Skip to main content
Erschienen in: Journal of Gastroenterology 4/2018

Open Access 19.02.2018 | Review

Clinical and pathophysiological aspects of type 1 autoimmune pancreatitis

verfasst von: Kazushige Uchida, Kazuichi Okazaki

Erschienen in: Journal of Gastroenterology | Ausgabe 4/2018

Abstract

In 1995, Yoshida and colleagues proposed the concept of “autoimmune pancreatitis” (AIP), which has recently been recognized as a new pancreatic inflammatory disease. Recent studies have suggested the existence of two subtypes of AIP: type 1, which involves immunoglobulin G4 (IgG4) and is the pancreatic manifestation of IgG4-related disease (IgG4-RD); and type 2, which is characterized by granulocytic epithelial lesions. Type 2 AIP is thought to be rare in Japan. Type 1 AIP is characterized by increased serum IgG4 concentrations, lymphoplasmacytic infiltrations, storiform fibrosis, and obliterative phlebitis. However, although type 1 AIP has become increasingly recognized, many clinical and basic issues remain to be solved. This review provides an overview of the recent clinical and basic knowledge of type 1 AIP.
Abkürzungen
AIP
Autoimmune pancreatitis
IgG4
Immunoglobulin G4
LPSP
Lymphoplasmacytic sclerosing pancreatitis
IDCP
Idiopathic duct-centric pancreatitis
GEL
Granulocytic epithelial lesion
ERCP
Endoscopic retrograde cholangiopancreatography
EUS-FNA
Endoscopic ultrasound-guided fine needle aspiration
TLR
Toll-like receptor
NOD
Nucleotide-binding oligomerization domain
ICOS
Inducible costimulator
Tregs
Regulatory T-cells
Bregs
Regulatory B-cells

Introduction

Autoimmune pancreatitis (AIP) is a recently recognized new pancreatic inflammatory disease that is also recognized as a pancreatic manifestation of immunoglobulin-related disease (IgG4-RD). Recent research has described the clinical and pathophysiological features of type 1 AIP, but some details remain unclear. In this review, we discuss recent advances in type 1 AIP.

History of AIP

A case of chronic pancreatitis with hypergammaglobulinemia and histologically inflammatory fibrosis was reported in 1961 by Sarles et al. [1]. This case report is thought to be the first report of AIP. Thirty years later, Kawaguchi et al. described histopathological findings characterized by lymphoplasmacytic infiltration, storiform fibrosis, and obliterative phlebitis as lymphoplasmacytic sclerosing pancreatitis (LPSP). The definition of LPSP provides the pathological basis of the disease that is now called type 1 AIP [2]. In 1995, Yoshida et al. proposed the concept of AIP [3]. In 2001, Hamano et al. reported that elevated serum immunoglobulin G4 (IgG4) levels were highly specific and sensitive for the diagnosis of AIP [4]. Thereafter, many investigators have reported on the clinical course and features of AIP, and it is now accepted as a new clinical entity of pancreatic inflammatory disorder [58]. In 2003, Kamisawa et al. suggested that AIP is a systemic disease that was an “IgG4-related autoimmune disease.” This suggestion was based on their findings that the pancreas and other involved organs showed abundant infiltration of IgG4-positive plasma cells and fibrosis [9]. Two other groups from Japan have also proposed that the possibility of the systemic disease involves IgG4. Yamamoto et al. proposed the term “IgG4-related plasmacytic syndrome” based on Mikulicz’s disease [10, 11]. Mikulicz’s disease was first reported in a case report by Johan Freisherr von Mikulicz-Radecki in 1892 [12]. This case report was discussed about 70 years ago from Sarle’s case report of chronic pancreatitis with hypergammaglobulinemia. In 2008, Masaki et al. proposed the term “IgG4-multiorgan lymphoproliferative syndrome” based on the presence of a lymphoproliferative disorder [13]. Although several concepts have been proposed, the Research Program for Intractable Disease of the Japan Ministry of Health, Labor, and Welfare unified these concepts in 2011 under the term as “IgG4-related disease,” which included type 1 AIP, IgG4-related sclerosing cholangitis, and Mikulicz’s disease, among others [14]. The term of IgG4-RD was also accepted at the first international symposium on IgG4-RD [15] (Table 1).
Table 1
History of autoimmune pancreatitis and IgG4-related disease
Year Name
Subjects
Refs.
1892 Mikulicz J
Mikulicz’s disease
[12]
1961 Sarles H et al.
Hypergammaglobulinemia in chronic pancreatitis
[1]
1991 Kawaguchi K et al.
Lymphoplasmacytic sclerosing pancreatitis
[2]
1995 Yoshida K et al.
Autoimmune pancreatitis
[3]
2001 Hamano H et al.
High serum IgG4 levels in sclerosing pancreatitis
[4]
2002 JPS
Diagnostic criteria for autoimmune pancreatitis
[21]
2003 Notohara K et al.
Idiopathic duct-centric pancreatitis
[16]
2003 Kamisawa T et al.
IgG4-associated autoimmune disease
[9]
2006 Yamamoto M et al.
IgG4-related plasmacytic syndrome
[10, 11]
2008 Masaki Y et al.
IgG4-multiorgan lymphoproliferative syndrome
[13]
2011 Shimosegawa T et al.
International Consensus Diagnostic Criteria for AIP
[18]
2011 Umehara H, et al.
IgG4-related disease
[14]
2011 Stone J
1st International Symposium on IgG4-RD
[15]
2012 JPS and RCIDP
Clinical diagnostic criteria of AIP 2011
[19]
JPS Japan Pancreas Society, RIIDP Research Committee of Intractable Diseases of the Pancreas
In terms of AIP, there have been reports of another unique histological pattern in the resected pancreata of patients with chronic mass-forming non-alcoholic pancreatitis with epithelial destruction by granulocytes (GEL) in Western countries [16, 17]. This histological pattern, which includes neutrophilic infiltration within the lumen and epithelium of the interlobular ducts, has been reported as idiopathic duct-centric pancreatitis (IDCP) by Notohara et al. [16]. Another name is AIP with granulocyte epithelial lesions (AIP with GEL) [17]. In 2011, the International Consensus Diagnostic Criteria for Autoimmune Pancreatitis (ICDC) proposed the classification of AIP into type 1 AIP (LPSP) and type 2 AIP (IDCP) [18]. In Japan, the clinical diagnostic criteria of AIP 2011 were proposed by the Japan Pancreas Society (JPS) and the Research Committee of Intractable Diseases of the Pancreas. The JPS 2011 is based on the ICDC and a simplified checklist of items for diagnose of type 1 AIP [19], because most Japanese AIP cases are type 1 AIP [20] (Table 2).
Table 2
Characteristics of type1 and type2 autoimmune pancreatitis
https://static-content.springer.com/image/art%3A10.1007%2Fs00535-018-1440-8/MediaObjects/535_2018_1440_Tab2_HTML.gif
LPSP lymphoplasmacytic sclerosing pancreatitis, IDCP idiopathic duct-centric pancreatitis, OOI other organ involvement

