Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2015

Open Access 01.12.2015 | Research

Comparative proteomic analysis of spermatozoa isolated by swim-up or density gradient centrifugation

verfasst von: Stefania Luppi, Monica Martinelli, Elisa Giacomini, Elena Giolo, Gabriella Zito, Rodolfo C Garcia, Giuseppe Ricci

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2015

Abstract

Background

Reports about the morphologic and functional characteristics of spermatozoa prepared by density gradient centrifugation (DC) or swim-up (SU) have produced discordant results. We have performed a proteomic comparison of cells prepared by DC and SU providing a molecular insight into the differences between these two methods of sperm cell isolation.

Methods

Protein maps were obtained by 2-dimensional (2-D) separations consisting of isoelectrofocusing (IEF) from pI 3 to 11 followed by SDS-polyacrylamide gel electrophoresis. 2-D gels were stained with Sypro Ruby. Map images of DC and SU spermatozoa were compared using dedicated software. Intensities of a given spot were considered different between DC and SU when their group mean differed by >1.5-fold (p < 0.05, Anova).

Results

No differences were observed for 853 spots, indicating a 98.7% similarity between DC and SU. Five spots were DC > SU and 1 was SU > DC. Proteins present in 3 of the differential spots could be identified. One DC > SU spot contained lactate dehydrogenase C and gamma-glutamylhydrolase, a second DC > SU spot contained fumarate hydratase and glyceraldehyde-3-phosphate dehydrogenase-2, and a SU > DC spot contained pyruvate kinase M1/M2.

Conclusions

The differences in protein levels found on comparison of DC with SU spermatozoa indicate possible dissimilarities in their glycolytic metabolism and DNA methylation and suggest that DC cells may have a better capacitation potential.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12958-015-0027-y) contains supplementary material, which is available to authorized users.
Rodolfo C Garcia and Giuseppe Ricci contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SL participated in the study conception and design, acquisition, analysis and interpretation of data; MM, EGia, GZ and EGio in acquisition, analysis and interpretation of data and revising; GR in the study conception and design, interpretation of data and revising; RCG in the study conception and design, acquisition, analysis and interpretation of data, drafting and revising. All authors read and approved the final manuscript.

Background

Sperm quality is crucial to assisted reproductive techniques [1]. Regarding the two most conventional methods of sperm separation, SU and DC, recovery rates of total motile, progressive motile and viable sperm cells have been shown to be higher after DC than after SU [2,3]. Instead, Chantler et al. [4] observed that the proportion of fast spermatozoa was enhanced in SU preparations. Always comparing DC and SU, Monqaut et al. [5] reported less vacuolization in SU and both Prakash et al. [6] and Hammadeh et al. [7] found a higher percentage of morphologically normal spermatozoa after DC. Xue et al. [8] reported a lower deformity rate and DNA fragmentation index after DC. According to Fraczek et al. [9], spermatozoa selected by SU show a slightly better viability and morphology than cells isolated by DC and a much higher capacity to inhibit the secretion of reactive oxygen intermediates (ROIs) by stimulated leukocytes. Other authors state that ROIs produced during the SU procedure can have detrimental effects on their viability, motility, membrane function and penetration ability [10-12]. It has been postulated that the SU technique may not be convenient to isolate sperm cells from ejaculates showing a high level of ROI production [13]. Fertilization rates have been observed to be either the same for DC and SU [14] or higher for DC [15,16]. Pregnancy rates for SU against DC were reported to be 46.2% and 57.1% respectively for intra-cytoplasmic fertilization [17]. After in-vitro sperm-egg fertilization, pregnancy rates using SU or DC cells were reported to be, respectively, 21.1% and 33.3% [18] or 33.3% and 32.8% [7].
Protein fingerprinting affords an evaluation of cells at molecular level. Cell protein compositions can be compared by analyzing 2-dimensional protein spot maps obtained by isoelectric focusing (IEF) followed by dodecyl sulfate gel electrophoresis (SDS-PAGE) [19,20]. IEF separates proteins on gel strips according to their isoelectric point (pI), while SDS-PAGE resolves molecules as a function of their molecular mass. The use of the protein dye Sypro Ruby [21] and the optimization of Coomassie blue staining [22] have improved spot detection sensitivity and quantification ranges. Approximately 1,000 protein spots can be visualized in a 2-D separation. Spot excision, in-gel proteolysis and mass spectrometry results in protein identifications [23]. A crucial feature of 2-D techniques is the detection of post-translational modifications such as phosphorylation, glycosylation, proteolytic cleavages, etc., which are often related to changes in function. Comparative proteomic analyses of sperm cells have been performed in relationship with different features such as capacitation [24], motility [25,26], globozoospermia [27], semen oxidative stress [28,29], poor blastocyte development after intra-cytoplasmic sperm injection [30] and lack of binding to the zona pellucida [31], all of which influence fertility. To date, no studies have compared the proteomic profiles of spermatozoa prepared by SU or DC. We report here such an analysis, covering the pI range 3–11 and molecular masses from 175 to 6 kDa.

