29.
Zurück zum Zitat Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, Meng X, Zou F. Downregulation of ACE2/Ang-(1–7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016;376:268–77.PubMedCrossRef Yu C, Tang W, Wang Y, Shen Q, Wang B, Cai C, Meng X, Zou F. Downregulation of ACE2/Ang-(1–7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry. Cancer Lett. 2016;376:268–77.PubMedCrossRef
30.
Zurück zum Zitat Zhou Y, Wang M, Li Y, Wang P, Zhao P, Yang Z, Wang S, Zhang L, Li Z, Jia K, et al. SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Immunol Lett. 2021;237:33–41.PubMedPubMedCentralCrossRef Zhou Y, Wang M, Li Y, Wang P, Zhao P, Yang Z, Wang S, Zhang L, Li Z, Jia K, et al. SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Immunol Lett. 2021;237:33–41.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Liu A, Zhang X, Li R, Zheng M, Yang S, Dai L, Wu A, Hu C, Huang Y, Xie M, Chen Q. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol. 2021;253:17–30.PubMedCrossRef Liu A, Zhang X, Li R, Zheng M, Yang S, Dai L, Wu A, Hu C, Huang Y, Xie M, Chen Q. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol. 2021;253:17–30.PubMedCrossRef
32.
Zurück zum Zitat Lee MC, Chen YK, Tsai-Wu JJ, Hsu YJ, Lin BR. Zinc supplementation augments the suppressive effects of repurposed NF-kappaB inhibitors on ACE2 expression in human lung cell lines. Life Sci. 2021;280:119752.PubMedPubMedCentralCrossRef Lee MC, Chen YK, Tsai-Wu JJ, Hsu YJ, Lin BR. Zinc supplementation augments the suppressive effects of repurposed NF-kappaB inhibitors on ACE2 expression in human lung cell lines. Life Sci. 2021;280:119752.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Jiang Z, Zhang H, Gao J, Yu H, Han R, Zhu L, Chen X, Fan Q, Hao P, Wang L, Li X. ACE2 expression is upregulated in inflammatory corneal epithelial cells and attenuated by resveratrol. Invest Ophthalmol Vis Sci. 2021;62:25.PubMedPubMedCentralCrossRef Jiang Z, Zhang H, Gao J, Yu H, Han R, Zhu L, Chen X, Fan Q, Hao P, Wang L, Li X. ACE2 expression is upregulated in inflammatory corneal epithelial cells and attenuated by resveratrol. Invest Ophthalmol Vis Sci. 2021;62:25.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Zhang F, Wang Z, Fan Y, Xu Q, Ji W, Tian R, Niu R. Elevated STAT3 signaling-mediated upregulation of MMP-2/9 confers enhanced invasion ability in multidrug-resistant breast cancer cells. Int J Mol Sci. 2015;16:24772–90.PubMedPubMedCentralCrossRef Zhang F, Wang Z, Fan Y, Xu Q, Ji W, Tian R, Niu R. Elevated STAT3 signaling-mediated upregulation of MMP-2/9 confers enhanced invasion ability in multidrug-resistant breast cancer cells. Int J Mol Sci. 2015;16:24772–90.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Gao Z, Han X, Zhu Y, Zhang H, Tian R, Wang Z, Cui Y, Wang Z, Niu R, Zhang F. Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis. 2021;12:414.PubMedPubMedCentralCrossRef Gao Z, Han X, Zhu Y, Zhang H, Tian R, Wang Z, Cui Y, Wang Z, Niu R, Zhang F. Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis. 2021;12:414.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Yuan Y, Fan Y, Gao Z, Sun X, Zhang H, Wang Z, Cui Y, Song W, Wang Z, Zhang F, Niu R. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3beta signaling pathway. Cancer Biol Med. 2020;17:707–25.PubMedPubMedCentralCrossRef Yuan Y, Fan Y, Gao Z, Sun X, Zhang H, Wang Z, Cui Y, Song W, Wang Z, Zhang F, Niu R. SHP2 promotes proliferation of breast cancer cells through regulating Cyclin D1 stability via the PI3K/AKT/GSK3beta signaling pathway. Cancer Biol Med. 2020;17:707–25.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhu Y, Zhang H, Han X, Wang Z, Cui Y, Tian R, Wang Z, Han B, Tian J, Zhang F, Niu R. STAT3 mediated upregulation of C-MET signaling acts as a compensatory survival mechanism upon EGFR family inhibition in chemoresistant breast cancer cells. Cancer Lett. 2021;519:328–42.PubMedCrossRef Zhu Y, Zhang H, Han X, Wang Z, Cui Y, Tian R, Wang Z, Han B, Tian J, Zhang F, Niu R. STAT3 mediated upregulation of C-MET signaling acts as a compensatory survival mechanism upon EGFR family inhibition in chemoresistant breast cancer cells. Cancer Lett. 2021;519:328–42.PubMedCrossRef
38.
