Skip to main content
Erschienen in: Journal of Medical Systems 3/2012

01.06.2012 | ORIGINAL PAPER

Classification of Benign and Malignant Breast Masses Based on Shape and Texture Features in Sonography Images

verfasst von: Fahimeh Sadat Zakeri, Hamid Behnam, Nasrin Ahmadinejad

Erschienen in: Journal of Medical Systems | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this research was evaluating novel shape and texture feature’ efficiency in classification of benign and malignant breast masses in sonography images. First, mass regions were extracted from the region of interest (ROI) sub-image by implementing a new hybrid segmentation approach based on level set algorithms. Then two left and right side areas of the masses are elicited. After that, six features (Eccentricity_feature, Solidity_feature, DeferenceArea_Hull_Rectangular, DeferenceArea_Mass_Rectangular, Cross-correlation-left and Cross-correlation-right) based on shape, texture and region characteristics of the masses were extracted for further classification. Finally a support vector machine (SVM) classifier was utilized to classify breast masses. The leave-one-case-out protocol was utilized on a database of eighty pathologically-proven breast sonographic images of patients (forty-seven benign cases and thirty-three malignant cases) to evaluate our method. The classification results showed an overall accuracy of 95.00%, sensitivity of 90.91%, specificity of 97.87%, positive predictive value of 96.77%, negative predictive value of 93.88%, and Matthew’s correlation coefficient of 89.71%. The experimental results declare that our proposed method is actually a beneficial tool for the diagnosis of the breast cancer and can provide a second opinion for a physician’s decision or can be used for the medicine training especially when coupled with other modalities.
Literatur
1.
Zurück zum Zitat Bothorel, S., Meunier, B. B., and Muller, S. A., Fuzzy logic based approach for semilogical analysis of microcalcification in mammographic images. Intell. Syst. 12:819–848, 1997.CrossRef Bothorel, S., Meunier, B. B., and Muller, S. A., Fuzzy logic based approach for semilogical analysis of microcalcification in mammographic images. Intell. Syst. 12:819–848, 1997.CrossRef
2.
Zurück zum Zitat Junior, G. B., Paiva, A. C., Silva, A. C., and Muniz de Oliveira, A. C., Classification of breast tissues using Moran’s index and Geary’s coefficient as texture signatures and SVM. Comput. Biol. Med. 39:1063–1072, 2009.CrossRef Junior, G. B., Paiva, A. C., Silva, A. C., and Muniz de Oliveira, A. C., Classification of breast tissues using Moran’s index and Geary’s coefficient as texture signatures and SVM. Comput. Biol. Med. 39:1063–1072, 2009.CrossRef
3.
Zurück zum Zitat Joo, S., Yang, Y. S., Moon, W. K., et al., Computer- aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imaging 23:1292–1300, 2004.CrossRef Joo, S., Yang, Y. S., Moon, W. K., et al., Computer- aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imaging 23:1292–1300, 2004.CrossRef
4.
Zurück zum Zitat Bassett, L. W., Liu, T. H., Giuliano, A. E., et al., The prevalence of carcinoma in palpable vs. impalpable, mammographically detected lesions. AJR. 157:21–24, 1991. Bassett, L. W., Liu, T. H., Giuliano, A. E., et al., The prevalence of carcinoma in palpable vs. impalpable, mammographically detected lesions. AJR. 157:21–24, 1991.
5.
Zurück zum Zitat Chen, D. R., Chang, R. F., Kuo, W. J., et al., Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med. Biol. 28:1301–1310, 2002.CrossRef Chen, D. R., Chang, R. F., Kuo, W. J., et al., Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med. Biol. 28:1301–1310, 2002.CrossRef
6.
Zurück zum Zitat Chang, R. F., Wu, W. J., Moon, W. K., et al., Support vector machines for diagnosis of breast tumors on US images. Acad. Radiol. 10:189–197, 2003.CrossRef Chang, R. F., Wu, W. J., Moon, W. K., et al., Support vector machines for diagnosis of breast tumors on US images. Acad. Radiol. 10:189–197, 2003.CrossRef
7.
Zurück zum Zitat Chang, R. F., Wu, W. J., Moon, W. K., et al., Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res. Treat. 89:179–185, 2005.CrossRef Chang, R. F., Wu, W. J., Moon, W. K., et al., Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res. Treat. 89:179–185, 2005.CrossRef
8.
Zurück zum Zitat Kuo, W. J., Chang, R. F., Moon, W. K., et al., Computer-aided diagnosis of breast tumors with different US systems. Acad. Radiol. 9:793–799, 2002.CrossRef Kuo, W. J., Chang, R. F., Moon, W. K., et al., Computer-aided diagnosis of breast tumors with different US systems. Acad. Radiol. 9:793–799, 2002.CrossRef
