Skip to main content
Erschienen in: Lasers in Medical Science 6/2022

28.03.2022 | Original Article

Classification of gastric cancerous tissues by a residual network based on optical coherence tomography images

verfasst von: Site Luo, Yuchen Ran, Lifei Liu, Huihui Huang, Xiaoying Tang, Yingwei Fan

Erschienen in: Lasers in Medical Science | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Optical coherence tomography (OCT) is a noninvasive, radiation-free, and high-resolution imaging technology. The intraoperative classification of normal and cancerous tissue is critical for surgeons to guide surgical operations. Accurate classification of gastric cancerous OCT images is beneficial to improve the effect of surgical treatment based on the deep learning method. The OCT system was used to collect images of cancerous tissues removed from patients. An intelligent classification method of gastric cancerous tissues based on the residual network is proposed in this study and optimized with the ResNet18 model. Four residual blocks are used to reset the model structure of ResNet18 and reduce the number of network layers to identify cancerous tissues. The model performance of different residual networks is evaluated by accuracy, precision, recall, specificity, F1 value, ROC curve, and model parameters. The classification accuracies of the proposed method and ResNet18 both reach 99.90%. Also, the model parameters of the proposed method are 44% of ResNet18, which occupies fewer system resources and is more efficient. In this study, the proposed deep learning method was used to automatically recognize OCT images of gastric cancerous tissue. This artificial intelligence method could help promote the clinical application of gastric cancerous tissue classification in the future.
Literatur
1.
Zurück zum Zitat Leitgeb RA (2019) En face optical coherence tomography: a technology review [Invited]. Biomed Opt Express 10(5):2177–2201CrossRef Leitgeb RA (2019) En face optical coherence tomography: a technology review [Invited]. Biomed Opt Express 10(5):2177–2201CrossRef
2.
Zurück zum Zitat Wieser W, Klein T, Adler DC et al (2012) Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed Opt Express 3(10):2647–2657CrossRef Wieser W, Klein T, Adler DC et al (2012) Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed Opt Express 3(10):2647–2657CrossRef
3.
Zurück zum Zitat Bogunovic H, Venhuizen F, Klimscha S et al (2019) RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imaging 38(8):1858–1874CrossRef Bogunovic H, Venhuizen F, Klimscha S et al (2019) RETOUCH: the retinal OCT fluid detection and segmentation benchmark and challenge. IEEE Trans Med Imaging 38(8):1858–1874CrossRef
4.
Zurück zum Zitat Pekala M, Joshi N, Liu T et al (2019) Deep learning based retinal OCT segmentation. Computers in biology and medicine 114:103445CrossRef Pekala M, Joshi N, Liu T et al (2019) Deep learning based retinal OCT segmentation. Computers in biology and medicine 114:103445CrossRef
5.
Zurück zum Zitat Takusagawa HL, Hoguet A, Junk AK et al (2019) Swept-source optical coherence tomography for evaluating the lamina cribrosa: a report by the American academy of ophthalmology. Ophthalmology 126(9):1315–1323CrossRef Takusagawa HL, Hoguet A, Junk AK et al (2019) Swept-source optical coherence tomography for evaluating the lamina cribrosa: a report by the American academy of ophthalmology. Ophthalmology 126(9):1315–1323CrossRef
6.
Zurück zum Zitat Azimipour M, Migacz JV, Zawadzki RJ et al (2019) Functional retinal imaging using adaptive optics swept-source OCT at 16 MHz. Optica 6(3):300–303CrossRef Azimipour M, Migacz JV, Zawadzki RJ et al (2019) Functional retinal imaging using adaptive optics swept-source OCT at 16 MHz. Optica 6(3):300–303CrossRef
7.