Zurück zum Zitat Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;34:3771–2.PubMedCrossRef Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;34:3771–2.PubMedCrossRef
39.
Zurück zum Zitat Zuo X, Li B, Zhu C, Yan ZW, Li M, Wang X, Zhang YJ. Stoichiogenomics reveal oxygen usage bias, key proteins and pathways associated with stomach cancer. Sci Rep. 2019;9:11344.PubMedPubMedCentralCrossRef Zuo X, Li B, Zhu C, Yan ZW, Li M, Wang X, Zhang YJ. Stoichiogenomics reveal oxygen usage bias, key proteins and pathways associated with stomach cancer. Sci Rep. 2019;9:11344.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Selga E, Oleaga C, Ramirez S, de Almagro MC, Noe V, Ciudad CJ. Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Med. 2009;1:83.PubMedPubMedCentralCrossRef Selga E, Oleaga C, Ramirez S, de Almagro MC, Noe V, Ciudad CJ. Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Med. 2009;1:83.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Braunstein M, Liao L, Lyttle N, Lobo N, Taylor KJ, Krzyzanowski PM, Kalatskaya I, Yao CQ, Stein LD, Boutros PC, et al. Downregulation of histone H2A and H2B pathways is associated with anthracycline sensitivity in breast cancer. Breast Cancer Res. 2016;18:16.PubMedPubMedCentralCrossRef Braunstein M, Liao L, Lyttle N, Lobo N, Taylor KJ, Krzyzanowski PM, Kalatskaya I, Yao CQ, Stein LD, Boutros PC, et al. Downregulation of histone H2A and H2B pathways is associated with anthracycline sensitivity in breast cancer. Breast Cancer Res. 2016;18:16.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.PubMedCrossRef Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.PubMedCrossRef
43.
Zurück zum Zitat Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009;297:L631–40.PubMedCrossRef Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009;297:L631–40.PubMedCrossRef
44.
45.
Zurück zum Zitat Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.PubMedPubMedCentralCrossRef Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 2017;16:79.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Li J, Yang ZL, Ren X, Zou Q, Yuan Y, Liang L, Chen M, Chen S. ACE2 and FZD1 are prognosis markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of gallbladder. J Mol Histol. 2014;45:47–57.PubMedCrossRef Li J, Yang ZL, Ren X, Zou Q, Yuan Y, Liang L, Chen M, Chen S. ACE2 and FZD1 are prognosis markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of gallbladder. J Mol Histol. 2014;45:47–57.PubMedCrossRef
47.
Zurück zum Zitat Subbarayan K, Ulagappan K, Wickenhauser C, Seliger B. Expression and clinical significance of SARS-CoV-2 human targets in neoplastic and non-neoplastic lung tissues. Curr Cancer Drug Targets. 2021;21:428–42.PubMedCrossRef Subbarayan K, Ulagappan K, Wickenhauser C, Seliger B. Expression and clinical significance of SARS-CoV-2 human targets in neoplastic and non-neoplastic lung tissues. Curr Cancer Drug Targets. 2021;21:428–42.PubMedCrossRef
48.