9.
Zurück zum Zitat Kuo, W. J., Chang, R. F., Cheng, C. L., et al., Retrieval technique for the diagnosis of solid breast tumors on sonogram. Ultrasound Med. Biol. 28:903–909, 2002.CrossRef Kuo, W. J., Chang, R. F., Cheng, C. L., et al., Retrieval technique for the diagnosis of solid breast tumors on sonogram. Ultrasound Med. Biol. 28:903–909, 2002.CrossRef
10.
Zurück zum Zitat Chen, C. M., Chou, Y. H., Han, K. C., et al., Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 226(2):504–514, 2003.CrossRef Chen, C. M., Chou, Y. H., Han, K. C., et al., Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 226(2):504–514, 2003.CrossRef
11.
Zurück zum Zitat Chen, D. R., Chang, R. F., and Huang, Y. L., Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Med. Biol. 26:405–411, 2000.CrossRef Chen, D. R., Chang, R. F., and Huang, Y. L., Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Med. Biol. 26:405–411, 2000.CrossRef
12.
Zurück zum Zitat Chen, D. R., Chang, R. F., Huang, Y. L., et al., Texture analysis of breast tumors on sonograms. Semin. Ultrasound CT MRI 21:308–316, 2000.CrossRef Chen, D. R., Chang, R. F., Huang, Y. L., et al., Texture analysis of breast tumors on sonograms. Semin. Ultrasound CT MRI 21:308–316, 2000.CrossRef
13.
Zurück zum Zitat Horsch, K., Giger, M. L., Venta, L. A., and Vyborny, C. J., Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29:157–164, 2002.CrossRef Horsch, K., Giger, M. L., Venta, L. A., and Vyborny, C. J., Computerized diagnosis of breast lesions on ultrasound. Med. Phys. 29:157–164, 2002.CrossRef
14.
Zurück zum Zitat Mogatadakala, K., Donohue, K., Piccoli, C., and Forsberg, F., Detection of breast lesion regions in ultrasound images using wavelets and order statistics. Med. Phys. 33(4):840–849, 2006.CrossRef Mogatadakala, K., Donohue, K., Piccoli, C., and Forsberg, F., Detection of breast lesion regions in ultrasound images using wavelets and order statistics. Med. Phys. 33(4):840–849, 2006.CrossRef
15.
Zurück zum Zitat Shankar, P., Piccoli, C., Reid, J., Forsberg, J., and Goldberg, B., Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Phys. Med. Biol. 50(10):2241–2248, 2005.CrossRef Shankar, P., Piccoli, C., Reid, J., Forsberg, J., and Goldberg, B., Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Phys. Med. Biol. 50(10):2241–2248, 2005.CrossRef
16.
Zurück zum Zitat Behnam, H., Zakeri, F. S., and Ahmadinejad, N., Breast mass classification on sonographic images on the basis of shape analysis. J. Med. Ultrason. 37(4):181–186, 2010.CrossRef Behnam, H., Zakeri, F. S., and Ahmadinejad, N., Breast mass classification on sonographic images on the basis of shape analysis. J. Med. Ultrason. 37(4):181–186, 2010.CrossRef
17.
Zurück zum Zitat Liua, B., Cheng, H. D., Huang, J., Tian, J., Tang, X., and Liu, J., Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recognit. 43:280–298, 2010.CrossRef Liua, B., Cheng, H. D., Huang, J., Tian, J., Tang, X., and Liu, J., Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recognit. 43:280–298, 2010.CrossRef
18.
Zurück zum Zitat Shi, X. Mass detection and classification in breast ultrasound images. Thesis of doctorate degree in computer science. Utah State University, Logan, Utah, 2006. Shi, X. Mass detection and classification in breast ultrasound images. Thesis of doctorate degree in computer science. Utah State University, Logan, Utah, 2006.
19.
Zurück zum Zitat Chen, S., Cheung, Y., Su, C., Chen, M., Hwang, T., and Hsueh, S., Analysis of sonographic features for the differentiation of benign and malignant breast tumors of different sizes. Ultrasound Med. Biol. 23(2):188–193, 2004. Chen, S., Cheung, Y., Su, C., Chen, M., Hwang, T., and Hsueh, S., Analysis of sonographic features for the differentiation of benign and malignant breast tumors of different sizes. Ultrasound Med. Biol. 23(2):188–193, 2004.
20.
Zurück zum Zitat Tian, J. W., Sun, L. T., Guo, Y. H., Cheng, H. D., and Zhang, Y. T., Computerized-aid diagnosis of breast mass using ultrasound image. Med. Phys. 34:3158–3164, 2007.CrossRef Tian, J. W., Sun, L. T., Guo, Y. H., Cheng, H. D., and Zhang, Y. T., Computerized-aid diagnosis of breast mass using ultrasound image. Med. Phys. 34:3158–3164, 2007.CrossRef
21.
Zurück zum Zitat Segyeong, J., Yoon, S. Y., Woo, K. M., and Hee, C. K., Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imag. 23(10):1292–1300, 2004.CrossRef Segyeong, J., Yoon, S. Y., Woo, K. M., and Hee, C. K., Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features. IEEE Trans. Med. Imag. 23(10):1292–1300, 2004.CrossRef
22.