Methods

This study was conducted from 2009 till 2011 after approval by the Institutional Review Board of the Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy (RC 35/08), in agreement with the WMA Declaration of Helsinki about Ethical Principles for Medical Research. Signed informed consent was obtained from each participant of this study.

Sperm cells preparation

Semen samples from 4 normozoospermic Caucasian subjects (mean age 34.8 yrs, range 22–44) were processed according to World Health Organization guidelines [32] as previously described [3]. Spermatozoa were prepared by swim-up (SU) or density gradient centrifugation (DC) [3,33]. Briefly, SU cells were obtained from the upper layer after layering medium containing 0.5% human serum albumin at a 45° angle on a suspension of washed sperm cells and incubating at 37°C for 45 min. DC cells consisted of the resuspended pellet obtained after loading liquefied semen on a 40-80% double density gradient (PureSperm, Nidacon International, AB, Goteborg, Sweden) and centrifuging at 300 × g for 20 min. Motilities of whole semen and cells prepared by DC and SU were determined (n = 4).

Protein isolation and separation

Sperm cells (3 × 106) were washed twice with 9% (v/v) sucrose and solubilized with 250 μl of DeStreak® rehydration solution (GE Healthcare, Uppsala, Sweden) with the addition of 1% (v/v) IPG 3–11 solution (GE Healthcare, Uppsala, Sweden). This solubilization mixture contains optimized concentrations of urea, thiourea, CHAPS detergent, DeStreak® Reagent and ampholytes. It is a strong protein solubilizer that also prevents protein streaking and oxidation during the isoelectrophoretic run. Samples were processed for IEF by sonicating at amplitude 10 μm for 5 sec followed by centrifugation at 10 000 × g for 3 min, as previously described [34]. The particle-free supernatants after sonication were used for in-gel swelling of 13 cm long IEF strips pI 3–11 (GE Healthcare, Uppsala, Sweden). Focusing was performed on a Protean II IEF cell (BioRad, Hercules, CA, USA) up to 48 000 VXhr. Focused proteins were separated by placing the IEF strips on 14% SDS-PAGE gels (W160XL140X1.5 mm) along with 6–175 kDa markers. Electrophoresis was conducted so as to keep within gels proteins of molecular mass down to 6 kDa.

Protein visualization and calculation of parameters

Gels were fixed for 1 h in 10% (v/v) ethanol-7% (v/v) acetic acid, rinsed with water and stained with Sypro Ruby (Invitrogen, Eugene, OR, USA) for 1 day. Background fluorescence was washed off and Sypro Ruby images were analyzed as described below. Imaged gels were washed with water, stained with Colloidal G-250 Coomassie Blue [22] and scanned at 300 dpi in an Epson Expression 1680 Pro (Epson, Long Beach, CA, USA).
Isoelectric point values were calculated according to the pI curve of 3–11 non-linear Immobiline DryStrip gels [35]. Experimental molecular masses were calculated from semi-logarithmic (log10) curves of molecular mass vs. migration distance.

Image analysis

Sypro Ruby-stained gel images were analyzed at the Ludesi Analysis Center (Lund, Sweden, http://​www.​ludesi.​com) using the Redfin 3 software. All-to-all-spot gel matching avoided the bias of reference gels. The cumulative staining intensity of each spot is referred to as volume. Spot intensities were background and noise corrected. Gels were normalized according to their total protein content taken as the sum of all spot intensities. Normalization made spot volumes comparable between gel images, eliminating differences from staining, protein loading and/or scanning velocity. A comprehensive total of 864 spots per gel were detected. Proteins were considered as differentially expressed when the mean spot intensity differed by > 1.5-fold (p < 0.05, Anova) on comparison of SU with DC.

Protein identification by mass spectrometry

Protein spots showing statistically significant differences in intensity between DC and SU were excised from Coomassie-stained gels, digested with trypsin and identified by nano LC-ESI-MS/MS by Proteome Factory AG (Berlin, Germany). An Agilent 1100 nanoLC system (Agilent, Santa Clara, CA, USA) coupled to an ABI Q-Star XL Q-TOF mass spectrometer (Applied Biosystems, Foster City, CA, USA) were used. The search engine was Mascot (Matrix Science, Boston, MA, USA). Selection filters were: MOWSE (Molecular Weight Search) score ≥ 70, peptide coverage ≥ 10% and an acceptable correspondence between experimental and theoretical molecular masses and pI values.

