Skip to main content
Erschienen in: BMC Public Health 1/2021

Open Access 01.12.2021 | Research

Combined effect of hypertension and hyperuricemia on ischemic stroke in a rural Chinese population

verfasst von: Peng Sun, Mengqi Chen, Xiaofan Guo, Zhao Li, Ying Zhou, Shasha Yu, Hongmei Yang, Guozhe Sun, Liqiang Zheng, Yingxian Sun

Erschienen in: BMC Public Health | Ausgabe 1/2021

Abstract

Background

To investigate the combined effect of hypertension and hyperuricemia to the risk of ischemic stroke in a rural Chinese population.

Methods

The cross-sectional study was conducted from 2012 to 2013 in a rural area of China. After exclusion for missing data, we finally included 11,731 participants into analysis.

Results

After adjusting for age, current smoking, current drinking, BMI, TG, HDL-C and eGFR, hypertension was significantly associated with ischemic stroke in men (OR: 2.783, 95% CI: 1.793, 4.320) and in women (OR: 4.800, 95% CI: 2.945, 7.822). However, hyperuricemia was significantly associated with ischemic stroke only in women (OR: 1.888, 95% CI: 1.244, 2.864). After full adjustment, participants with both hypertension and hyperuricemia had 8.9 times higher risk than those without them. Finally, the interaction between hypertension and hyperuricemia was statistically significant only in women rather than in men after full adjustment.

Conclusions

This study demonstrated the positive correlations between hypertension, hyperuricemia and ischemic stroke. Our study also demonstrated the joint effect between hypertension and hyperuricemia towards ischemic stroke only in women, not in men.
Hinweise
Peng Sun and Mengqi Chen contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
SD
Standard deviation
BMI
Body mass index
FPG
Fasting plasma glucose
TC
Total cholesterol
TG
Triglyceride
HDL-C
High-density lipoprotein cholesterol
LDL-C
Low-density lipoprotein cholesterol
eGFR
Estimated glomerular filtration rate
SBP
Systolic blood pressure
DBP
Diastolic blood pressure
SUA
Serum uric acid

Background

Globally, stroke is a major cause of death and adult disability [1]. By 2013, 27 of China’s 33 provinces had stroke as the main cause of death [2]. In China, the annual stroke mortality rate is about 1.6 million people, which is about 157 deaths per 100,000 people due to stroke [3]. Among 100,000 people, strokes caused about 116 deaths in urban areas and 111 deaths in rural areas [3]. Therefore, stroke has emerged as a major health problem in China.
Hypertension (HTN) is one of the important risk factors of stroke. More than 60% of acute stroke patients had elevated blood pressure [4]. Furthermore, more than 70% of stroke patients had a history of hypertension, and nearly half of them had poor baseline blood pressure control [57]. The incidence of stroke increased proportionally with the increase in systolic and diastolic blood pressure, with a 3.1-fold increase in the relative risk for men and a 2.9-fold increase in women [8, 9]. Hyperuricemia is another potential important risk factor of stroke. The elevated level of serum uric acid was independently positively correlated with ischemic stroke in patients with aged < 60 years [10]. Previous prospective observational studies have showed that hyperuricemia was independently correlated with stroke incidence and mortality [11, 12]. On the other hand, hyperuricemia was also associated with hypertension, type 2 diabetes, dyslipidemia, chronic kidney disease, and cardiovascular events, particularly stroke [1315].
Previous studies have clarified the potential correlation between hypertension, hyperuricemia and ischemic stroke. However, these studies only examined the independent effects of risk factors. So far, no studies have investigated the combined effect of hypertension and hyperuricemia to ischemic stroke. Thus, this study aimed to investigate the combined effect of HTN and hyperuricemia to the risk of ischemic stroke.

Methods

Study population

The present study was based on a cross-sectional epidemiological survey known as NCRCHS which conducted from January 2012 to August 2013. The detailed design and rationale of NCRCHS were fully discussed elsewhere [16]. A total number of 11,956 participants (age ≥ 35 years) were collected from Liaoning province, northeastern China. In the present work, 225 participants were further excluded for missing data. Eventually, 11,731 subjects were enrolled into the present work. Our study was approved by the Ethics Committee of China Medical University (Shenyang, China). All subjects provided written informed consent.