Zurück zum Zitat Cho, N., Moon, W., Cha, J., Kim, S., Han, B., Kim, E., Kim, M., Chung, S., Choi, H., and Im, J., Differentiating benign from malignant solid breast masses: Comparison of two-dimensional and three-dimensional US. Radiology 240(1):26–32, 2006.CrossRef Cho, N., Moon, W., Cha, J., Kim, S., Han, B., Kim, E., Kim, M., Chung, S., Choi, H., and Im, J., Differentiating benign from malignant solid breast masses: Comparison of two-dimensional and three-dimensional US. Radiology 240(1):26–32, 2006.CrossRef
23.
Zurück zum Zitat Wei, L., Yang, Y., and Nishikawa, R. M., Microcalcification classification assisted by content-based image retrieval for breast cancer diagnosis. Pattern Recognit. 42:1126–1132, 2009.CrossRef Wei, L., Yang, Y., and Nishikawa, R. M., Microcalcification classification assisted by content-based image retrieval for breast cancer diagnosis. Pattern Recognit. 42:1126–1132, 2009.CrossRef
24.
Zurück zum Zitat Domínguez, A. R., and Nandi, A. K., Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit. 42:1138–1148, 2009.CrossRef Domínguez, A. R., and Nandi, A. K., Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit. 42:1138–1148, 2009.CrossRef
25.
Zurück zum Zitat Paragios, N., Mellina-Gottardo, O., and Ramesh, V., Gradient vector flow fast geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 26:402–407, 2004.CrossRef Paragios, N., Mellina-Gottardo, O., and Ramesh, V., Gradient vector flow fast geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 26:402–407, 2004.CrossRef
26.
Zurück zum Zitat Corsi, C., Saracino, G., Sarti, A., and Lamberti, C., Left ventricular volume estimation for real-time three-dimensional echocardiography. IEEE Trans. Med. Imag. 21:1202–1208, 2002.CrossRef Corsi, C., Saracino, G., Sarti, A., and Lamberti, C., Left ventricular volume estimation for real-time three-dimensional echocardiography. IEEE Trans. Med. Imag. 21:1202–1208, 2002.CrossRef
27.
Zurück zum Zitat Yu, H., A 3D multi view freehand ultrasound reconstruction system using volumetric registration and geometric level let segmentation. Thesis for Doctorate, University of New Mexico, December, 2006. Yu, H., A 3D multi view freehand ultrasound reconstruction system using volumetric registration and geometric level let segmentation. Thesis for Doctorate, University of New Mexico, December, 2006.
28.
Zurück zum Zitat Zakeri, F. S., Behnam, H., and Ahmadinejad, N., Breast mass diagnosis in sonographic images by using features based on mass contour and shape. 17th Iranian Conference on Electrical Engineering, Tehran, Iran, 2009. Zakeri, F. S., Behnam, H., and Ahmadinejad, N., Breast mass diagnosis in sonographic images by using features based on mass contour and shape. 17th Iranian Conference on Electrical Engineering, Tehran, Iran, 2009.
29.
Zurück zum Zitat Li, B., and Acton, S. T., Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16:2096–2106, 2007.MathSciNetCrossRef Li, B., and Acton, S. T., Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16:2096–2106, 2007.MathSciNetCrossRef
30.
Zurück zum Zitat Cheng, H. D., Shan, J., Ju, W., Guo, Y., and Zhang, L., Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit. 43:299–317, 2010.MATHCrossRef Cheng, H. D., Shan, J., Ju, W., Guo, Y., and Zhang, L., Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognit. 43:299–317, 2010.MATHCrossRef
31.
Zurück zum Zitat Subashini, T. S., Ramalingam, V., and Palanivel, S., Automated assessment of breast tissue density in digital mammograms. Comput. Vis. Image Underst. 114:33–43, 2010.CrossRef Subashini, T. S., Ramalingam, V., and Palanivel, S., Automated assessment of breast tissue density in digital mammograms. Comput. Vis. Image Underst. 114:33–43, 2010.CrossRef
32.
Zurück zum Zitat Vapnik, V., Statistical learning theory. Wiley: New York, 1998.MATH Vapnik, V., Statistical learning theory. Wiley: New York, 1998.MATH
33.
Zurück zum Zitat Hastie, T., Tibshirani, R., and Friedman, J., The elements of statistical learning. Data mining, inference, and prediction. Springer- Verlag: Berlin, 2001.MATH Hastie, T., Tibshirani, R., and Friedman, J., The elements of statistical learning. Data mining, inference, and prediction. Springer- Verlag: Berlin, 2001.MATH
Metadaten
Titel
Classification of Benign and Malignant Breast Masses Based on Shape and Texture Features in Sonography Images
verfasst von
Fahimeh Sadat Zakeri
Hamid Behnam
Nasrin Ahmadinejad
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 3/2012
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9624-7

Weitere Artikel der Ausgabe 3/2012

Journal of Medical Systems 3/2012 Zur Ausgabe