Results

Sperm cell parameters

All samples were normospermic (152 × 106/mL ± 86 × 106/mL), of progressive motility 64.8% ± 15.2% (means ± SD, n = 4), normal pH and viscosity, and contained 0.04 × 106/mL ± 0.07 × 106/mL leucocytes based on the standard peroxidase method [32] and 4.7 × 106/mL ± 7.2 × 106/mL round cells (means ± SD, n = 4). Progressive motility was 77.8% ± 3.9% after DC and 87.5% ± 9.6% after SU sperm preparation (means ± SD, n = 4), the difference not being significant (Anova, paired, no replicates).

2-dimensional protein separations and comparative analysis

Spermatozoal proteins from DC or SU cells were separated by IEF followed by SDS-PAGE and spots were visualized by Sypro Ruby staining (Figure 1) and image analyzed using the Redfin 3 software as explained in detail in Methods. The mean intensity of 853/864 spots (98.7% of the total) differed by <1.5-fold (p < 0.05, Anova) on comparison of DC with SU. Differences ≥1.5-fold were observed for 11 spots, with 5 being unreliable due to horizontal streaking and/or strong background (Figure 2). Five of the 6 reliable spots (#33, #214, #287, #303 and #403) were 2.5- to 3.9-fold more intense in DC than in SU, while spot #557 was 3.8-fold stronger in SU (Figure 3, Table 1).
Table 1
Proteins differentially expressed in spermatozoa prepared by DC with respect to SU
Spot #
Protein identity
UniProtK accession number
M r /p I theor.
M r /p I exper.
Seq. cover.
Nr. pept.
Score
DC/SU fold change
33
Lactate dehydrogenase, C chain
P07864
36.3/7.1
34.7/7.0
39%
15
811
2.47
33
γ-Glutamylhydrolase
O92820
33.6/7.2
34.7/7.0
19%
5
168
2.47
214
Fumarate hydratase
P07954
50.0/7.0
51.3/7.8
39%
22
805
3.90
214
Glyceraldehyde-3-P dehydrogenase 2/S
O14556
44.5/8.4
51.3/7.8
23%
9
226
3.90
557
Pyruvate kinase M1/M2
P14618
57.8/7.9
69.2/7.9
35%
20
673
0.26
Theor.: Theoretical; Exper.: Experimental; Nr. Pept.: Number of matched peptides; Score: MOWSE score.
See Additional file 1, Supplementary information.

Protein identifications

Differential spots were excised from gels. Nano LC-ESI-MS/MS of the tryptic peptides obtained from each spot led to the identification of the following proteins: lactate dehydrogenase chain C (LDH-C, spot #33), γ-glutamyl hydrolase (γ-GH, spot #33), fumarate hydratase (FH, spot #214), glyceraldehyde-3-phosphate dehydrogenase-2 (GAPDH-2, spot #214) and pyruvate kinase M1/M2 (PKM, spot #557) (Table 1 and Additional file 1, Supplementary information). Spots 33 and 214 contained 2 co-migrating proteins each, while spot 557 contained one protein. The remaining 3 spots did not yield results. It is not possible to establish the precise contribution of each of the co-migrating proteins to the differences in intensity between DC and SU observed for spots 33 and 214.
The experimental pIs of LDH-C, γ-GH and PKM were in good agreement with the theoretical ones, whereas those of FH and GADPH-2 differed by + 0.8 and −0.6 units from the theoretical values, respectively (Table 1). The experimental molecular masses of LDH-C, γ-GH and FH were within ± 3.5% (mean, SD = 1.1) of their theoretical values. Instead, the experimental molecular masses of GADPH-2 and PKM were 15.3% and 19.7% above their theoretical values, respectively (Table 1).