Data collection and measurements

The process about data collection and measurements was fully described in our previously published studies [17]. Before the survey, cardiologists and nurses participated a professional training, passed a standardized exam, and acquired the qualification to gather data. The data were collected through uniform questionnaires regarding demographic data, anthropometric parameters, health-related behaviors. The central steering committee with a subcommittee conducted the quality assurance process of data collection. The questionnaire was designed to collect detail information from participants. Smoking and drinking status were separated into current status and others according to participants’ self-reports. After participants rested for at least five minutes in a properly relaxed and sitting state, the blood pressure was taken three times and measured by two randomly selected workers. The mean reading of three consecutive values was determined as the final result of blood pressure. Before the measurement of anthropometric indices, lightweight clothes without shoes were required for the subjects. The weight of participants was quantified to 0.1 kg by calibrated digital scales and height was quantified to 0.1 cm by portable stadiometers. After individuals were fasting at least 12 h, blood samples were collected from the antecubital veins in the morning. For long-term storage, the serum of venous blood sample was isolated by calibrated centrifuge and frozen at − 20 °C. The fasting blood samples of individuals were tested by Olympus AU640 auto analyzers to measure the blood concentrations of FPG, TG, HDL-C, Scr and SUA.

Definition

The body mass index (BMI) was determined as: weight (kg)/height (m2). The estimated glomerular filtration rate (eGFR) was defined according to the CKD-EPI equation [18]. The definition of hyperuricemia was serum uric acid (SUA) ≥357 μmol/L for females and ≥ 417 μmol/L for males [19]. Hypertension was determined as systolic blood pressure (SBP) ≥140 mmHg and/or diastolic blood pressure (DBP) ≥90 mmHg [20]. Ischemic stroke was determined as a history of cerebrovascular events, which was demonstrated by either cranial CT or MR scan within the past 2 years.

Statistical analysis

The results were displayed as mean values ± standard deviation (SD) or median (interquartile) for continuous variables. The following category variables were presented as frequencies (percentages). Students’ t-test or Mann-Whitney test was applied to compare continuous variables between groups. The chi-square test was performed to compare category variables between groups. Additionally, the rank-sum test was used to compare ordinal category variables between groups. Multivariate logistic regression analyses were performed to evaluate the relationship of hypertension and hyperuricemia to ischemic stroke. The results were displayed as odds ratio (OR) and 95% confidence interval (95% CI). All of the analyses were performed by SPSS 25.0 software (IBP corp). A two-tailed P value < 0.05 was considered as significant.

Results

Table 1 shows the characteristics of study population divided by ischemic stroke and sex. The prevalence of ischemic stroke was 3.16% in men and 3.12% in women. Population with ischemic stroke had higher age, SBP and DBP in both sexes, and had higher BMI, TG and SUA only in women. The percentage of current smoking and current drinking was dramatically lower in patients group than those in normal group in both sexes. The percentage of hyperuricemia was higher only in women and hypertension was higher in both genders. As shown in Fig. 1, the prevalence of ischemic stroke was greater in HTN (+) and HUA (+) in both gender than in HTN (−) and HUA (−) (0.9% vs. 5.2% for male; 0.6% vs. 12.5% for female).
Table 1
Characteristics of study population divided by ischemic stroke and sex
 