Diagnosis of type 1 AIP

In 2002, the JPS first proposed the diagnostic criteria for AIP, which consist of three types of findings (i) image findings, such as irregular narrowing of the main pancreatic duct (MPD) (greater than one-third of the entire MPD) and pancreatic swelling; (ii) serological findings showing hypergammaglobulinemia (> 2 g/dL), elevation of serum IgG (> 1800 mg/dL), or autoantibodies; and (iii) characteristic pathological findings, including lymphoplasmacytic infiltration and fibrosis [21]. After the revision of the Japanese diagnostic criteria and the proposal of several new diagnostic criteria, we currently use two major sets of diagnostic criteria in Japan: ICDC as described above, and the clinical diagnostic criteria of AIP 2011 (JPS 2011), which were proposed by the JPS and the Research Committee of Intractable Diseases of the Pancreas supported by the Japanese Ministry of Health, Labor, and Welfare [19]. The ICDC correspond to the diagnostic methods of each country: and both type 1 and type 2 AIP can be diagnosed. For example, pancreatograms acquired using endoscopic retrograde cholangiopancreatography (ERCP) have traditionally been important in the diagnosis of AIP in Japan. In contrast, in Western countries, ERCP is not generally used for the diagnosis of AIP. In ICDC, type 1 AIP can be diagnosed by assessing a combination of five primary cardinal features: (i) imaging features of (a) pancreatic parenchyma [computed tomography (CT) or magnetic resonance imaging (MRI)] and (b) pancreatic duct [ERCP or magnetic resonance cholangiopancreatography (MRCP)]; (ii) serology (IgG4); (iii) other organ involvement; (iv) histopathology of the pancreas; and (v) response to steroid therapy. Furthermore, these cardinal features (i–iv) are divided into level 1 and level 2. On the other hand, the diagnosis of type 2 AIP is made by assessing a combination of four of the primary cardinal features from type 1, excluding serology (IgG4): (i) imaging features of (a) pancreatic parenchyma (CT/MRI) and (b) pancreatic duct (ERCP or MRCP); (ii) ulcerative colitis as other organ involvement; (iii) histopathology of the pancreas; and (iv) response to steroid therapy. Each criterion, except for steroid responsiveness, is classified as either level 1 or level 2 collateral criteria in a similar manner as used for type 1 AIP. Thus, many factors lead to the diagnosis in ICDC, which may have a complex presentation to a general gastroenterologist. Therefore, the proposal of JPS 2011 is based on the ICDC and a simplified checklist of items for diagnosis of type 1 AIP. The main characteristics of the JPS2011 are as follows: (i) in diffuse type type 1 AIP, ERCP is not essential; but in segmental/focal-type type 1 AIP, ERCP is still essential; (ii) serological findings in IgG4; (iii) other organ involvement (sclerosing cholangitis, sclerosing dacryoadenitis/sialoadenitis, retroperitoneal fibrosis) included clinically or histologically in diagnostic lists; (iv) resected pancreata can be used for diagnosis; and (v) a steroid trial is added as an optional item.
The accuracy of the existing diagnostic criteria has been investigated; the ICDC was found to be the most accurate among the available diagnostic criteria [22], and the sensitivities of the ICDC and JPS 2011 were 95.1, and 86.9%, respectively. The JPS 2011 is a set of diagnostic criteria for type 1 AIP. However, type 2 AIP also can be picked up as a possible diagnosis. The JPS 2011 requires ERP for the segmental/focal type of disease, but not for the typical diffuse type of AIP. A pancreatogram by ERP is useful for diagnosis [22, 23], but it has been reported that post-ERCP pancreatitis occurred in 1.1% of the patients in Japan [24].
The use of endoscopic ultrasound-fine-needle aspiration (EUS-FNA) procedures has been increasing and may eventually become common in Japan. However, two possible problems may arise with the spread of EUS-FNA due to the handling of small materials: IgG4-positive cells are detected in pancreatic cancer, and neutrophils infiltrate in the pancreas with type 1 AIP. There have been several recent reports of IgG4-positive cells associated with pancreatic ductal adenocarcinoma [2527]. According to the comprehensive diagnostic criteria of IgG4-RD, Fukui et al. reported IgG4-positive cells in pancreatic ductal adenocarcinoma. The ratio of IgG4/IgG was > 40% in 43, 29, and 14% of the main cancer lesions, a non-cancerous lesion around the cancer, and an obstructive pancreatitis lesion, respectively [27]. In the comprehensive diagnostic criteria of IgG4-RD [14], there are two histopathological items: > 40% of IgG-positive plasma cells and > 10 IgG4-positive cells per high powered field (hpf) in samples. In this report, 89% of type 1 AIP cases showed an IgG4/IgG ratio > 40% and > 10 IgG4-positive cells per hpf. In 5% of pancreatic cancer cases, the main cancer lesion and obstructive pancreatitis lesion satisfies these two items related to the pathological features of the comprehensive diagnostic criteria of IgG4-RD [27].
Neutrophil infiltration is a characteristic finding in type 2 AIP. In general, it is thought that type 2 AIP is rare in Japan, but there are some reports on its diagnosis by EUS-FNA [28, 29]. It has been reported that there is no significant difference in neutrophil infiltration around the intralobular pancreatic ducts between type 1 and type 2 AIP have been found. Moreover, in one LPSP case, GELs were present in the intralobular pancreatic ducts [30]. These results show that an AIP diagnosis must be made carefully on the basis of the number of IgG4-positive plasma cells or infiltration of neutrophils as well as the presence or absence of GELs with a small biopsied sample obtained by EUS-FNA.
In the future, the JPS 2011 may be revised regarding the necessity of ERP for diagnosis of the focal/segmental type of type 1 AIP, the handling of EUS-FNA, and the validity of OOI and so on.