Discussion

Our work compared for the first time the 2-D protein pattern of sperm cells obtained by DC and SU. We visualized protein spots with the sensitive stain Sypro Ruby [21] and obtained maps from 6 to 175 kDa and pI 3 to 11, a wider range than that of published sperm cell 2-D maps [36-39]. 2-D comparative analysis offers advantages such as the visualization of post-translational modifications (PTMs) and proteolytic fragments as well as protein level quantifications based on the intensity of each spot, as opposed to spectral counts of peptides. The latter is an important consideration because peptides could originate in unmodified, post-translationally modified or fragmented proteins. The protein composition of sperm cells provides information regarding cell function, therefore is closely linked to fertility [40]. Membrane proteins are involved in capacitation, binding to the oocyte and the subsequent acrosome reaction. Acrosomal proteins participate in the process of oocyte penetration. Nuclear proteins are relevant to the chromatin condensation state. Mitochondrial proteins, concentrated in the midpiece, are central regarding energy metabolism. Tail proteins are crucial for sperm cell progressive movement. Cytosolic proteins involved in metabolism and glycolytic enzymes of the fibrous sheath are also essential. Protein expression levels are therefore related to cell functions and fertilization ability.
The comparison of DC with SU cells we performed showed no statistically significant spot intensity differences ≤ 1.5-fold (p < 0.05) for 98.7% of the total number of spots. This suggests a strong similarity in the protein composition of sperm cells prepared by either of these 2 methods. The intensity of 5 spots was significantly stronger in DC while one spot was more intense in SU. Four of the proteins overexpressed in DC cells were identified as lactate dehydrogenase chain C (LDH-C), γ-glutamyl hydrolase (γ-GH), fumarate hydratase (FH) and glyceraldehyde-3-phosphate dehydrogenase-2 (GAPDH-2). Instead, pyruvate kinase M1/M2 (PKM) levels were higher in SU cells. No stress-related proteins were found.
LDH-C, FH, GADPH-2 and PKM have been reported in the human sperm cell proteome [37-39,24]. LDH-C and GADPH-2 are unique to sperm cells [41,42]. FH, γ-GH, GAPDH-2 and PKM have been described as targets of S-nitrosylation in human spermatozoa isolated by DC [43]. GADPH-2, PKM and LDH are enzymes of the glycolysis pathway [44].
The differences observed between experimental and theoretical pIs observed for FH and GADPH-2 could be due to PTMs that either eliminate or create charges. FH contains 10% of acidic amino-acids liable to derivatization, which would result in an increase in pI. Alternatively, arginylation might have occurred [45]. GADPH-2 could have become more negatively charged e.g. due to the derivatization of basic aminoacids or by phosphorylation. In fact, addition of one phosphate group would result in a theoretical decrease of 0.64 pI units to pI 7.75 according to PhosphoSitePlus® (http://​www.​phosphosite.​org/​isoelectricCalcA​ction.​do?​id=​24581&​residues=​20) [46], in agreement with the pI value of 7.8 we observed.
The fact that the experimental molecular masses of GADPH-2 and PKM were 15.3% and 19.7% above their theoretical values, respectively, could be an indication of PTMs or of an anomalous migration on SDS-PAGE. GADPH-2 has indeed been reported to contain a proline-rich stretch within its extra N-terminal portion conferring biochemical properties such as insolubility and a slow electrophoretic migration [42,47]. Slow migration manifests itself as an apparent greater molecular mass.
γ-GH is a lysosomal endo/exo-peptidase catalyzing the hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are substrates for several enzymes involved in the generation of the primary methyl group donor S-adenosylmethionine. Hence, γ-GH modulation may affect DNA methylation, which is an important epigenetic determinant in gene expression and maintenance of DNA integrity. In cancer cell lines, γ-GH over-expression has been reported to decrease global DNA methylation and DNA methyl-transferase activity [48].
FH participates in the mitochondrial tricarboxylic acid cycle. Since we detected a not yet reported FH form with a pI considerably higher than the theoretical value, no speculation on the role of the increase of this particular FH form in DC cells can be made.
The diminished levels of PKM we observed in DC cells could lead to a reduction in glycolysis because PKM acts at the last, rate-limiting step of this pathway. Glycolysis is the primary energy pathway for sperm metabolism and supplies ATP to the flagellar dynein ATPase motility system [49]. Since the motility of DC and SU cells was not observed to be significantly different, the lower PKM levels in DC cells may be unimportant at least in conditions of a satisfactory nutrient supply to sperm cells.
GADPH-2 is a glycolytic enzyme catalyzing the oxidative phosphorylation of glyceraldehyde-3-phosphate (GAL-3-P) to yield 1,3-diphosphoglycerate and NADH. 1,3-diphosphoglycerate is then used by phosphoglycerate kinase to produce ATP. Mice lacking GADPHS, the ortholog of human GADPH-2, show a 90% reduction in cellular ATP and profound defects in motility and infertility [50]. GADPH-2 is bound to the fibrous sheath of sperm flagella. Of note, an increase in GADPH-2 has been reported in reactive oxygen species-negative sperm cells [28] which, in relationship with our results, would be consistent with DC cells producing reduced amounts of oxygen metabolites compared with SU cells. A very recent report describes GADPH-2 as localized in the apical part of the sperm head as well as in the principal piece of the flagellum, suggesting a potential role of GAPDH-2 together with other proteins in the secondary or post-acrosome reaction binding of sperm cells to oocytes [47].
LDH-C was found over-expressed in DC cells. This enzyme could employ the NADH generated during GAL-3-P oxidation by GADPH-2 for the reduction of pyruvate to lactate. Interestingly, sperm ATP levels, motility, hyperactivation and tyrosine phosphorylation have been found to increase in the presence of exogenous pyruvate in combination with glucose. This led to the proposal that pyruvate may promote male fertility by enhancing the glycolytic flux through its conversion to lactate by LDH-C, resulting in an improved capacitation [51]. The higher level of LDH-C in DC cells compared with SU cells could assist such a scenario, which would be favourable to successful in-vitro fertilization outcomes.