Men
Women
Ischemic stroke
Ischemic stroke
No (n = 5206)
Yes (n = 170)
p value
No (n = 6104)
Yes (n = 197)
p value
Age (years)
54.0 ± 10.7
63.7 ± 9.1
< 0.001
53.1 ± 10.3
62.9 ± 8.2
< 0.001
Current smoking (%)
3000 (57.0)
81 (47.6)
0.015
1002 (16.4)
30 (15.2)
0.658
Current drinking (%)
2405 (45.7)
44 (25.9)
< 0.001
183 (3.0)
0 (0.0)
0.014
BMI (kg/m2)
24.7 ± 3.5
25.0 ± 3.4
0.362
24.8 ± 3.8
26.0 ± 3.7
< 0.001
FPG (mmol/L)
5.6 (5.2–6.1)
5.8 (5.4–6.4)
< 0.001
5.5 (5.1–6.0)
5.7 (5.3–6.7)
< 0.001
TC (mmol/L)
5.2 ± 1.0
5.2 ± 1.0
0.586
5.3 ± 1.1
5.6 ± 1.0
< 0.001
TG (mmol/L)
1.2 (0.9–1.9)
1.4 (1.0–2.1)
0.055
1.2 (0.9–1.9)
1.9 (1.2–2.8)
< 0.001
HDL-C (mmol/L)
1.4 ± 0.4
1.3 ± 0.4
0.012
1.4 ± 0.3
1.3 ± 0.3
< 0.001
LDL-C (mmol/L)
2.9 ± 0.8
3.0 ± 0.8
0.004
3.0 ± 0.8
3.3 ± 0.8
< 0.001
eGFR (ml/min/1.73 m2)
94.5 ± 15.3
85.5 ± 15.3
< 0.001
92.4 ± 16.1
82.6 ± 18.7
< 0.001
SBP (mmHg)
143.2 ± 22.2
159.8 ± 26.9
< 0.001
139.5 ± 23.6
161.3 ± 27.4
< 0.001
DBP (mmHg)
83.6 ± 11.8
87.7 ± 11.8
< 0.001
80.4 ± 11.5
85.8 ± 12.2
< 0.001
SUA (μmol/L)
333.3 ± 83.0
344.4 ± 97.5
0.088
254.6 ± 66.7
289.8 ± 88.6
< 0.001
Hyperuricemia (%)
779 (14.8)
33 (19.4)
0.098
432 (7.1)
41 (20.8)
< 0.001
Hypertension (%)
2787 (53.0)
143 (84.1)
< 0.001
2889 (47.3)
177 (89.8)
< 0.001
Anti-hypertensive drug
612 (11.6)
89 (52.4)
< 0.001
956 (15.6)
127 (64.5)
< 0.001
Data are expressed as mean ± standard deviation (SD) or median (interquartile range) and numbers (percentage) as appropriate
Abbreviations: BMI body mass index, FPG fasting plasma glucose, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, eGFR estimated glomerular filtration rate, SBP systolic blood pressure, DBP diastolic blood pressure, SUA serum uric acid
Logistic regression was performed to display the association of SBP, DBP and SUA with ischemic stroke by sex (Table 2). After adjusting for age, current smoking, current drinking, BMI, FPG, TC, TG, HDL-C, LDL-C and eGFR, SBP was significantly associated with ischemic stroke in men (OR: 1.017, 95% CI: 1.011, 1.024) and in women (OR: 1.018, 95% CI: 1.013, 1.024). Similarly, DBP and SUA was significantly associated with ischemic stroke in both men and women.
Table 2
Multivariate logistic regression of SBP, DBP and SUA for ischemic stroke by sex
 
