Skip to main content
Erschienen in: Breast Cancer Research 1/2005

Open Access 01.02.2006 | Research article

Comprehensive copy number profiles of breast cancer cell model genomes

verfasst von: Ashleen Shadeo, Wan L Lam

Erschienen in: Breast Cancer Research | Ausgabe 1/2005

Abstract

Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide and consequently has been extensively investigated in terms of histopathology, immunochemistry and familial history. Advances in genome-wide approaches have contributed to molecular classification with respect to genomic changes and their subsequent effects on gene expression. Cell lines have provided a renewable resource that is readily used as model systems for breast cancer cell biology. A thorough characterization of their genomes to identify regions of segmental DNA loss (potential tumor-suppressor-containing loci) and gain (potential oncogenic loci) would greatly facilitate the interpretation of biological data derived from such cells. In this study we characterized the genomes of seven of the most commonly used breast cancer model cell lines at unprecedented resolution using a newly developed whole-genome tiling path genomic DNA array.

Methods

Breast cancer model cell lines MCF-7, BT-474, MDA-MB-231, T47D, SK-BR-3, UACC-893 and ZR-75-30 were investigated for genomic alterations with the submegabase-resolution tiling array (SMRT) array comparative genomic hybridization (CGH) platform. SMRT array CGH provides tiling coverage of the human genome permitting break-point detection at about 80 kilobases resolution. Two novel discrete alterations identified by array CGH were verified by fluorescence in situ hybridization.

Results

Whole-genome tiling path array CGH analysis identified novel high-level alterations and fine-mapped previously reported regions yielding candidate genes. In brief, 75 high-level gains and 48 losses were observed and their respective boundaries were documented. Complex alterations involving multiple levels of change were observed on chromosome arms 1p, 8q, 9p, 11q, 15q, 17q and 20q. Furthermore, alignment of whole-genome profiles enabled simultaneous assessment of copy number status of multiple components of the same biological pathway. Investigation of about 60 loci containing genes associated with the epidermal growth factor family (epidermal growth factor receptor, HER2, HER3 and HER4) revealed that all seven cell lines harbor copy number changes to multiple genes in these pathways.

Conclusion

The intrinsic genetic differences between these cell lines will influence their biologic and pharmacologic response as an experimental model. Knowledge of segmental changes in these genomes deduced from our study will facilitate the interpretation of biological data derived from such cells.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​bcr1370) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AS performed the array CGH experiments, data analysis and drafted the manuscript. WLL is the Principal Investigator. Both authors participated in the development of concepts and framework for the manuscript, the generation of figures, multiple rounds of text editing, and fact checking. Both authors read and approved the final manuscript.
Abkürzungen
BAC
bacterial artificial chromosome
CGH
comparative genomic hybridization
CNA
copy number alteration
EGFR
epidermal growth factor receptor
FISH
fluorescence in situ hybridization
kb
kilobases
MAR
minimum altered region
Mb
megabases
SMRT
submegabase-resolution tiling set
SNP
single nucleotide polymorphism.