Zurück zum Zitat Rajabi-Estarabadi A, Bittar JM, Zheng C et al (2019) Optical coherence tomography imaging of melanoma skin cancer. Lasers Med Sci 34(2):411–420CrossRef Rajabi-Estarabadi A, Bittar JM, Zheng C et al (2019) Optical coherence tomography imaging of melanoma skin cancer. Lasers Med Sci 34(2):411–420CrossRef
8.
Zurück zum Zitat Mazurenka M, Behrendt L, Meinhardt-Wollweber M et al (2017) Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening. Review of scientific instruments 88(10):105103CrossRef Mazurenka M, Behrendt L, Meinhardt-Wollweber M et al (2017) Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening. Review of scientific instruments 88(10):105103CrossRef
9.
Zurück zum Zitat Yuan W, Kut C, Liang W et al (2017) Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection. Sci Rep 7:44909CrossRef Yuan W, Kut C, Liang W et al (2017) Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection. Sci Rep 7:44909CrossRef
10.
Zurück zum Zitat Fan Y, Xia Y, Zhang X et al (2018) Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Biosci Trends 12(1):12–23CrossRef Fan Y, Xia Y, Zhang X et al (2018) Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Biosci Trends 12(1):12–23CrossRef
11.
Zurück zum Zitat Yang Z, Shang J, Liu C et al (2020) Identification of oral cancer in OCT images based on an optical attenuation model. Lasers Med Sci 35(9):1999–2007CrossRef Yang Z, Shang J, Liu C et al (2020) Identification of oral cancer in OCT images based on an optical attenuation model. Lasers Med Sci 35(9):1999–2007CrossRef
12.
Zurück zum Zitat Yao X, Gan Y, Chang E et al (2017) Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT. Lasers Surg Med 49(3):258–269CrossRef Yao X, Gan Y, Chang E et al (2017) Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT. Lasers Surg Med 49(3):258–269CrossRef
13.
Zurück zum Zitat Gubarkova EV, Sovetsky AA, Zaitsev VY et al (2019) OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes. Biomed Opt Express 10(5):2244–2263CrossRef Gubarkova EV, Sovetsky AA, Zaitsev VY et al (2019) OCT-elastography-based optical biopsy for breast cancer delineation and express assessment of morphological/molecular subtypes. Biomed Opt Express 10(5):2244–2263CrossRef
14.
Zurück zum Zitat Dias AR, Azevedo BC, Alban LBV et al (2017) Gastric neuroendocrine tumor: review and update. Arquivos Brasileiros De Cirurgia Digestiva Abcd 30(2):150–154CrossRef Dias AR, Azevedo BC, Alban LBV et al (2017) Gastric neuroendocrine tumor: review and update. Arquivos Brasileiros De Cirurgia Digestiva Abcd 30(2):150–154CrossRef
15.
Zurück zum Zitat Wang J, Yang X, Boppart SA (2017) Review of optical coherence tomography in oncology. Journal of biomedical optics 22(12):121711PubMedCentral Wang J, Yang X, Boppart SA (2017) Review of optical coherence tomography in oncology. Journal of biomedical optics 22(12):121711PubMedCentral
16.
Zurück zum Zitat Ferlay J, Colombet M, Soerjomataram I, et al. (2021) Cancer statistics for the year 2020: an overview. International Journal of Cancer Ferlay J, Colombet M, Soerjomataram I, et al. (2021) Cancer statistics for the year 2020: an overview. International Journal of Cancer
17.
Zurück zum Zitat Kim J, Kim SG, Chung H et al (2018) Clinical efficacy of endoscopic ultrasonography for decision of treatment strategy of gastric cancer. Surg Endosc 32(9):3789–3797CrossRef Kim J, Kim SG, Chung H et al (2018) Clinical efficacy of endoscopic ultrasonography for decision of treatment strategy of gastric cancer. Surg Endosc 32(9):3789–3797CrossRef
18.