Odds Ratio (95%CI)
Model 1
P value
Model 2
P value
Model 3
P value
Men
 SBP
1.027 (1.021, 1.033)
< 0.001
1.020 (1.013, 1.026)
< 0.001
1.017 (1.011, 1.024)
< 0.001
 DBP
1.027 (1.015, 1.039)
< 0.001
1.035 (1.022, 1.048)
< 0.001
1.032 (1.018, 1.045)
< 0.001
 SUA
1.002 (1.000, 1.003)
0.087
1.002 (1.001, 1.004)
0.008
1.002 (1.000, 1.004)
0.032
Women
 SBP
1.030 (1.025, 1.035)
< 0.001
1.021 (1.016, 1.027)
< 0.001
1.018 (1.013, 1.024)
< 0.001
 DBP
1.037 (1.025, 1.048)
< 0.001
1.035 (1.023, 1.047)
< 0.001
1.028 (1.016, 1.040)
< 0.001
 SUA
1.006 (1.005, 1.008)
< 0.001
1.004 (1.002, 1.006)
< 0.001
1.003 (1.000, 1.005)
0.018
Model 1: no adjust
Model 2: adjust for age, current smoking, current drinking
Model 3: adjust for age, current smoking, current drinking, BMI, FPG, TC, TG, HDL-C, LDL-C, eGFR
Abbreviations: BMI body mass index, FPG fasting plasma glucose, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, eGFR estimated glomerular filtration rate, SBP systolic blood pressure, DBP diastolic blood pressure, SUA serum uric acid
Multivariate logistic regression was performed to reveal the association of hypertension and hyperuricemia with ischemic stroke by sex (Table 3). After adjusting for age, current smoking, current drinking, BMI, FPG, TC, TG, HDL-C, LDL-C and eGFR, hypertension was significantly associated with ischemic stroke in men (OR: 2.783, 95% CI: 1.793, 4.320) and in women (OR: 4.800, 95% CI: 2.945, 7.822). However, hyperuricemia was significantly associated with ischemic stroke only in women (OR: 1.888, 95% CI: 1.244, 2.864).
Table 3
Multivariate logistic regression of hypertension and hyperuricemia for ischemic stroke by sex
 
Odds Ratio (95%CI)
Model 1
P value
Model 2
P value
Model 3
P value
Men
 Hypertension
4.700 (3.104, 7.116)
< 0.001
3.245 (2.119, 4.969)
< 0.001
2.783 (1.793, 4.320)
< 0.001
 Hyperuricemia
1.386 (0.940, 2.042)
0.099
1.627 (1.092, 2.424)
0.017
1.431 (0.919, 2.230)
0.113
Women
 Hypertension
9.849 (6.186, 15.680)
< 0.001
5.933 (3.680, 9.566)
< 0.001
4.800 (2.945, 7.822)
< 0.001
 Hyperuricemia
3.451 (2.413, 4.934)
< 0.001
2.529 (1.748, 3.661)
< 0.001
1.888 (1.244, 2.864)
0.003
Model 1: no adjust
Model 2: adjust for age, current smoking, current drinking
Model 3: adjust for age, current smoking, current drinking, BMI, FPG, TC, TG, HDL-C, LDL-C, eGFR
Abbreviations: BMI body mass index, FPG fasting plasma glucose, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, eGFR estimated glomerular filtration rate
Table 4 shows logistic regression of the joint effect of hypertension and hyperuricemia for ischemic stroke by sex. Participants without both hypertension and hyperuricemia were defined as the reference group. For men, participants with hypertension and hyperuricemia had 5.9 times higher risk of ischemic stroke than those without them in model 1. After adjusting for age, current smoking, current drinking, BMI, FPG, TC, TG, HDL-C, LDL-C and eGFR (model 3), participants with both of them had 4.1 times higher risk than those without them in men. For women, participants with hypertension and hyperuricemia had 24.3 times higher risk of ischemic stroke than those without them in model 1. After full adjustment of covariates, participants with both of them had 8.9 times higher risk than those without them. Finally, the interaction between hypertension and hyperuricemia was statistically significant only in women rather than in men after full adjustment.
Table 4
Multivariate logistic regression of the joint effect of hypertension and hyperuricemia for ischemic stroke by sex
 
Odds Ratio (95%CI)
Model 1
P value
Model 2
P value
Model 3
P value
Men
 HTN (−) HUA (−)
1 (reference)
 
1 (reference)
 
1 (reference)
 
 HTN (−) HUA (+)
2.516 (1.055, 6.000)
0.037
3.133 (1.299, 7.556)
0.011
2.890 (1.173, 7.121)
0.021
 HTN (+) HUA (−)
5.498 (3.409, 8.866)
< 0.001
3.777 (2.317, 6.157)
< 0.001
3.296 (1.998, 5.437)
< 0.001
 HTN (+) HUA (+)
5.917 (3.276, 10.688)
< 0.001
4.827 (2.642, 8.819)
< 0.001
4.059 (2.126, 7.751)
< 0.001
P value for interaction
 