Introduction

Breast cancer is the most prevalent cancer worldwide and is the second leading cause of cancer-related deaths in women in North America [1, 2]. It is a complex disease in which multiple genetic factors can combine to drive pathogenesis [35]. Changes in copy numbers of genes such as ERBB2 and c-MYC have been extensively documented in breast cancer and are present in model cell lines [69]. Amplified (and overexpressed) genes are prime therapeutic targets as for example, the use of the drug trastuzumab against ERBB2 has been shown to improve breast cancer survival rates alone or in combination with other treatments [1012].
Strategies to detect gene copy number alterations will facilitate the identification of novel molecular targets. Previous studies with 10-megabase (Mb) resolution conventional metaphase comparative genomic hybridization (CGH) have identified gross regions of recurrent chromosomal aberrations in multiple breast cancer cell lines including loci within chromosomes 1q, 8q, 11q13, 17q and 20q13. Many of these alterations proved to be relevant because they were also present in primary tumors investigated [1315]. Recent advances in array CGH have greatly improved the resolution of this technology, enabling the detection of segmental copy losses and gains [16, 17]. Regional genomic arrays, providing contiguous or tiling coverage of a locus of interest, have been constructed for the fine mapping of commonly altered regions in breast cancer (such as 20q13) [1820]. Whole chromosome arrays have been used to provide information at 500 kb intervals. For example, a chromosome 17 array was used to identify 13 regions of change present in breast cancer cell line models and primary breast cancers [21]. Similarly, a genome-wide array containing nearly 2,500 bacterial artificial chromosome (BAC) clones with a resolution at about 1.4 Mb was used to illustrate the detection of copy number alterations (CNAs) in various breast cancer cell lines [22]. Recently, a separate study using an array of 422 genomic loci detected frequent alterations at 1, 6, 7p, 9, 11q, 12q, 17, 20q and 22q in archival breast cancer specimens [23]. cDNA arrays have also detected DNA copy changes of amplicons containing ERRB2 on 17q [2427]. More recently, a cDNA array containing 6,691 mapped human genes was used to explore the relationship between copy number alteration and gene expression changes in breast tumors and cell lines [28]. While large-insert clone megabase-interval CGH arrays and cDNA arrays provide a robust platform for the rapid survey of tumor genomes, valuable information could be overlooked as a result of their limited resolution. It is clear that a more detailed description of breast tumor genomes would require re-examination with a higher-resolution array platform.
Genetic, biochemical and pharmacologic studies of breast cancer have been greatly dependent on several commonly used model breast cancer cell lines: MCF-7, BT-474, SK-BR-3, T-47D, UACC-893, MDA-MB-231 and ZR-75-30. That is, a summation of studies involving at least one of these seven cell lines produces over 13,500 hits on Medline. These cells are known to harbor gross chromosomal aberrations; measuring the precise segmental copy number status across their entire genome may uncover novel discrete changes. In the current study we expanded the use of array CGH to survey the genomes of these breast cancer cells at unprecedented detail with a recently developed whole-genome tiling path array that covered the genome with 32,433 overlapping BAC clones [29]. Analysis at this resolution has led to the identification of novel features in these genomes and to the delineation of segmental genetic alterations that have escaped detection by conventional molecular cytogenetic techniques and previous marker-based or interval array CGH analysis.

Materials and methods

Cell line DNA

A panel of seven breast cancer-derived cell line DNA was obtained from the American Type Culture Collection: MCF-7, T-47D, Sk-Br-3, MDA-MB-231, BT-474, UACC-893 and ZR-75-30. Pooled normal female DNA was used as reference for all array CGH experiments (Novagen, Mississauga, ON, Canada). DNA was quantified with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

Array CGH

The seven cell lines were assayed for genetic alterations with a whole-genome tiling path BAC array in comparative genomic hybridization experiments. The submegabase-resolution tiling set (SMRT) array contains 32,433 overlapping BAC-derived DNA segments that provide tiling coverage over the human physical genome map. All clones were spotted in triplicate, resulting in 97,299 elements over two sides [2931]. A detailed protocol is provided in Additional file 1.

Imaging and analysis

Hybridizations were scanned with an imaging system based on a charge-coupled device (Arrayworx eAuto; Applied Precision, Issaquah, WA, USA) and analyzed with SoftWoRx Tracker Spot Analysis software. Stringent criteria were applied to filter spot intensity data. A standard deviation greater than 0.075 between triplicate spots was deemed unreliable and such spots were therefore excluded from our analysis [29]. Only data points with a ratio of signal intensity to background intensity noise exceeding 15 were used in the analysis.
Custom software (SeeGH) was used to visualize log2 ratios of clones with respect to location in the genome [32, 33]. Because of the complexity of the genomes of these cell lines with respect to ploidy, we have set thresholds for high-level gains and losses to +0.8 and -0.7, respectively, to limit the number of regions for discussion. This threshold encompasses high-level or multi-copy changes previously reported while excluding the abundant number of low-level or single-copy changes common to these cell lines. The complete data set has been made publicly available for further inquiry. In addition, only those loci containing two or more altered overlapping clones were included in the analysis to reduce false positives, and breakpoints were confirmed with the publicly available aCGH-smooth software [34, 35].

Fluorescence in situhybridization

For fluorescence in situ hybridization (FISH) probe synthesis, DNA samples from BAC clones RP11-118L18, RP11-419H8, RP11-813P3 and RP11-790I13 were amplified with a modified ligation-mediated polymerase chain reaction protocol as described previously [31]. Imaging and analysis were performed as described previously [36].