Zurück zum Zitat Borggreve AS, Goense L, Brenkman H et al (2019) Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br J Radiol 92(1097):20181044CrossRef Borggreve AS, Goense L, Brenkman H et al (2019) Imaging strategies in the management of gastric cancer: current role and future potential of MRI. Br J Radiol 92(1097):20181044CrossRef
19.
Zurück zum Zitat Lee J S, Kim Y S, Kim E Y, et al. (2018) Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. Plos One 13(8): e0202700. Lee J S, Kim Y S, Kim E Y, et al. (2018) Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. Plos One 13(8): e0202700.
20.
Zurück zum Zitat Liang L, Cui Z, Lu C et al (2017) Damage to the macula associated with LED-derived blue laser exposure: a case report. BMC Ophthalmol 17(1):49CrossRef Liang L, Cui Z, Lu C et al (2017) Damage to the macula associated with LED-derived blue laser exposure: a case report. BMC Ophthalmol 17(1):49CrossRef
21.
Zurück zum Zitat Zawadzki RJ, Zhang P, Zam A et al (2015) Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomed Opt Express 6(6):2191–2210CrossRef Zawadzki RJ, Zhang P, Zam A et al (2015) Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomed Opt Express 6(6):2191–2210CrossRef
22.
Zurück zum Zitat Gibson EA, Masihzadeh O, Lei TC et al. (2011) Multiphoton microscopy for ophthalmic imaging. Journal of ophthalmology: 870879. Gibson EA, Masihzadeh O, Lei TC et al. (2011) Multiphoton microscopy for ophthalmic imaging. Journal of ophthalmology: 870879.
23.
Zurück zum Zitat Xiong H, Zeng C, Guo Z et al (2008) Potential ability of hematoporphyrin to enhance an optical coherence tomographic image of gastric cancer in vivo in mice. Phys Med Biol 53(23):6767–6775CrossRef Xiong H, Zeng C, Guo Z et al (2008) Potential ability of hematoporphyrin to enhance an optical coherence tomographic image of gastric cancer in vivo in mice. Phys Med Biol 53(23):6767–6775CrossRef
24.
Zurück zum Zitat Osiac E, Saftoiu A, Dan IG et al (2011) Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract. World J Gastroenterol 17(1):15–20CrossRef Osiac E, Saftoiu A, Dan IG et al (2011) Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract. World J Gastroenterol 17(1):15–20CrossRef
25.
Zurück zum Zitat Fan Y, Zhang B, Chang W, et al. (2017) A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment// Int J Comput Assist Radiol Surg. Int J Comput Assist Radiol Surg Fan Y, Zhang B, Chang W, et al. (2017) A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment// Int J Comput Assist Radiol Surg. Int J Comput Assist Radiol Surg
26.
Zurück zum Zitat Garcia-Allende PB, Amygdalos I, Dhanapala H et al (2011) Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues. Biomed Opt Express 2(10):2821–2836CrossRef Garcia-Allende PB, Amygdalos I, Dhanapala H et al (2011) Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues. Biomed Opt Express 2(10):2821–2836CrossRef
27.
Zurück zum Zitat Rong Y, Xiang D, Zhu W et al (2019) Surrogate-assisted retinal OCT image classification based on convolutional neural networks. IEEE J Biomed Health Inform 23(1):253–263CrossRef Rong Y, Xiang D, Zhu W et al (2019) Surrogate-assisted retinal OCT image classification based on convolutional neural networks. IEEE J Biomed Health Inform 23(1):253–263CrossRef
28.
Zurück zum Zitat Fang L, Wang C, Li S et al (2019) Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans Med Imaging 38(8):1959–1970CrossRef Fang L, Wang C, Li S et al (2019) Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification. IEEE Trans Med Imaging 38(8):1959–1970CrossRef
29.