Conclusions

On the basis of the differences in protein levels observed comparing DC with SU cells, there could be dissimilarities in their glycolytic capacity and in DNA methylation. Capacitation and post-acrosome binding of DC cells are potentially more favourable.

Acknowledgements

This work was supported by a grant from the Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy (RC 35/08), and the 2008–2010 annual budgets of the Leukocyte Biology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy. The funding institutions had no role in the design, collection, analysis and interpretation of data; writing of the manuscript or decision to submit the manuscript for publication.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SL participated in the study conception and design, acquisition, analysis and interpretation of data; MM, EGia, GZ and EGio in acquisition, analysis and interpretation of data and revising; GR in the study conception and design, interpretation of data and revising; RCG in the study conception and design, acquisition, analysis and interpretation of data, drafting and revising. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Paasch U, Grunewald S, Glander HJ. Sperm selection in assisted reproductive techniques. Soc Reprod Fertil Suppl. 2007;65:515–25.PubMed Paasch U, Grunewald S, Glander HJ. Sperm selection in assisted reproductive techniques. Soc Reprod Fertil Suppl. 2007;65:515–25.PubMed
2.
Zurück zum Zitat Ding DC, Liou SM, Huang LY, Liu JY, Wu GJ. Effects of four methods of sperm preparation on motion characteristics and nitric oxide concentration in laboratory-prepared oligospermia. Zhonghua Yi Xue Za Zhi (Taipei). 2000;63:822–7. Ding DC, Liou SM, Huang LY, Liu JY, Wu GJ. Effects of four methods of sperm preparation on motion characteristics and nitric oxide concentration in laboratory-prepared oligospermia. Zhonghua Yi Xue Za Zhi (Taipei). 2000;63:822–7.
3.
Zurück zum Zitat Ricci G, Perticarari S, Boscolo R, Montico M, Guaschino S, Presani G. Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. Fertil Steril. 2009;91:632–8.CrossRefPubMed Ricci G, Perticarari S, Boscolo R, Montico M, Guaschino S, Presani G. Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. Fertil Steril. 2009;91:632–8.CrossRefPubMed
4.
Zurück zum Zitat Chantler E, Abraham-Peskir J, Roberts C. Consistent presence of two normally distributed sperm subpopulations within normozoospermic human semen: a kinematic study. Int J Androl. 2004;27:350–9.CrossRefPubMed Chantler E, Abraham-Peskir J, Roberts C. Consistent presence of two normally distributed sperm subpopulations within normozoospermic human semen: a kinematic study. Int J Androl. 2004;27:350–9.CrossRefPubMed
5.
Zurück zum Zitat Monqaut AL, Zavaleta C, Lopez G, Lafuente R, Brassesco M. Use of high magnification microscopy for the assessment of sperm recovered after two different sperm processing methods. Fertil Steril. 2011;95:277–80.CrossRefPubMed Monqaut AL, Zavaleta C, Lopez G, Lafuente R, Brassesco M. Use of high magnification microscopy for the assessment of sperm recovered after two different sperm processing methods. Fertil Steril. 2011;95:277–80.CrossRefPubMed
6.
Zurück zum Zitat Prakash P, Leykin L, Chen Z, Toth T, Sayegh R, Schiff I, et al. Preparation by differential gradient centrifugation is better than swim-up in selecting sperm with normal morphology (strict criteria). Fertil Steril. 1998;69:722–6.CrossRefPubMed Prakash P, Leykin L, Chen Z, Toth T, Sayegh R, Schiff I, et al. Preparation by differential gradient centrifugation is better than swim-up in selecting sperm with normal morphology (strict criteria). Fertil Steril. 1998;69:722–6.CrossRefPubMed
7.
Zurück zum Zitat Hammadeh ME, Kűhnen A, Amer AS, Rosenbaum P, Schmidt W. Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl. 2001;24:360–8.CrossRefPubMed Hammadeh ME, Kűhnen A, Amer AS, Rosenbaum P, Schmidt W. Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl. 2001;24:360–8.CrossRefPubMed
8.
Zurück zum Zitat Xue X, Wang WS, Shi JZ, Zhang SL, Zhao WQ, Shi WH, et al. Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J Assist Reprod Genet. 2014;31:1161–6.CrossRefPubMed Xue X, Wang WS, Shi JZ, Zhang SL, Zhao WQ, Shi WH, et al. Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J Assist Reprod Genet. 2014;31:1161–6.CrossRefPubMed
9.
Zurück zum Zitat Fraczek M, Sanocka D, Kurpisz M. Interaction between leucocytes and human spermatozoa influencing reactive oxygen intermediates release. Int J Androl. 2004;27:69–75.CrossRefPubMed Fraczek M, Sanocka D, Kurpisz M. Interaction between leucocytes and human spermatozoa influencing reactive oxygen intermediates release. Int J Androl. 2004;27:69–75.CrossRefPubMed
10.
Zurück zum Zitat Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.PubMed Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.PubMed
11.
Zurück zum Zitat Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900.CrossRefPubMed Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900.CrossRefPubMed
12.
Zurück zum Zitat Vigil P, Wohler C, Bustos-Obregon E, Comhaire F, Morales P. Assessment of sperm function in fertile and infertile men. Andrologia. 1994;26:55–60.CrossRefPubMed Vigil P, Wohler C, Bustos-Obregon E, Comhaire F, Morales P. Assessment of sperm function in fertile and infertile men. Andrologia. 1994;26:55–60.CrossRefPubMed
14.
Zurück zum Zitat Tanphaichitr N, Agulnick A, Seibel M, Taymor M. Comparison of the in vitro fertilization rate by human sperm capacitated by multiple-tube swim-up and Percoll gradient centrifugation. J In Vitro Fert Embryo Transf. 1988;5:119–22.CrossRefPubMed Tanphaichitr N, Agulnick A, Seibel M, Taymor M. Comparison of the in vitro fertilization rate by human sperm capacitated by multiple-tube swim-up and Percoll gradient centrifugation. J In Vitro Fert Embryo Transf. 1988;5:119–22.CrossRefPubMed