Pathophysiology of type 1 AIP

IgG4

IgG4 is the least amount of the four subclasses of IgGs; the immunoglobulin classes and subclasses are defined by the sequence of their heavy-chain constant domains. There are amino acid differences in the CH2 domain between IgG1 and IgG4 that lead to weak or negligible binding of IgG4 to both C1q and Fcγ receptors [31, 32]. Especially, a unique feature of IgG4 is its ability to form “half-antibodies” through the Fab-arms exchange by swapping a heavy-chain and attached light chain (Fab-arm exchange) [33]. The amino acid variation at the hinge region of IgG4 forms asymmetric antibodies that consist of half-antibody fragments. This asymmetric IgG4 can recognize two different antigens. Asymmetric IgG4 is unable to crosslink antigens to form immune complexes. Therefore, the lack of immune complex formation and the low affinity for the C1q and Fc receptor might be responsible for the anti-inflammatory function.
Autoantibodies, including autoantibodies to lactoferrin, carbonic anhydrase II, and pancreatic trypsin inhibitor, have been reported in patients with type 1 AIP [8]. However, IgG4-type autoantibodies have not been detected in the patients with type 1 AIP.

Acquired immune system

T-cells

Recent studies have suggested possible multi-pathogenic factors in the development of type 1 AIP. However, the pathogenic mechanism of type 1 AIP remains unclear. From the viewpoint of acquired immunity, the Th1/Th2 immune balance is an important consideration. In IgG4-RD (include type 1 AIP), Th2 type immune balance has an important role in the pathogenesis of IgG4-RD. In addition, IgG4-RD is associated with abundant infiltration of regulatory T-cells (Tregs) into target organs. The cytokine profile of IgG4-RD reportedly includes Th2 cytokines (IL-4, IL-5, and IL-13) and regulatory cytokines (IL-10 and TGF-β) [3437]. In terms of Tregs, circulatory naïve (CD4+CD25+CD45RA+) Tregs are significantly decreased, whereas CD4+CD25high and memory Tregs are significantly increased in the peripheral blood of patients with type 1 AIP. Increased peripheral Tregs are positively correlated with serum levels of IgG4 [38]. In addition, increased quantities of inducible costimulator (ICOS)-positive Tregs may influence IgG4 production via IL-10 in type 1 AIP, and ICOS-negative Tregs may influence fibrosis via TGF-β [39]. Production of IgG4 may reflect over expression of anti-inflammatory cytokines, such as IL-10. These findings suggest that IgG4 does not act as a pathogenic factor, nor is it an anti-inflammatory factor in type 1 AIP. Further studies are necessary to clarify the precise role of IgG4 in IgG4-RD and include type 1 AIP.

B-cells

Regulatory B-cells (Bregs) have been reported to appear with several surface markers. Sumimoto et al. reported that CD19+CD24+CD38high Bregs increased, whereas CD19+CD24highCD27+ Bregs decreased in type 1 AIP [40]. These data indicate that CD19+CD24highCD38high Bregs seemed to increase reactively to suppress the disease activity, and CD19+CD24highCD27+ Bregs might be involved in the development of type 1 AIP. Recently, it was reported that plasmablasts may have an important role in IgG4-RD [41]. When considered in the context of the effectiveness of rituximab [42], the role of B-cells in type 1 AIP must be clarified.

Innate immune system

Yanagawa et al. reported that Toll-like receptors (TLR)2 or TLR4-positive basophils infiltrated into the pancreas of patients with type 1 AIP and that the ratios of basophils activated by TLR4 stimulation in type 1 AIP and atopic dermatitis were significantly higher than those in healthy subjects [43]. Watanabe et al. reported that TLRs and nucleotide-binding oligomerization domain-like receptors activation in the monocytes [44] and basophils [45] of patients with IgG4-RD enhanced IgG4 production by B-cells from healthy control individuals via production of B-cell-activating factor (BAFF). Moreover, Fukui et al. reported that abundant infiltration of TLR-7-positive M2-macrophages was observed in the resected pancreata of patients with type 1 AIP [46]. Activated basophils may lead to the differentiation of inflammatory monocytes into M2 macrophages, and influence the Th2 immune environment and may also affect the production of IgG4 via TLR signaling.
Previously, neutrophils have been shown to infiltrate type 1 AIP [30], because IL-8 expressed in the pancreatic duct epithelia in type 1 and type 2 AIP [30]. They also reported that significantly increased neutrophil infiltration around the interlobular pancreatic duct in type 2 AIP might depend on secretion of granulocyte chemotactic protein-2 [30]. In addition, Arai et al. studied the relationship between neutrophil extracellular traps (NETs) and IgG4 production in type 1 AIP. They found that the pancreata of patients with type 1 AIP but not those of the controls contained NETs. In the presence of NETs, plasmacytoid dendritic cells produced IFN-α and BAFF and induced the control of B-cells to produce IgG4 [47]. Thus, these findings suggested that an innate immune response is involved in the development of type 1 AIP.

Hypothesis of pathophysiology of type 1 AIP

We suggest the following pathophysiology of type 1 AIP. In the initial stage of type 1 AIP, because of decreased naïve Tregs and CD19+CD24highCD27+ Bregs, effector T-cells are involved in the tissue damage. IL-10 and TGF-ß from increased inducible Tregs induce the switch from B-cells to IgG4-producing plasma cells and fibrosis, respectively. Basophils lead to differentiation of inflammatory monocytes into M2 macrophages, affect production of IgG4 via TLR signaling, and influence the Th2 immune environment. M2 macrophages also contribute to the fibrosis and Th2 immune reaction. Neutrophils also influence IgG4 production via NETs (Fig. 1).