Zurück zum Zitat Yamaguchi M, Hirai S, Sumi T, Tanaka Y, Tada M, Nishii Y, Hasegawa T, Uchida H, Yamada G, Watanabe A, et al. Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;487:613–8.PubMedPubMedCentralCrossRef Yamaguchi M, Hirai S, Sumi T, Tanaka Y, Tada M, Nishii Y, Hasegawa T, Uchida H, Yamada G, Watanabe A, et al. Angiotensin-converting enzyme 2 is a potential therapeutic target for EGFR-mutant lung adenocarcinoma. Biochem Biophys Res Commun. 2017;487:613–8.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Jiang Y, Chen L, Shen J, Mei X, Yao J, Chen T, Zhou Y. The potential role of abnormal angiotensin-converting enzyme 2 expression correlated with immune infiltration after SARS-CoV-2 infection in the prognosis of breast cancer. Aging. 2021;13:20886–95.PubMedPubMedCentralCrossRef Jiang Y, Chen L, Shen J, Mei X, Yao J, Chen T, Zhou Y. The potential role of abnormal angiotensin-converting enzyme 2 expression correlated with immune infiltration after SARS-CoV-2 infection in the prognosis of breast cancer. Aging. 2021;13:20886–95.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Bhari VK, Kumar D, Kumar S, Mishra R. SARS-CoV-2 cell receptor gene ACE2 -mediated immunomodulation in breast cancer subtypes. Biochem Biophys Rep. 2020;24:100844.PubMedPubMedCentral Bhari VK, Kumar D, Kumar S, Mishra R. SARS-CoV-2 cell receptor gene ACE2 -mediated immunomodulation in breast cancer subtypes. Biochem Biophys Rep. 2020;24:100844.PubMedPubMedCentral
51.
Zurück zum Zitat Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, ME LL. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.PubMedCrossRef Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, ME LL. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.PubMedCrossRef
52.
Zurück zum Zitat Ma H, Kong J, Wang YL, Li JL, Hei NH, Cao XR, Yang JJ, Yan WJ, Liang WJ, Dai HY, Dong B. Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget. 2017;8:24548–63.PubMedPubMedCentralCrossRef Ma H, Kong J, Wang YL, Li JL, Hei NH, Cao XR, Yang JJ, Yan WJ, Liang WJ, Dai HY, Dong B. Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget. 2017;8:24548–63.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Kou YL, Zhang PP, Wang HY, Zhang JB, Tan XS, Huang C, Zhang M. Protective effect of angiotensin converting enzyme 2 (ACE2) against chronic intermittent hypoxia-induced pulmonary oxidative stress injury in rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 2016;47:43–8.PubMed Kou YL, Zhang PP, Wang HY, Zhang JB, Tan XS, Huang C, Zhang M. Protective effect of angiotensin converting enzyme 2 (ACE2) against chronic intermittent hypoxia-induced pulmonary oxidative stress injury in rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 2016;47:43–8.PubMed
54.
Zurück zum Zitat Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 2021;787:108365.PubMedCrossRef Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 2021;787:108365.PubMedCrossRef
55.
Zurück zum Zitat Jiang T, Gao L, Guo J, Lu J, Wang Y, Zhang Y. Suppressing inflammation by inhibiting the NF-kappaB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br J Pharmacol. 2012;167:1520–32.PubMedPubMedCentralCrossRef Jiang T, Gao L, Guo J, Lu J, Wang Y, Zhang Y. Suppressing inflammation by inhibiting the NF-kappaB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br J Pharmacol. 2012;167:1520–32.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.PubMedCrossRef D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813–24.PubMedCrossRef
58.
Zurück zum Zitat Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF-1alpha, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 2020;41:1539–46.PubMedCrossRef Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF-1alpha, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin. 2020;41:1539–46.PubMedCrossRef
60.
Zurück zum Zitat Liu C, Zhao Y, Okwan-Duodu D, Basho R, Cui X. COVID-19 in cancer patients: risk, clinical features, and management. Cancer Biol Med. 2020;17:519–27.PubMedPubMedCentralCrossRef Liu C, Zhao Y, Okwan-Duodu D, Basho R, Cui X. COVID-19 in cancer patients: risk, clinical features, and management. Cancer Biol Med. 2020;17:519–27.PubMedPubMedCentralCrossRef
Metadaten
Titel
Chemotherapy induces ACE2 expression in breast cancer via the ROS-AKT-HIF-1α signaling pathway: a potential prognostic marker for breast cancer patients receiving chemotherapy
verfasst von
Xiaoyan Zuo
Sixin Ren
He Zhang
Jianfei Tian
Ruinan Tian
Baoai Han
Hui Liu
Qian Dong
Zhiyong Wang
Yanfen Cui
Ruifang Niu
Fei Zhang
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03716-w

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.