Zurück zum Zitat Apinyawasisuk S, Mccannel T, Arnold AC (2017) Clinical and spectral-domain optical coherence tomography appearance of optic disc melanocytoma: a new classification and differentiation from pigmented choroidal lesions. Ocular oncology & pathology: 142. Apinyawasisuk S, Mccannel T, Arnold AC (2017) Clinical and spectral-domain optical coherence tomography appearance of optic disc melanocytoma: a new classification and differentiation from pigmented choroidal lesions. Ocular oncology & pathology: 142.
30.
Zurück zum Zitat Pouya J, Tanja A, Giota G et al (2018) Feasibility of using optical coherence tomography to detect radiation-induced fibrosis and residual cancer extent after neoadjuvant chemo-radiation therapy: an ex vivo study. Biomed Opt Express 9(9):4196–4216CrossRef Pouya J, Tanja A, Giota G et al (2018) Feasibility of using optical coherence tomography to detect radiation-induced fibrosis and residual cancer extent after neoadjuvant chemo-radiation therapy: an ex vivo study. Biomed Opt Express 9(9):4196–4216CrossRef
31.
Zurück zum Zitat Abdolmanafi A, Duong L, Dahdah N et al (2017) Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express 8(2):1203–1220CrossRef Abdolmanafi A, Duong L, Dahdah N et al (2017) Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomed Opt Express 8(2):1203–1220CrossRef
32.
Zurück zum Zitat Luo S, Fan Y, Chang W et al (2019) Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images. Laser physics letters 16:095602CrossRef Luo S, Fan Y, Chang W et al (2019) Classification of human stomach cancer using morphological feature analysis from optical coherence tomography images. Laser physics letters 16:095602CrossRef
33.
Zurück zum Zitat Shah M, Ledo AR, Rittscher J (2020) Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning. Acta Ophthalmol 98(6):715–721CrossRef Shah M, Ledo AR, Rittscher J (2020) Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning. Acta Ophthalmol 98(6):715–721CrossRef
34.
Zurück zum Zitat Salehi H S, Barchini M, Chen Q, et al. (2021) Toward development of automated grading system for carious lesions classification using deep learning and OCT imaging. Medical imaging 2021: biomedical applications in molecular, structural, and functional imaging Salehi H S, Barchini M, Chen Q, et al. (2021) Toward development of automated grading system for carious lesions classification using deep learning and OCT imaging. Medical imaging 2021: biomedical applications in molecular, structural, and functional imaging
35.
Zurück zum Zitat He K, Zhang X, Ren S, et al. (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition: 770–778. He K, Zhang X, Ren S, et al. (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition: 770–778.
36.
Zurück zum Zitat He K, Zhang X, Ren S, et al. (2016) Identity mappings in deep residual networks. European conference on computer vision. Springer, Cham, 630–645. He K, Zhang X, Ren S, et al. (2016) Identity mappings in deep residual networks. European conference on computer vision. Springer, Cham, 630–645.
37.
Zurück zum Zitat Wu J, Hu W, Y Wen, et al. (2020) Skin lesion classification using densely connected convolutional networks with attention residual learning. Sensors, 20(24): 7080. Wu J, Hu W, Y Wen, et al. (2020) Skin lesion classification using densely connected convolutional networks with attention residual learning. Sensors, 20(24): 7080.
38.
Zurück zum Zitat Gan M, Wang C (2020) Dual-stage U-shape convolutional network for esophageal tissue segmentation in OCT images. IEEE Access 8:215020–215032CrossRef Gan M, Wang C (2020) Dual-stage U-shape convolutional network for esophageal tissue segmentation in OCT images. IEEE Access 8:215020–215032CrossRef
Metadaten
Titel
Classification of gastric cancerous tissues by a residual network based on optical coherence tomography images
verfasst von
Site Luo
Yuchen Ran
Lifei Liu
Huihui Huang
Xiaoying Tang
Yingwei Fan
Publikationsdatum
28.03.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 6/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03546-8

Weitere Artikel der Ausgabe 6/2022

Lasers in Medical Science 6/2022 Zur Ausgabe