Treatment for type 1 AIP

The recommended the first-line treatment for type 1 AIP is steroid therapy, because of the observed good response. The rapid response to glucocorticoids is one of the primary characteristics of type 1 AIP. A poor response to steroid therapy might indicate misdiagnosis, especially misdiagnosis in the case of pancreatic cancer. The Japanese consensus guidelines have proposed the recommended initial oral prednisolone dose for induction of remission to be 0.6 mg/kg/day, which is administered for 2–4 weeks. The dose is then tapered by 5 mg every 1–2 weeks to a maintenance dose (5.0–7.5 mg/day) that should be continued for 3 years as a maintenance therapy [48]. In Japan, to prevent relapses in type 1 AIP, many patients are advised to continue daily low-dose prednisolone for months to years following induction of remission. However, this maintenance of steroid therapy has both advantages and disadvantages. In Western countries, steroid treatment is often limited to a short-term therapy because of ongoing concerns about the risks of adverse events, such as diabetes mellitus, osteoporosis, cataracts, peptic ulcers, and infections [49]. A multicenter study in Japan reported that relapse occurred significantly less often during maintenance steroid therapy (23%) than after discontinuation of therapy (34%) [50]. Recently, the outcome of a Japanese randomized-controlled study regarding maintenance steroid therapy was reported [51]. This report provided evidence to support the usefulness of maintenance steroid therapy.
Unfortunately, despite the high initial remission rates, 15–60% of patients will develop disease relapse either after cessation of steroid therapy or during the weaning of the steroid dose [17, 52, 53]. In most cases of relapsed type 1 AIP, re-administration or an increased dosage of prednisolone is effective. In Western countries, there have been reports of concomitant use of immunomodulatory drugs, such as azathioprine, methotrexate, and mycophenolate mofetil, for patients with type 1 AIP who relapsed or were resistant to steroid therapy [52, 54, 55]. It has been reported that relapse-free survival was similar in patients treated with steroids plus immunomodulatory drugs compared to that in patients treated with steroids alone, and nearly half of the patients on immunomodulatory drugs will relapsed during treatment at the Mayo clinic [56]. On the other hand, an Italian group recently reported the efficacy of AZA as a maintenance therapy to prevent disease relapse in AIP [57]. They concluded that AZA was an effective and safe treatment to prevent AIP relapses.
Rituximab, a monoclonal anti-CD20 antibody, has also been successfully used to treat IgG4-RD [42, 56]. A clinical trial that evaluated rituximab for the treatment of IgG4-RD showed efficacy even without concomitant glucocorticoid therapy [58]. B-cell depletion may be effective for type 1 AIP because of its powerful association with the pathogenesis. Rituximab is not yet approved for use in Japan, but it remains necessary to establish a second-line therapy that includes immunomodulatory drugs for the patients who relapse with type 1 AIP.

Prognosis of type 1 AIP

Steroid therapy has been reported to improve pancreatic exocrine and endocrine function by reducing inflammation, fibrosis, and regeneration through correct aberrant cystic fibrosis transmembrane conductance regulator localization in the duct and to regenerate acinar cells in type 1 AIP [59]. These results indicate that the short-term prognosis of type 1 AIP is good.
The long-term prognosis, however, is not clear, because there are many unknown factors, including relapse, pancreatic exocrine or endocrine dysfunction, and associated malignancies that include pancreatic cancer. It is thought that approximately 10% (7–40%) of the patients with type 1 AIP develop pancreatic calcification or chronic pancreatitis [20, 6064]. Maruyama et al. reported pancreatic head swelling and non-narrowing MPD in the pancreatic body as risk factors for the development of chronic pancreatitis in type 1 AIP [63, 64]. Narrowing of both Wirsung’s and Santorini’s ducts by pancreatic head swelling causes pancreatic juice stasis in the upstream pancreatic duct. Moreover, pancreatic juice stasis results in increased intra-pancreatic duct pressure that is resistant to MPD narrowing of typical type 1 AIP in the pancreatic body, which leads to MPD non-narrowing in this region.
Chronic pancreatitis has been reported as one of the risk factors for pancreatic cancer [65]. Ikeura et al. reported that patients with type 1 AIP had a higher risk of pancreatic cancer, similar to that of patients with ordinary chronic pancreatitis [66]. Shiokawa et al. reported that the risk of developing various cancers was highest during the first year after AIP diagnosis and speculated that AIP may be a manifestation of paraneoplastic syndrome. It remains unclear whether there is a definitive risk factor for malignancy [67]. However, the risk of patients with type 1 AIP to develop cancer is a very important consideration.

Conclusion

Type 1 AIP is now recognized as a pancreatic lesion of IgG4-RD. However, many clinical and basic issues still remain unclear in cases of type 1 AIP Unclear issues include its clinical features, diagnosis, treatment, prognosis, and pathogenesis of type 1 AIP. We believe that this article provides a foundation for clarifying a number of these issues.