0.007
 
0.011
 
0.073
Women
 HTN (−) HUA (−)
1 (reference)
 
1 (reference)
 
1 (reference)
 
 HTN (−) HUA (+)
2.136 (0.491, 9.284)
0.312
1.694 (0.387, 7.421)
0.484
1.353 (0.306, 5.991)
0.691
 HTN (+) HUA (−)
8.956 (5.465, 14.677)
< 0.001
5.492 (3.309, 9.114)
< 0.001
4.592 (2.740, 7.696)
< 0.001
 HTN (+) HUA (+)
24.254 (13.688, 42.976)
< 0.001
12.689 (7.027, 22.912)
< 0.001
8.913 (4.726, 16.809)
< 0.001
P value for interaction
 
< 0.001
 
< 0.001
 
< 0.001
Model 1: no adjust
Model 2: adjust for age, current smoking, current drinking
Model 3: adjust for age, current smoking, current drinking, BMI, FPG, TC, TG, HDL-C, LDL-C, eGFR
Abbreviations: BMI body mass index, FPG fasting plasma glucose, TC total cholesterol, TG triglyceride, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, eGFR estimated glomerular filtration rate

Discussion

This study demonstrated the independent and positive correlations between hypertension, hyperuricemia and ischemic stroke in a rural Chinese population. More importantly, our study for the first time implicated the joint effect between hypertension and hyperuricemia towards ischemic stroke only in women, not in men. Our results suggest the joint effect of hypertension and hyperuricemia on ischemic stroke in women may be greater than the sum of their individual effects. Therefore, our research may provide a simple explanation for the public to understand the harm of hypertension and hyperuricemia on ischemic stroke.
In this study, hypertension was positively associated with the risk of ischemic stroke in both men and women, which was consistent with previous studies [2123]. For a long time, elevated blood pressure has been associated with cardiovascular outcomes, and the correlation between hypertension and increased risk of stroke may be the strongest and easiest to recognize. Previous randomized controlled trials have suggested that lowering high blood pressure was positive treatment in patients with acute ischemic stroke [24, 25]. Evidence has shown that 80% of patients with acute ischemic stroke have hypertension, which is independently associated with poor prognosis [2628].
Uric acid is a product of human purine metabolism and is known to be related to many risk factors for strokes, such as high blood pressure, obesity, and diabetes [13, 15, 29]. In our study, elevated uric acid was also positively associated with the risk of ischemic stroke but only in women. Consistently, the Rotterdam Study showed that elevated uric acid was a positive risk factor for stroke only in women [30]. However, some previous studies revealed the correlation between hyperuricemia and stroke in both men and women, though stronger in women than in men [31, 32]. In addition, elevated uric acid may modestly increase the risk of stroke morbidity and mortality [11, 12]. In this study, we adopted the classic threshold of 6 and 7 mg/dL SUA for women and men to define hyperuricemia. However, many recent studies indicate that a cardiovascular SUA threshold was significantly lower than that used for the classic definition of hyperuricemia [33, 34]. Thus, further researches are warranted to explore the combination of hypertension and hyperuricemia on ischemic stroke.
Both hypertension and hyperuricemia were positively associated with the risk of ischemic stroke. Results of our study also show that the combination of hypertension and hyperuricemia had more than nine-fold higher risk than those without hypertension and hyperuricemia in women. However, the joint effect of hypertension and hyperuricemia was not observed in men. These findings showed that the interaction between hypertension and hyperuricemia was statistically significant only in women rather than in men after adjustment for age, current smoking, current drinking, BMI, TG, HDL-C and eGFR. The potential mechanism related to ischemic stroke might be arterial stiffness caused by the combination of hyperuricemia and hypertension [35, 36].
There are some reasons that may explain the gender differences in the joint effect of hypertension and hyperuricemia to ischemic stroke. Previous studies have shown that hyperuricemia was more relevant with hypertension in women than men [37, 38]. In addition, the Apolipoprotein Mortality Risk Study suggested that uric acid was more strongly associated to stroke in women than in men [32]. Furthermore, according to a systematical review, individuals with moderate hypertension had a higher risk of stroke in women than in men [39]. Therefore, the gender differences in the joint effect of hypertension and hyperuricemia to ischemic stroke were reasonable.
This study still has several limitations that need to be noticed. Firstly, the cross-sectional design cannot prove the causality between hypertension, hyperuricemia, and ischemic stroke. Secondly, this study was conducted in rural areas of northeast China, which may produce selection bias. Thirdly, although a recent study showed that diuretic-related hyperuricemia had the same cardiovascular risk as nondiuretic-related hyperuricemia, the lack of information on diuretics may influence the outcome of serum uric acid and ischemic stroke in hypertensive patients [40]. Finally, we did not collect information about the history of stroke and related medicine.

