Skip to main content
Erschienen in: Lasers in Medical Science 1/2015

01.01.2015 | Original Article

Combination of a novel photosensitizer DTPP with 650 nm laser results in efficient apoptosis, arresting cell cycle and cytoskeleton protein changes in lung cancer A549 cells

verfasst von: H. Wang, H. M. Zhang, H. J. Yin, M. Q. Wei, H. Sha, T. J. Liu, Y. X. Li

Erschienen in: Lasers in Medical Science | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Photodynamic therapy (PDT) using photosensitized reaction to produce cytotoxicity was used for cancer therapy in recent years. To study the effectiveness of PDT mediated by a novel photosensitizer (PS), DTPP 5-(4′-(2″-dicarboxymethylamino)acetamidophenyl)-10, 15, 20-triphenylporphyrin, on lung cancer A549 cell lines in vitro, DTPP was employed in different concentrations (2, 4, 6, 8, 10, 12, 15, 20, 25, and 30 μg/ml) and combined with 650 nm laser of different power densities (0.6, 1.2, 2.4, 4.8, 7.2, and 9.6 J/cm2) that resulted in obvious inhibition of cell proliferation and apoptosis. Results showed that cell survival rates have a dependent relationship with time and PS concentrations and no significant cytotoxicity was induced by DTPP itself. Apoptosis and cell cycle S arrest were observed; cytoskeleton morphologic observation revealed collapse, sparkling, and shrunken shapes. Apoptosis-related protein caspase-3 overexpression was detected while caspase-9, bcl-2, and cytoskeleton protein beta-catenin were in low levels of expression than the control. Cleavage of beta-catenin by caspase-3 or other proteases from the lysosome might be the main reason for the cytoskeleton collapse as beta-tubulin and actin were at a stable level 12 h after PDT. This paper gives a better understanding of the effectiveness of DTPP-mediated PDT in lung cancer A549 cells both with regard to dosimetry and apoptosis changes.
Literatur
1.
Zurück zum Zitat Sibani SA et al (2008) Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert Opin Drug Deliv 5(11):1241–1254PubMedCrossRef Sibani SA et al (2008) Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert Opin Drug Deliv 5(11):1241–1254PubMedCrossRef
2.
Zurück zum Zitat Almeida RD et al (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704(2):59–86PubMed Almeida RD et al (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704(2):59–86PubMed
3.
Zurück zum Zitat Chiaviello A, Postiglione I, Palumbo G (2011) Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 3(1):1014–1041CrossRef Chiaviello A, Postiglione I, Palumbo G (2011) Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 3(1):1014–1041CrossRef
4.
Zurück zum Zitat Zheng L et al (2013) Generation of an effective anti-lung cancer vaccine by DTPP-mediated photodynamic therapy and mechanistic studies. Lasers Med Sci 28(5):1383–1392PubMedCrossRef Zheng L et al (2013) Generation of an effective anti-lung cancer vaccine by DTPP-mediated photodynamic therapy and mechanistic studies. Lasers Med Sci 28(5):1383–1392PubMedCrossRef
5.
Zurück zum Zitat Zeng G-Q et al (2012) Mini-invasive surgery in lung cancer: current status and future considerations. Thorac Cancer 3(1):88–90CrossRef Zeng G-Q et al (2012) Mini-invasive surgery in lung cancer: current status and future considerations. Thorac Cancer 3(1):88–90CrossRef
6.
Zurück zum Zitat Tomankova K et al (2009) Study of the photodynamic effect on the A549 cell line by atomic force microscopy and the influence of green tea extract on the production of reactive oxygen species. Ann N Y Acad Sci 1171:549–558PubMedCrossRef Tomankova K et al (2009) Study of the photodynamic effect on the A549 cell line by atomic force microscopy and the influence of green tea extract on the production of reactive oxygen species. Ann N Y Acad Sci 1171:549–558PubMedCrossRef
7.
Zurück zum Zitat Cristobal J et al (2006) Caspase-2: a possible trigger of apoptosis induced in A-549 tumor cells by ZnPc photodynamic treatment. Int J Oncol 28(5):1057–1063PubMed Cristobal J et al (2006) Caspase-2: a possible trigger of apoptosis induced in A-549 tumor cells by ZnPc photodynamic treatment. Int J Oncol 28(5):1057–1063PubMed
8.
Zurück zum Zitat Canete M et al (2004) Necrotic cell death induced by photodynamic treatment of human lung adenocarcinoma A-549 cells with palladium(II)-tetraphenylporphycene. Int J Oncol 24(5):1221–1228PubMed Canete M et al (2004) Necrotic cell death induced by photodynamic treatment of human lung adenocarcinoma A-549 cells with palladium(II)-tetraphenylporphycene. Int J Oncol 24(5):1221–1228PubMed