Acknowledgements

This study was partially supported by (1) JSPS KAKENHI Grant Numbers 17K09468, 15K09052, and (2) a Grant-in-Aid for “Research for Intractable Diseases” Program from the Ministry of Labor and Welfare of Japan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest in relation to this study.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Sarles H, Sarles JC, Muratore R, et al. Chronic inflammatory sclerosis of the pancreas—an autonomous pancreatic disease? Am J Dig Dis. 1961;6:688–98.CrossRefPubMed Sarles H, Sarles JC, Muratore R, et al. Chronic inflammatory sclerosis of the pancreas—an autonomous pancreatic disease? Am J Dig Dis. 1961;6:688–98.CrossRefPubMed
2.
Zurück zum Zitat Kawaguchi K, Koike M, Tsuruta K, et al. Lymphoplasmacytic sclerosing pancreatitis with cholangitis: a variant of primary sclerosing cholangitis extensively involving pancreas. Hum Pathol. 1991;22:387–95.CrossRefPubMed Kawaguchi K, Koike M, Tsuruta K, et al. Lymphoplasmacytic sclerosing pancreatitis with cholangitis: a variant of primary sclerosing cholangitis extensively involving pancreas. Hum Pathol. 1991;22:387–95.CrossRefPubMed
3.
Zurück zum Zitat Yoshida K, Toki F, Takeuchi T, et al. Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci. 1995;40:1561–8.CrossRefPubMed Yoshida K, Toki F, Takeuchi T, et al. Chronic pancreatitis caused by an autoimmune abnormality. Proposal of the concept of autoimmune pancreatitis. Dig Dis Sci. 1995;40:1561–8.CrossRefPubMed
4.
Zurück zum Zitat Hamano H, Kawa S, Horiuchi A, et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med. 2001;344:732–8.CrossRefPubMed Hamano H, Kawa S, Horiuchi A, et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med. 2001;344:732–8.CrossRefPubMed
5.
Zurück zum Zitat Ito T, Nakano I, Koyanagi S, et al. Autoimmune pancreatitis as a new clinical entity. Three cases of autoimmune pancreatitis with effective steroid therapy. Dig Dis Sci. 1997;42:1458–68.CrossRefPubMed Ito T, Nakano I, Koyanagi S, et al. Autoimmune pancreatitis as a new clinical entity. Three cases of autoimmune pancreatitis with effective steroid therapy. Dig Dis Sci. 1997;42:1458–68.CrossRefPubMed
6.
Zurück zum Zitat Horiuchi A, Kawa S, Akamatsu T, et al. Characteristic pancreatic duct appearance in autoimmune chronic pancreatitis: a case report and review of the Japanese literature. Am J Gastroenterol. 1998;93:260–3.CrossRefPubMed Horiuchi A, Kawa S, Akamatsu T, et al. Characteristic pancreatic duct appearance in autoimmune chronic pancreatitis: a case report and review of the Japanese literature. Am J Gastroenterol. 1998;93:260–3.CrossRefPubMed
7.
Zurück zum Zitat Uchida K, Okazaki K, Konishi Y, et al. Clinical analysis of autoimmune-related pancreatitis. Am J Gastroenterol. 2000;95:2788–94.CrossRefPubMed Uchida K, Okazaki K, Konishi Y, et al. Clinical analysis of autoimmune-related pancreatitis. Am J Gastroenterol. 2000;95:2788–94.CrossRefPubMed
8.
Zurück zum Zitat Okazaki K, Uchida K, Chiba T. Recent concept of autoimmune-related pancreatitis. J Gastroenterol. 2001;36:293–302.CrossRefPubMed Okazaki K, Uchida K, Chiba T. Recent concept of autoimmune-related pancreatitis. J Gastroenterol. 2001;36:293–302.CrossRefPubMed
9.
Zurück zum Zitat Kamisawa T, Funata N, Hayashi Y, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38:982–4.CrossRefPubMed Kamisawa T, Funata N, Hayashi Y, et al. A new clinicopathological entity of IgG4-related autoimmune disease. J Gastroenterol. 2003;38:982–4.CrossRefPubMed
10.
Zurück zum Zitat Yamamoto M, Takahashi H, Ohara M, et al. A new conceptualization for Mikulicz’s disease as an IgG4-related plasmacytic disease. Mod Rheumatol. 2006;16:335–40.CrossRefPubMedPubMedCentral Yamamoto M, Takahashi H, Ohara M, et al. A new conceptualization for Mikulicz’s disease as an IgG4-related plasmacytic disease. Mod Rheumatol. 2006;16:335–40.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Yamamoto M, Takahashi H, Nashiro Y, et al. Mukulicz’s disease and systemic systemic IgG4-related disease plasmacytic syndrome (SIPS). Nihon Rinsho Meneki Gakkai. 2008;31:1–8.CrossRef Yamamoto M, Takahashi H, Nashiro Y, et al. Mukulicz’s disease and systemic systemic IgG4-related disease plasmacytic syndrome (SIPS). Nihon Rinsho Meneki Gakkai. 2008;31:1–8.CrossRef
12.
Zurück zum Zitat von Mikulicz J. Über eine eigenartige symmetrische Erkrankung der Tränen-und Mundspeicheldrusen. Beiträge zur Chirugie. Festschrift gewidmet Theodor Bilroth 1892:610–30. von Mikulicz J. Über eine eigenartige symmetrische Erkrankung der Tränen-und Mundspeicheldrusen. Beiträge zur Chirugie. Festschrift gewidmet Theodor Bilroth 1892:610–30.
13.
Zurück zum Zitat Masaki Y, Dong L, Kurose N, et al. Proposal for a new clinical entity. IgG4-positive multiorgan lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann Rheum Dis. 2009;68:1310–5.CrossRefPubMed Masaki Y, Dong L, Kurose N, et al. Proposal for a new clinical entity. IgG4-positive multiorgan lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann Rheum Dis. 2009;68:1310–5.CrossRefPubMed
14.
Zurück zum Zitat Umehara H, Okazaki K, Masaki Y, et al. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol. 2012;22:21–30.CrossRefPubMed Umehara H, Okazaki K, Masaki Y, et al. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod Rheumatol. 2012;22:21–30.CrossRefPubMed
15.
Zurück zum Zitat Stone JH, Khosroshahi A, Deshpande V, et al. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis Rheum. 2012;64:3061–7.CrossRefPubMed Stone JH, Khosroshahi A, Deshpande V, et al. Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis Rheum. 2012;64:3061–7.CrossRefPubMed
16.
Zurück zum Zitat Notohara K, Burgart LJ, Yadav D, et al. Idiopathic chronic pancreatitis with periductal lymphoplasmacytic infiltration: clinicopathologic features of 35 cases. Am J Surg Pathol. 2003;27:1119–27.CrossRefPubMed Notohara K, Burgart LJ, Yadav D, et al. Idiopathic chronic pancreatitis with periductal lymphoplasmacytic infiltration: clinicopathologic features of 35 cases. Am J Surg Pathol. 2003;27:1119–27.CrossRefPubMed
17.