Conclusions

This study demonstrated the positive correlations between hypertension, hyperuricemia and ischemic stroke in a rural Chinese population. More importantly, our study demonstrated the joint effect between hypertension and hyperuricemia towards ischemic stroke only in women, not in men. Our results suggest the joint effect of hypertension and hyperuricemia on ischemic stroke in women may be greater than the sum of their individual effects.

Acknowledgements

We would like to express our gratitude to all those who exert their effects in achieving this study.

Declarations

This study was conducted in compliance with the ethical principle of the Declaration of Helsinki. All participants provided written informed consent and all procedures were performed in accordance with the ethical standards. The study protocol was approved by the Ethics Committee of China Medical University (Shenyang, China).
All co-authors and participants have been informed and given their consent for publication of this article.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Krishnamurthi R, Feigin V, Forouzanfar M, Mensah G, Connor M, Bennett D, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the global burden of disease study 2010. Lancet Glob Health. 2013;1(5):e259–81. https://doi.org/10.1016/S2214-109X(13)70089-5. Krishnamurthi R, Feigin V, Forouzanfar M, Mensah G, Connor M, Bennett D, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the global burden of disease study 2010. Lancet Glob Health. 2013;1(5):e259–81. https://​doi.​org/​10.​1016/​S2214-109X(13)70089-5.
2.
Zurück zum Zitat Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet (London, England). 2016;387(10015):251–72. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet (London, England). 2016;387(10015):251–72.
5.
Zurück zum Zitat Niska R. Blood pressure measurements at emergency department visits by adults: United States. NCHS data brief. 2007-2008;2011(72):1–8. Niska R. Blood pressure measurements at emergency department visits by adults: United States. NCHS data brief. 2007-2008;2011(72):1–8.
7.
Zurück zum Zitat Ishitsuka K, Kamouchi M, Hata J, Fukuda K, Matsuo R, Kuroda J, et al. High blood pressure after acute ischemic stroke is associated with poor clinical outcomes: Fukuoka Stroke Registry. Hypertension (Dallas, Tex : 1979). 2014;63(1):54–60. Ishitsuka K, Kamouchi M, Hata J, Fukuda K, Matsuo R, Kuroda J, et al. High blood pressure after acute ischemic stroke is associated with poor clinical outcomes: Fukuoka Stroke Registry. Hypertension (Dallas, Tex : 1979). 2014;63(1):54–60.
8.
Zurück zum Zitat Kannel W, Wolf P, Verter J, McNamara P. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham study. JAMA. 1970;214(2):301–10.CrossRef Kannel W, Wolf P, Verter J, McNamara P. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham study. JAMA. 1970;214(2):301–10.CrossRef
9.
Zurück zum Zitat Kannel W, Wolf P, McGee D, Dawber T, McNamara P, Castelli W. Systolic blood pressure, arterial rigidity, and risk of stroke. The Framingham study. JAMA. 1981;245(12):1225–9.CrossRef Kannel W, Wolf P, McGee D, Dawber T, McNamara P, Castelli W. Systolic blood pressure, arterial rigidity, and risk of stroke. The Framingham study. JAMA. 1981;245(12):1225–9.CrossRef
19.