15.
Zurück zum Zitat Jaroudi KA, Carver-Ward JA, Hamilton CJ, Sieck UV, Sheth KV. Percoll semen preparation enhances human oocyte fertilization in male-factor infertility as shown by a randomized cross-over study. Hum Reprod. 1993;8:1438–42.PubMed Jaroudi KA, Carver-Ward JA, Hamilton CJ, Sieck UV, Sheth KV. Percoll semen preparation enhances human oocyte fertilization in male-factor infertility as shown by a randomized cross-over study. Hum Reprod. 1993;8:1438–42.PubMed
16.
Zurück zum Zitat Sapienza F, Verheyen G, Tournaye H, Janssens R, Pletincx I, Derde M, et al. An auto-controlled study in in-vitro fertilization reveals the benefit of Percoll centrifugation to swim-up in the preparation of poor-quality semen. Hum Reprod. 1993;8:1856–62.PubMed Sapienza F, Verheyen G, Tournaye H, Janssens R, Pletincx I, Derde M, et al. An auto-controlled study in in-vitro fertilization reveals the benefit of Percoll centrifugation to swim-up in the preparation of poor-quality semen. Hum Reprod. 1993;8:1856–62.PubMed
17.
Zurück zum Zitat Borges Jr E, Setti AS, Vingris L, Figueira RC, Braga DP, Iaconelli Jr A. Intracytoplasmic morphologically selected sperm injection outcomes: the role of sperm preparation techniques. J Assist Reprod Genet. 2013;30:849–54.CrossRefPubMedCentralPubMed Borges Jr E, Setti AS, Vingris L, Figueira RC, Braga DP, Iaconelli Jr A. Intracytoplasmic morphologically selected sperm injection outcomes: the role of sperm preparation techniques. J Assist Reprod Genet. 2013;30:849–54.CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Van der Zwalmen P, Bertin-Segal G, Geerts L, Debauche C, Schoysman R. Sperm morphology and IVF pregnancy rate: comparison between Percoll gradient centrifugation and swim-up procedures. Hum Reprod. 1991;6:581–8.PubMed Van der Zwalmen P, Bertin-Segal G, Geerts L, Debauche C, Schoysman R. Sperm morphology and IVF pregnancy rate: comparison between Percoll gradient centrifugation and swim-up procedures. Hum Reprod. 1991;6:581–8.PubMed
19.
Zurück zum Zitat Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng. 2001;18:195–205.CrossRefPubMed Ong SE, Pandey A. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng. 2001;18:195–205.CrossRefPubMed
20.
Zurück zum Zitat Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73:2064–77.CrossRefPubMed Rabilloud T, Chevallet M, Luche S, Lelong C. Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics. 2010;73:2064–77.CrossRefPubMed
21.
Zurück zum Zitat Nishihara JC, Champion KM. Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis. 2002;23:2203–15.CrossRefPubMed Nishihara JC, Champion KM. Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis. 2002;23:2203–15.CrossRefPubMed
22.
Zurück zum Zitat Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–33.CrossRefPubMed Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–33.CrossRefPubMed
23.
Zurück zum Zitat Beranova-Giorgianni S. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends Analyt Chem. 2003;22:273–81.CrossRef Beranova-Giorgianni S. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends Analyt Chem. 2003;22:273–81.CrossRef
24.
Zurück zum Zitat Secciani F, Bianchi L, Ermini L, Cianti R, Armini A, La Sala GB, et al. Protein profile of capacitated versus ejaculated human sperm. J Proteome Res. 2009;8:3377–89.CrossRefPubMed Secciani F, Bianchi L, Ermini L, Cianti R, Armini A, La Sala GB, et al. Protein profile of capacitated versus ejaculated human sperm. J Proteome Res. 2009;8:3377–89.CrossRefPubMed
25.
Zurück zum Zitat Martinez-Heredia J, De Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Human Reprod. 2008;23:783–91.CrossRef Martinez-Heredia J, De Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Human Reprod. 2008;23:783–91.CrossRef
26.
Zurück zum Zitat Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, et al. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod. 2010;16:452–62.CrossRefPubMed Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, et al. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod. 2010;16:452–62.CrossRefPubMed
27.
Zurück zum Zitat Liao T-T, Xiang Z, Zhu W-B, Fan L-Q. Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl. 2009;11:683–93.CrossRefPubMedCentralPubMed Liao T-T, Xiang Z, Zhu W-B, Fan L-Q. Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl. 2009;11:683–93.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Hamada A, Sharma R, Du Plessis SS, Willard B, Yadav SP, Sabanegh E, et al. Two-dimensional differential in-gel electrophoresis–based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99:1216–26.CrossRefPubMed Hamada A, Sharma R, Du Plessis SS, Willard B, Yadav SP, Sabanegh E, et al. Two-dimensional differential in-gel electrophoresis–based proteomics of male gametes in relation to oxidative stress. Fertil Steril. 2013;99:1216–26.CrossRefPubMed
29.
Zurück zum Zitat Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, Willard B, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013;11:48.CrossRefPubMedCentralPubMed Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, Willard B, et al. Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol. 2013;11:48.CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB, Katz-Jaffe MG. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril. 2014;102:692–9.CrossRefPubMed McReynolds S, Dzieciatkowska M, Stevens J, Hansen KC, Schoolcraft WB, Katz-Jaffe MG. Toward the identification of a subset of unexplained infertility: a sperm proteomic approach. Fertil Steril. 2014;102:692–9.CrossRefPubMed
31.