Zurück zum Zitat Zamboni G, Luttges J, Capelli P, et al. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch. 2004;445:552–63.CrossRefPubMed Zamboni G, Luttges J, Capelli P, et al. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: a study on 53 resection specimens and 9 biopsy specimens. Virchows Arch. 2004;445:552–63.CrossRefPubMed
18.
Zurück zum Zitat Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40:352–8.CrossRefPubMed Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas. 2011;40:352–8.CrossRefPubMed
19.
Zurück zum Zitat The Japan Pancreas Society, The Ministry of Health and Welfare Investigation Research Team for Intractable Pancreatic Disease. Clinical Diagnostic Criteria for Autoimmune Pancreatitis (Proposal). Suizou (Japanese). 2011;2012(27):17–25. The Japan Pancreas Society, The Ministry of Health and Welfare Investigation Research Team for Intractable Pancreatic Disease. Clinical Diagnostic Criteria for Autoimmune Pancreatitis (Proposal). Suizou (Japanese). 2011;2012(27):17–25.
20.
Zurück zum Zitat Hart PA, Kamisawa T, Brugge WR, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut. 2013;62:1771–6.CrossRefPubMed Hart PA, Kamisawa T, Brugge WR, et al. Long-term outcomes of autoimmune pancreatitis: a multicentre, international analysis. Gut. 2013;62:1771–6.CrossRefPubMed
21.
Zurück zum Zitat Members of the Criteria Committee for Autoimmune Pancreatitis of the Japan Pancreas Society. Diagnostic criteria for autoimmune pancreatitis by the Japan Pancreas Society. J Jpn Pancreas Soc. 2002;17:585–7. Members of the Criteria Committee for Autoimmune Pancreatitis of the Japan Pancreas Society. Diagnostic criteria for autoimmune pancreatitis by the Japan Pancreas Society. J Jpn Pancreas Soc. 2002;17:585–7.
22.
Zurück zum Zitat Sumimoto K, Uchida K, Mitsuyama T, et al. A proposal of a diagnostic algorithm with validation of International Consensus Diagnostic Criteria for autoimmune pancreatitis in a Japanese cohort. Pancreatology. 2013;13:230–7.CrossRefPubMed Sumimoto K, Uchida K, Mitsuyama T, et al. A proposal of a diagnostic algorithm with validation of International Consensus Diagnostic Criteria for autoimmune pancreatitis in a Japanese cohort. Pancreatology. 2013;13:230–7.CrossRefPubMed
23.
Zurück zum Zitat Sugumar A, Levy MJ, Kamisawa T, et al. Endoscopic retrograde pancreatography criteria to diagnose autoimmune pancreatitis: an international multicentre study. Gut. 2011;60:666–70.CrossRefPubMed Sugumar A, Levy MJ, Kamisawa T, et al. Endoscopic retrograde pancreatography criteria to diagnose autoimmune pancreatitis: an international multicentre study. Gut. 2011;60:666–70.CrossRefPubMed
24.
Zurück zum Zitat Arata S, Takada T, Hirata K, et al. Post-ERCP pancreatitis. J Hepatobiliary Pancreat Sci. 2010;17:70–8.CrossRefPubMed Arata S, Takada T, Hirata K, et al. Post-ERCP pancreatitis. J Hepatobiliary Pancreat Sci. 2010;17:70–8.CrossRefPubMed
25.
Zurück zum Zitat Zhang L, Notohara K, Levy MJ, et al. IgG4-positive plasma cell infiltration in the diagnosis of autoimmune pancreatitis. Mod Pathol. 2007;20:23–8.CrossRefPubMed Zhang L, Notohara K, Levy MJ, et al. IgG4-positive plasma cell infiltration in the diagnosis of autoimmune pancreatitis. Mod Pathol. 2007;20:23–8.CrossRefPubMed
26.
Zurück zum Zitat Dhall D, Suriawinata AA, Tang LH, et al. Use of immunohistochemistry for IgG4 in the distinction of autoimmune pancreatitis from peritumoral pancreatitis. Hum Pathol. 2010;41:643–52.CrossRefPubMed Dhall D, Suriawinata AA, Tang LH, et al. Use of immunohistochemistry for IgG4 in the distinction of autoimmune pancreatitis from peritumoral pancreatitis. Hum Pathol. 2010;41:643–52.CrossRefPubMed
27.
Zurück zum Zitat Fukui Y, Uchida K, Suimoto K, et al. The similarity of Type 1 autoimmune pancreatitis to pancreatic ductal adenocarcinoma with significant IgG4-positive plasma cell infiltration. J Gastroenterol. 2013;48:751–61.CrossRefPubMed Fukui Y, Uchida K, Suimoto K, et al. The similarity of Type 1 autoimmune pancreatitis to pancreatic ductal adenocarcinoma with significant IgG4-positive plasma cell infiltration. J Gastroenterol. 2013;48:751–61.CrossRefPubMed
28.
Zurück zum Zitat Kanno A, Ishida K, Hamada S, et al. Diagnosis of autoimmune pancreatitis by EUS-FNA by using a 22-gauge needle based on the International Consensus Diagnostic Criteria. Gastrointest Endosc. 2012;76:594–602.CrossRefPubMed Kanno A, Ishida K, Hamada S, et al. Diagnosis of autoimmune pancreatitis by EUS-FNA by using a 22-gauge needle based on the International Consensus Diagnostic Criteria. Gastrointest Endosc. 2012;76:594–602.CrossRefPubMed
29.
Zurück zum Zitat Ishikawa T, Itoh A, Kawashima H, et al. Endoscopic ultrasound-guided fine needle aspiration in the differentiation of type 1 and type 2 autoimmune pancreatitis. World J Gastroenterol. 2012;18:3883–8.CrossRefPubMedPubMedCentral Ishikawa T, Itoh A, Kawashima H, et al. Endoscopic ultrasound-guided fine needle aspiration in the differentiation of type 1 and type 2 autoimmune pancreatitis. World J Gastroenterol. 2012;18:3883–8.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Mitsuyama T, Uchida K, Sumimoto K, et al. Comparison of neutrophil infiltration between type 1 and type 2 autoimmune pancreatitis. Pancreatology. 2015;15:271–80.CrossRefPubMed Mitsuyama T, Uchida K, Sumimoto K, et al. Comparison of neutrophil infiltration between type 1 and type 2 autoimmune pancreatitis. Pancreatology. 2015;15:271–80.CrossRefPubMed
31.
Zurück zum Zitat Canfield SM, Morrison SL. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J Exp Med. 1991;173:1483–91.CrossRefPubMed Canfield SM, Morrison SL. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J Exp Med. 1991;173:1483–91.CrossRefPubMed
32.
Zurück zum Zitat Tao M-H, Smith R, Morrison S. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J Exp Med. 1993;178:661–7.CrossRefPubMed Tao M-H, Smith R, Morrison S. Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J Exp Med. 1993;178:661–7.CrossRefPubMed
33.
Zurück zum Zitat Van der Neut Kolfschoten M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317(5844):1554–7.CrossRefPubMed Van der Neut Kolfschoten M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317(5844):1554–7.CrossRefPubMed