Zurück zum Zitat PHF G, ERM S. Pharmacotherapy for hyperuricemia in hypertensive patients. Cochrane Database Syst Rev. 2017;4:Cd008652. PHF G, ERM S. Pharmacotherapy for hyperuricemia in hypertensive patients. Cochrane Database Syst Rev. 2017;4:Cd008652.
20.
Zurück zum Zitat Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72. https://doi.org/10.1001/jama.289.19.2560. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72. https://​doi.​org/​10.​1001/​jama.​289.​19.​2560.
21.
Zurück zum Zitat Gąsecki D, Coca A, Cunha P, Hering D, Manios E, Lovic D, et al. Blood pressure in acute ischemic stroke: challenges in trial interpretation and clinical management: position of the ESH working group on hypertension and the brain. J Hypertens. 2018;36(6):1212–21. https://doi.org/10.1097/HJH.0000000000001704. Gąsecki D, Coca A, Cunha P, Hering D, Manios E, Lovic D, et al. Blood pressure in acute ischemic stroke: challenges in trial interpretation and clinical management: position of the ESH working group on hypertension and the brain. J Hypertens. 2018;36(6):1212–21. https://​doi.​org/​10.​1097/​HJH.​0000000000001704​.
24.
33.
Zurück zum Zitat Maloberti A, Giannattasio C, Bombelli M, Desideri G, Cicero AFG, Muiesan ML, et al. Hyperuricemia and risk of cardiovascular outcomes: the experience of the URRAH (uric acid right for heart health) project. High Blood Press Cardiovasc Prev. 2020;27(2):121–8. https://doi.org/10.1007/s40292-020-00368-z. Maloberti A, Giannattasio C, Bombelli M, Desideri G, Cicero AFG, Muiesan ML, et al. Hyperuricemia and risk of cardiovascular outcomes: the experience of the URRAH (uric acid right for heart health) project. High Blood Press Cardiovasc Prev. 2020;27(2):121–8. https://​doi.​org/​10.​1007/​s40292-020-00368-z.
35.
Zurück zum Zitat Rebora P, Andreano A, Triglione N, Piccinelli E, Palazzini M, Occhi L, et al. Association between uric acid and pulse wave velocity in hypertensive patients and in the general population: a systematic review and meta-analysis. Blood Press. 2020;29(4):220–31. https://doi.org/10.1080/08037051.2020.1735929. Rebora P, Andreano A, Triglione N, Piccinelli E, Palazzini M, Occhi L, et al. Association between uric acid and pulse wave velocity in hypertensive patients and in the general population: a systematic review and meta-analysis. Blood Press. 2020;29(4):220–31. https://​doi.​org/​10.​1080/​08037051.​2020.​1735929.
36.
Zurück zum Zitat Maloberti A, Rebora P, Andreano A, Vallerio P, De Chiara B, Signorini S, et al. Pulse wave velocity progression over a medium-term follow-up in hypertensives: Focus on uric acid. J Clin Hypertension (Greenwich, Conn). 2019;21(7):975–83. Maloberti A, Rebora P, Andreano A, Vallerio P, De Chiara B, Signorini S, et al. Pulse wave velocity progression over a medium-term follow-up in hypertensives: Focus on uric acid. J Clin Hypertension (Greenwich, Conn). 2019;21(7):975–83.
38.
40.
Metadaten
Titel
Combined effect of hypertension and hyperuricemia on ischemic stroke in a rural Chinese population
verfasst von
Peng Sun
Mengqi Chen
Xiaofan Guo
Zhao Li
Ying Zhou
Shasha Yu
Hongmei Yang
Guozhe Sun
Liqiang Zheng
Yingxian Sun
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Public Health / Ausgabe 1/2021
Elektronische ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-021-10858-x

Weitere Artikel der Ausgabe 1/2021

BMC Public Health 1/2021 Zur Ausgabe