Zurück zum Zitat Frapsauce C, Pionneau C, Bouley J, Delarouziere V, Berthaut I, Ravel C, et al. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil Steril. 2014;102:372–80.CrossRefPubMed Frapsauce C, Pionneau C, Bouley J, Delarouziere V, Berthaut I, Ravel C, et al. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil Steril. 2014;102:372–80.CrossRefPubMed
32.
Zurück zum Zitat WHO. World Health Organization Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva, Switzerland: WHO Press; 2010. WHO. World Health Organization Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva, Switzerland: WHO Press; 2010.
33.
Zurück zum Zitat Ricci G, Perticarari S, Boscolo R, Simeone R, Martinelli M, Fischer-Tamaro L, et al. Leukocytospermia and sperm preparation–a flow cytometric study. Reprod Biol Endocrinol. 2009;7:128.CrossRefPubMedCentralPubMed Ricci G, Perticarari S, Boscolo R, Simeone R, Martinelli M, Fischer-Tamaro L, et al. Leukocytospermia and sperm preparation–a flow cytometric study. Reprod Biol Endocrinol. 2009;7:128.CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Woschnagg CW, Forsberg J, Engström Å, Odreman F, Venge P, Garcia RC. The human eosinophil proteome. Changes induced by birch pollen allergy. J Proteome Res. 2009;8:2720–32.CrossRefPubMed Woschnagg CW, Forsberg J, Engström Å, Odreman F, Venge P, Garcia RC. The human eosinophil proteome. Changes induced by birch pollen allergy. J Proteome Res. 2009;8:2720–32.CrossRefPubMed
36.
Zurück zum Zitat Pixton KL, Deeks ED, Flesch FM, Moseley FL, Bjorndahl L, Ashton PR, et al. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod. 2004;19:1438–47.CrossRefPubMed Pixton KL, Deeks ED, Flesch FM, Moseley FL, Bjorndahl L, Ashton PR, et al. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod. 2004;19:1438–47.CrossRefPubMed
37.
Zurück zum Zitat Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006;6:4356–69.CrossRefPubMed Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006;6:4356–69.CrossRefPubMed
38.
Zurück zum Zitat De Mateo S, Martinez-Heredia J, Estanyol JM, Dominguez-Fandos D, Vidal-Taboada JM, Ballescà JL, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7:4264–77.CrossRefPubMed De Mateo S, Martinez-Heredia J, Estanyol JM, Dominguez-Fandos D, Vidal-Taboada JM, Ballescà JL, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7:4264–77.CrossRefPubMed
39.
Zurück zum Zitat Li LW, Fan LQ, Zhu WB, Nien HC, Sun BL, Luo KL, et al. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors. Asian J Androl. 2007;9:321–9.CrossRefPubMed Li LW, Fan LQ, Zhu WB, Nien HC, Sun BL, Luo KL, et al. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors. Asian J Androl. 2007;9:321–9.CrossRefPubMed
42.
Zurück zum Zitat Welch JE, Brown PL, O’Brien DA, Magyar PL, Bunch DO, Mori C, et al. Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl. 2000;21:328–38.PubMed Welch JE, Brown PL, O’Brien DA, Magyar PL, Bunch DO, Mori C, et al. Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl. 2000;21:328–38.PubMed
43.
Zurück zum Zitat Lefievre L, Chen Y, Conner SJ, Scott JL, Publicover SJ, Ford WC, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7:3066–84.CrossRefPubMedCentralPubMed Lefievre L, Chen Y, Conner SJ, Scott JL, Publicover SJ, Ford WC, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7:3066–84.CrossRefPubMedCentralPubMed
44.
Zurück zum Zitat Storey BT. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol. 2008;52:427–37.CrossRefPubMed Storey BT. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol. 2008;52:427–37.CrossRefPubMed
46.
Zurück zum Zitat Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40(Database issue):D261–70.CrossRefPubMedCentralPubMed Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40(Database issue):D261–70.CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Margaryan H, Dorosh A, Capkova J, Manaskova-Postlerova P, Philimonenko A, Hozak P, et al. Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. Reprod Biol Endocrinol. 2015;13:8.CrossRef Margaryan H, Dorosh A, Capkova J, Manaskova-Postlerova P, Philimonenko A, Hozak P, et al. Characterization and possible function of glyceraldehyde-3-phosphate dehydrogenase-spermatogenic protein GAPDHS in mammalian sperm. Reprod Biol Endocrinol. 2015;13:8.CrossRef
48.
Zurück zum Zitat Kim SE, Hinoue T, Kim MS, Sohn KJ, Cho RC, Cole PD, et al. γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. Genes Nutr. 2015;10:444.CrossRefPubMedCentralPubMed Kim SE, Hinoue T, Kim MS, Sohn KJ, Cho RC, Cole PD, et al. γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. Genes Nutr. 2015;10:444.CrossRefPubMedCentralPubMed
49.
Zurück zum Zitat Williams AC, Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl. 2001;22:680–95.PubMed Williams AC, Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl. 2001;22:680–95.PubMed
50.
Zurück zum Zitat Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A. 2004;101:16501–6.CrossRefPubMedCentralPubMed Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A. 2004;101:16501–6.CrossRefPubMedCentralPubMed
51.
Zurück zum Zitat Hereng TH, Elgstøen KB, Cederkvist FH, Eide L, Jahnsen T, Skålhegg BS, et al. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa. Hum Reprod. 2011;26:3249–63.CrossRefPubMedCentralPubMed Hereng TH, Elgstøen KB, Cederkvist FH, Eide L, Jahnsen T, Skålhegg BS, et al. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa. Hum Reprod. 2011;26:3249–63.CrossRefPubMedCentralPubMed
Metadaten
Titel
Comparative proteomic analysis of spermatozoa isolated by swim-up or density gradient centrifugation
verfasst von
Stefania Luppi
Monica Martinelli
Elisa Giacomini
Elena Giolo
Gabriella Zito
Rodolfo C Garcia
Giuseppe Ricci
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2015
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-015-0027-y