34.
Zurück zum Zitat Zen Y, Fujii T, Harada K, et al. Th2 and regulatory immune reactions are increased in immunoglobulin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 2007;45:1538–46.CrossRefPubMed Zen Y, Fujii T, Harada K, et al. Th2 and regulatory immune reactions are increased in immunoglobulin G4-related sclerosing pancreatitis and cholangitis. Hepatology. 2007;45:1538–46.CrossRefPubMed
35.
Zurück zum Zitat Suzuki K, Tamura J, Okuyama A, et al. IgG4-positive multi-organ lymphoproliferative syndrome manifesting as chronic symmetrical sclerosing dacryo-sialadenitis with subsequent secondary portal hypertension and remarkable IgG4-linked Il-4 elevation. Rheumatology (Oxford). 2010;49(9):1789–91.CrossRef Suzuki K, Tamura J, Okuyama A, et al. IgG4-positive multi-organ lymphoproliferative syndrome manifesting as chronic symmetrical sclerosing dacryo-sialadenitis with subsequent secondary portal hypertension and remarkable IgG4-linked Il-4 elevation. Rheumatology (Oxford). 2010;49(9):1789–91.CrossRef
36.
Zurück zum Zitat Nakashima H, Miyake K, Moriyama M, et al. An amplification of IL-10 and TGF-beta in patients with IgG4-related tubulointerstitial nephritis. Clin Nephrol. 2010;73:385–91.CrossRefPubMed Nakashima H, Miyake K, Moriyama M, et al. An amplification of IL-10 and TGF-beta in patients with IgG4-related tubulointerstitial nephritis. Clin Nephrol. 2010;73:385–91.CrossRefPubMed
37.
Zurück zum Zitat Akikata R, Watanabe T, Zaima C, et al. Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4 related sclerosing disease. Gut. 2010;59:542–5.CrossRef Akikata R, Watanabe T, Zaima C, et al. Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4 related sclerosing disease. Gut. 2010;59:542–5.CrossRef
38.
Zurück zum Zitat Miyoshi H, Uchida K, Taniguchi T, et al. Circulating naïve and CD4+ CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas. 2008;36:133–40.CrossRefPubMed Miyoshi H, Uchida K, Taniguchi T, et al. Circulating naïve and CD4+ CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas. 2008;36:133–40.CrossRefPubMed
39.
Zurück zum Zitat Kusuda T, Uchida K, Miyoshi H, et al. Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas. 2011;40:1120–30.CrossRefPubMed Kusuda T, Uchida K, Miyoshi H, et al. Involvement of inducible costimulator- and interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis. Pancreas. 2011;40:1120–30.CrossRefPubMed
40.
Zurück zum Zitat Sumimoto K, Uchida K, Kusuda T, et al. The role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology. 2014;14:193–200.CrossRefPubMed Sumimoto K, Uchida K, Kusuda T, et al. The role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology. 2014;14:193–200.CrossRefPubMed
41.
Zurück zum Zitat Mattoo H, Mahajan VS, Della-Torre E, et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol. 2014;134:679–87.CrossRefPubMedPubMedCentral Mattoo H, Mahajan VS, Della-Torre E, et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol. 2014;134:679–87.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Topazian M, Witzig TE, Smyrk TC, et al. Rituximab therapy for refractory biliary strictures in immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol. 2008;6:364–6.CrossRefPubMed Topazian M, Witzig TE, Smyrk TC, et al. Rituximab therapy for refractory biliary strictures in immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol. 2008;6:364–6.CrossRefPubMed
43.
Zurück zum Zitat Yanagawa M, Uchida K, Ando Y, et al. Basophils activated via TLR signaling may contribute to pathophysiology of type 1 autoimmune pancreatitis. J Gastroenterol. 2017. [Epub ahead of print]. Yanagawa M, Uchida K, Ando Y, et al. Basophils activated via TLR signaling may contribute to pathophysiology of type 1 autoimmune pancreatitis. J Gastroenterol. 2017. [Epub ahead of print].
44.
Zurück zum Zitat Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum. 2012;64:914–24.CrossRefPubMed Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum. 2012;64:914–24.CrossRefPubMed
45.
Zurück zum Zitat Watanabe T, Yamashita K, Sakurai T, et al. Toll-like receptor activation in basophils contributes to the development of IgG4-related disease. J Gastroenterol. 2013;48:247–53.CrossRefPubMed Watanabe T, Yamashita K, Sakurai T, et al. Toll-like receptor activation in basophils contributes to the development of IgG4-related disease. J Gastroenterol. 2013;48:247–53.CrossRefPubMed
46.
Zurück zum Zitat Fukui Y, Uchida K, Sakaguchi Y, et al. Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis. J Gastroenterol. 2015;50:435–44.CrossRefPubMed Fukui Y, Uchida K, Sakaguchi Y, et al. Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis. J Gastroenterol. 2015;50:435–44.CrossRefPubMed
47.
Zurück zum Zitat Arai Y, Yamashita K, Kuriyama K, et al. Plasmacytoid dendritic cell activation and IFN-α production are prominent features of murine autoimmune pancreatitis and human IgG4-related autoimmune pancreatitis. J Immunol. 2015;195:3033–44.CrossRefPubMed Arai Y, Yamashita K, Kuriyama K, et al. Plasmacytoid dendritic cell activation and IFN-α production are prominent features of murine autoimmune pancreatitis and human IgG4-related autoimmune pancreatitis. J Immunol. 2015;195:3033–44.CrossRefPubMed
48.
Zurück zum Zitat Kamisawa T, Okazaki K, Kawa S, et al. Amendment of the Japanese Consensus Guidelines for Autoimmune Pancreatitis, 2013 III. Treatment and prognosis of autoimmune pancreatitis. J Gastroenterol. 2014;49(6):961–70.CrossRefPubMed Kamisawa T, Okazaki K, Kawa S, et al. Amendment of the Japanese Consensus Guidelines for Autoimmune Pancreatitis, 2013 III. Treatment and prognosis of autoimmune pancreatitis. J Gastroenterol. 2014;49(6):961–70.CrossRefPubMed
50.
Zurück zum Zitat Kamisawa T, Shimosegawa T, Okazaki K, et al. Standard steroid treatment for autoimmune pancreatitis. Gut. 2009;58:1504–7.CrossRefPubMed Kamisawa T, Shimosegawa T, Okazaki K, et al. Standard steroid treatment for autoimmune pancreatitis. Gut. 2009;58:1504–7.CrossRefPubMed
51.