9.
Zurück zum Zitat Fakhar-e-Alam M et al (2012) Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin. Lasers Med Sci 27(3):607–614PubMedCrossRef Fakhar-e-Alam M et al (2012) Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin. Lasers Med Sci 27(3):607–614PubMedCrossRef
11.
Zurück zum Zitat Postiglione I et al (2013) 5-Aminolaevulinic acid/photo-dynamic therapy and gefitinib in non-small cell lung cancer cell lines: a potential strategy to improve gefitinib therapeutic efficacy. Cell Prolif 46(4):382–395PubMedCrossRef Postiglione I et al (2013) 5-Aminolaevulinic acid/photo-dynamic therapy and gefitinib in non-small cell lung cancer cell lines: a potential strategy to improve gefitinib therapeutic efficacy. Cell Prolif 46(4):382–395PubMedCrossRef
12.
Zurück zum Zitat Manoto SL et al (2012) Localization and phototoxic effect of zinc sulfophthalocyanine photosensitizer in human colon (DLD-1) and lung (A549) carcinoma cells (in vitro). Photodiagnosis Photodyn Ther 9(1):52–59PubMedCrossRef Manoto SL et al (2012) Localization and phototoxic effect of zinc sulfophthalocyanine photosensitizer in human colon (DLD-1) and lung (A549) carcinoma cells (in vitro). Photodiagnosis Photodyn Ther 9(1):52–59PubMedCrossRef
13.
Zurück zum Zitat Saczko J et al (2004) Levels of lipid peroxidation in A549 cells after PDT in vitro. Rocz Akad Med Bialymst 49(Suppl 1):82–84PubMed Saczko J et al (2004) Levels of lipid peroxidation in A549 cells after PDT in vitro. Rocz Akad Med Bialymst 49(Suppl 1):82–84PubMed
14.
Zurück zum Zitat Varnes ME et al (1993) Effect of the K+/H+ ionophore nigericin on response of A549 cells to photodynamic therapy and tert-butylhydroperoxide. Free Radic Biol Med 15(4):395–405PubMedCrossRef Varnes ME et al (1993) Effect of the K+/H+ ionophore nigericin on response of A549 cells to photodynamic therapy and tert-butylhydroperoxide. Free Radic Biol Med 15(4):395–405PubMedCrossRef
15.
Zurück zum Zitat Xia C et al (2011) New hydrophilic/lipophilic tetra-alpha-(4-carboxyphenoxy) phthalocyanine zinc-mediated photodynamic therapy inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. Molecules 16(2):1389–1401PubMedCrossRef Xia C et al (2011) New hydrophilic/lipophilic tetra-alpha-(4-carboxyphenoxy) phthalocyanine zinc-mediated photodynamic therapy inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. Molecules 16(2):1389–1401PubMedCrossRef
16.
Zurück zum Zitat Radzi R et al (2012) Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells. J Vet Med Sci 74(5):545–551PubMedCrossRef Radzi R et al (2012) Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells. J Vet Med Sci 74(5):545–551PubMedCrossRef
17.
Zurück zum Zitat Shao J et al (2012) Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser PHOTOCYANINE: ROS production, apoptosis, cell cycle arrest. Eur J Cancer 48(13):2086–2096PubMedCrossRef Shao J et al (2012) Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser PHOTOCYANINE: ROS production, apoptosis, cell cycle arrest. Eur J Cancer 48(13):2086–2096PubMedCrossRef
18.
Zurück zum Zitat Geiger B, Yehuda-Levenberg S, Bershadsky AD (1995) Molecular interactions in the submembrane plaque of cell-cell and cell-matrix adhesions. Acta Anat (Basel) 154(1):46–62CrossRef Geiger B, Yehuda-Levenberg S, Bershadsky AD (1995) Molecular interactions in the submembrane plaque of cell-cell and cell-matrix adhesions. Acta Anat (Basel) 154(1):46–62CrossRef
19.
Zurück zum Zitat Steinhusen U et al (2000) Apoptosis-induced cleavage of beta-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. J Biol Chem 275(21):16345–16353PubMedCrossRef Steinhusen U et al (2000) Apoptosis-induced cleavage of beta-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. J Biol Chem 275(21):16345–16353PubMedCrossRef
Metadaten
Titel
Combination of a novel photosensitizer DTPP with 650 nm laser results in efficient apoptosis, arresting cell cycle and cytoskeleton protein changes in lung cancer A549 cells
verfasst von
H. Wang
H. M. Zhang
H. J. Yin
M. Q. Wei
H. Sha
T. J. Liu
Y. X. Li
Publikationsdatum
01.01.2015
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2015
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1617-1

Weitere Artikel der Ausgabe 1/2015

Lasers in Medical Science 1/2015 Zur Ausgabe