Weitere Artikel der Ausgabe 1/2015

Reproductive Biology and Endocrinology 1/2015 Zur Ausgabe

Ambulantisierung: Erste Erfahrungen mit dem Hybrid-DRG

02.05.2024 DCK 2024 Kongressbericht

Die Hybrid-DRG-Verordnung soll dazu führen, dass mehr chirurgische Eingriffe ambulant durchgeführt werden, wie es in anderen Ländern schon länger üblich ist. Die gleiche Vergütung im ambulanten und stationären Sektor hatten Niedergelassene schon lange gefordert. Aber die Umsetzung bereitet ihnen doch Kopfzerbrechen.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Harninkontinenz: Netz-Op. erfordert über lange Zeit intensive Nachsorge

30.04.2024 Harninkontinenz Nachrichten

Frauen mit Belastungsinkontinenz oder Organprolaps sind nach einer Netz-Operation keineswegs beschwerdefrei. Vielmehr scheint die Krankheitslast weiterhin hoch zu sein, sogar höher als von harninkontinenten Frauen, die sich nicht haben operieren lassen.

Welche Übungen helfen gegen Diastase recti abdominis?

30.04.2024 Schwangerenvorsorge Nachrichten

Die Autorinnen und Autoren einer aktuellen Studie aus Griechenland sind sich einig, dass Bewegungstherapie, einschließlich Übungen zur Stärkung der Bauchmuskulatur und zur Stabilisierung des Rumpfes, eine Diastase recti abdominis postpartum wirksam reduzieren kann. Doch vieles ist noch nicht eindeutig belegt.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.