Zurück zum Zitat Masamune A, Nishimori I, Kikuta K, et al. Randomised controlled trial of long-term maintenance corticosteroid therapy in patients with autoimmune pancreatitis. Gut. 2017;66:487–94.CrossRefPubMed Masamune A, Nishimori I, Kikuta K, et al. Randomised controlled trial of long-term maintenance corticosteroid therapy in patients with autoimmune pancreatitis. Gut. 2017;66:487–94.CrossRefPubMed
52.
Zurück zum Zitat Sandanayake NS, Church NI, Chapman MH, et al. Presentation and management of post-treatment relapse in autoimmune pancreatitis/immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol. 2009;7:1089–96.CrossRefPubMed Sandanayake NS, Church NI, Chapman MH, et al. Presentation and management of post-treatment relapse in autoimmune pancreatitis/immunoglobulin G4-associated cholangitis. Clin Gastroenterol Hepatol. 2009;7:1089–96.CrossRefPubMed
53.
Zurück zum Zitat Ryu JK, Chung JB, Park SW, et al. Review of 67 patients with autoimmune pancreatitis in Korea: a multicenter nationwide study. Pancreas. 2008;37:377–85.CrossRefPubMed Ryu JK, Chung JB, Park SW, et al. Review of 67 patients with autoimmune pancreatitis in Korea: a multicenter nationwide study. Pancreas. 2008;37:377–85.CrossRefPubMed
54.
Zurück zum Zitat Ghazale A, Chari ST, Zhang L, et al. Immunoglobulin G4-associated cholangitis: clinical profile and response to therapy. Gastroenterology. 2008;134:706–15.CrossRefPubMed Ghazale A, Chari ST, Zhang L, et al. Immunoglobulin G4-associated cholangitis: clinical profile and response to therapy. Gastroenterology. 2008;134:706–15.CrossRefPubMed
55.
Zurück zum Zitat Raina A, Yadav D, Krasinskas AM, et al. Evaluation and management of autoimmune pancreatitis: experience at a large US center. Am J Gastroenterol. 2009;104:2295–306.CrossRefPubMed Raina A, Yadav D, Krasinskas AM, et al. Evaluation and management of autoimmune pancreatitis: experience at a large US center. Am J Gastroenterol. 2009;104:2295–306.CrossRefPubMed
56.
Zurück zum Zitat Hart PA, Topazian MD, Witzig TE, et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut. 2013;62:1607–15.CrossRefPubMed Hart PA, Topazian MD, Witzig TE, et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut. 2013;62:1607–15.CrossRefPubMed
57.
Zurück zum Zitat de Pretis N, Amodio A, Bernardoni L, et al. Azathioprine maintenance therapy to prevent relapses in autoimmune pancreatitis. Clin Transl Gastroenterol. 2017;8:e90.CrossRefPubMedPubMedCentral de Pretis N, Amodio A, Bernardoni L, et al. Azathioprine maintenance therapy to prevent relapses in autoimmune pancreatitis. Clin Transl Gastroenterol. 2017;8:e90.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis. 2015;74:1171–7.CrossRefPubMed Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis. 2015;74:1171–7.CrossRefPubMed
59.
Zurück zum Zitat Ko SB, Mizuno N, Yatabe Y, et al. Corticosteroids correct aberrant CFTR localization in the duct and regenerate acinar cells in autoimmune pancreatitis. Gastroenterology. 2010;138:1988–96.CrossRefPubMedPubMedCentral Ko SB, Mizuno N, Yatabe Y, et al. Corticosteroids correct aberrant CFTR localization in the duct and regenerate acinar cells in autoimmune pancreatitis. Gastroenterology. 2010;138:1988–96.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Uchida K, Yazumi S, Nishio A, et al. Long-term outcome of autoimmune pancreatitis. J Gastroenterol. 2009;44:726–32.CrossRefPubMed Uchida K, Yazumi S, Nishio A, et al. Long-term outcome of autoimmune pancreatitis. J Gastroenterol. 2009;44:726–32.CrossRefPubMed
61.
Zurück zum Zitat Takuma K, Kamisawa T, Tabata T. Short-term and long-term outcomes of autoimmune pancreatitis. Eur J Gastroenterol Hepatol. 2011;23:146–52.CrossRefPubMed Takuma K, Kamisawa T, Tabata T. Short-term and long-term outcomes of autoimmune pancreatitis. Eur J Gastroenterol Hepatol. 2011;23:146–52.CrossRefPubMed
62.
Zurück zum Zitat Frulloni L, Scattolini C, Falconi M, et al. Autoimmune pancreatitis: differences between the focal and diffuse forms in 87 patients. Am J Gastroenterol. 2009;104:2288–94.CrossRefPubMed Frulloni L, Scattolini C, Falconi M, et al. Autoimmune pancreatitis: differences between the focal and diffuse forms in 87 patients. Am J Gastroenterol. 2009;104:2288–94.CrossRefPubMed
63.
Zurück zum Zitat Maruyama M, Arakura N, Ozaki Y, et al. Type 1 autoimmune pancreatitis can transform into chronic pancreatitis: a long-term follow-up study of 73 Japanese patients. Int J Rheumatol. 2013;2013:272595.CrossRefPubMedPubMedCentral Maruyama M, Arakura N, Ozaki Y, et al. Type 1 autoimmune pancreatitis can transform into chronic pancreatitis: a long-term follow-up study of 73 Japanese patients. Int J Rheumatol. 2013;2013:272595.CrossRefPubMedPubMedCentral
64.
65.
Zurück zum Zitat Lowenfels AB, Maisonneuve P, Cavallini G, et al. Pancreatitis and the risk of pancreatic cancer. N Engl J Med. 1993;328:1422–7.CrossRef Lowenfels AB, Maisonneuve P, Cavallini G, et al. Pancreatitis and the risk of pancreatic cancer. N Engl J Med. 1993;328:1422–7.CrossRef
66.
Zurück zum Zitat Ikeura T, Miyoshi H, Uchida K, et al. Relationship between autoimmune pancreatitis and pancreatic cancer: a single-center experience. Pancreatology. 2014;14:373–9.CrossRefPubMed Ikeura T, Miyoshi H, Uchida K, et al. Relationship between autoimmune pancreatitis and pancreatic cancer: a single-center experience. Pancreatology. 2014;14:373–9.CrossRefPubMed
67.
Zurück zum Zitat Shiokawa M, Kodama Y, Yoshimura K, et al. Risk of cancer in patients with autoimmune pancreatitis. Am J Gastroenterol. 2013;108:610–7.CrossRefPubMed Shiokawa M, Kodama Y, Yoshimura K, et al. Risk of cancer in patients with autoimmune pancreatitis. Am J Gastroenterol. 2013;108:610–7.CrossRefPubMed
Metadaten
Titel
Clinical and pathophysiological aspects of type 1 autoimmune pancreatitis
verfasst von
Kazushige Uchida
Kazuichi Okazaki
Publikationsdatum
19.02.2018
Verlag
Springer Japan
Erschienen in
Journal of Gastroenterology / Ausgabe 4/2018
Print ISSN: 0944-1174
Elektronische ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-018-1440-8

Weitere Artikel der Ausgabe 4/2018

Journal of Gastroenterology 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.