Results and discussion

Whole-genome tiling path analysis of segmental alterations

SMRT array CGH technology provides a tool for assessing genomic aberrations comprehensively in great detail. Comprehensive genomic profiles of segmental gains and losses for seven commonly used breast cancer model cell lines were revealed with this technology. Because of the large amount of data generated, we present the complete genomic profiles and frequency analysis in Additional files 2, 3, 4, 5, 6 7 and 8 (Figure 1). The raw data of the signal intensity ratios of the 97,299 spots for each array CGH experiment have been made publicly available [33] and also deposited at the gene expression omnibus (GEO) database at NCBI, series accession number GSE3106.
Figure 1 demonstrates the details of a tiling path SeeGH karyogram, summarizing SMRT array CGH results for cell line UACC-893. Whole chromosomal arm gains can be seen at 1q, 5p, 7p, 8q and 10p, whereas arm losses are evident at 3p, 4p, 5q, 8p, 13q, 17p, 19p, 20p and Xp. Smaller segmental changes such as the telomeric gained region of 6p or loss at 10q are readily detected. Complex alterations indicating multiple levels of change are denoted by higher-level peaks embedded within a region of change, for example the central region of the 2p arm. The magnified display of 17q demonstrates the identification of a discrete CNA. Beginning at the centromere, we can see two regions of segmental loss separated by a high-copy-number amplicon containing the ERBB2 gene. The centromeric breakpoint of this amplicon is located between the overlapping regions of clones RP11-25P3 and RP11-592L16, whereas the telomeric breakpoint is located between clones RP11-686E5 and RP11-259G21. The second region of segmental loss at 17q21.1-q21.31 is followed by a large segmental gain and a second discrete multiple copy amplification at 17q25.1.
To establish detection sensitivity, we first examined previously reported regions of CNA. Our data indicated high-level gains at the c-MYC locus in SK-BR-3 and MCF-7 (+2.84 and +1.19 log2 ratios, respectively) corresponding to previously reported change in copy number [7, 37, 38]. Similarly, BT-474, ZR-75-30, UACC 893 and SK-BR-3 are known to harbor a high-level amplification of the ERBB2 locus. SMRT array CGH, in addition to detecting the ERBB2 locus, revealed several additional discrete changes on the 17q arm in these cell lines. In another example, a previously reported homozygous deletion at 3q13.31, detected by a 10K single nucleotide polymorphism (SNP) array in MCF-7, yielded a log2 ratio of -1.2 in our SMRT array CGH analysis [39]. Further comparison of SNP data and SMRT array CGH for cell line BT-474 showed that many of the alterations detected by SMRT array CGH were not clearly delineated or were not detected by the SNP platform (Additional file 9). Although SNP arrays offer the advantage of genotype data, they are only suited to the detection of large-scale changes in copy number. However, the two technologies are clearly complementary because each is designed to address a different question.
Six of the seven cell lines (not MDA-MB-231) were previously profiled for genomic alterations with the use of a 6,691-gene cDNA microarray [28]. Pollack and colleagues showed numerous genomic alterations, both gains and losses, which were correlated with expression patterns on the same array platform. All the CNAs reported were detected by SMRT array CGH, along with the discovery of numerous novel alterations when re-evaluated at tiling path resolution. Known and novel CNAs for the seven genomes are summarized in Table 1. Interestingly, not all CNAs contain annotated genes, which is consistent with the fact that the annotation of coding and non-coding transcripts within the human genome sequence is a continuing process.
Table 1
High-level alterations detected by array CGH
Cell line
Locus
Start clone
End clone
Size (kb)
 
Locus
Start clone
End clone
Size (kb)
MCF7
Amplifications
 
Deletions
 
1p13.3
N0451I14
N0228E23
1,290
 
3q13.31
N0747H24
N0362H11
700
 
1p13.2
N0099M15
N0795O09
288
 
4q34.3-35.2
N0442N05
N0746B09
7,100
 
1p13.2
N0626F04
N0517B05
1,330
 
6q25.2-27
M2007C03
M2258B24
14,400
 
3p14.2-14.1
N0669F02
N0589G04
3,180
 
8p arm
p
p
p
 
8q21.2-q24.21
N0133G02
N0315E09
43,300
 
11p15.5-11.2
N0412M16
M2326E01
45,300
 
15q21.1-21.3
N0416B20
N0664B09
4,930
 
11p11.2
N0070A09
M2326E01
1,940
 
17q23.2-24.3
N0716B04
N0203A19
113,200
 
11q11-q12.1
N0010E21
F0627I09
4,300
Peak:
17q23.2
N0760B22
N0433B24
4,900
 
11q14.2-23.3
N0282G16
N0004N09
30,000
 
17q25.1
N0076G04
N0552F03
766
 
11q23.3-25(tel)
N0196E01
N0715D10
15,400
 
20q12
N0385G02
N0476P15
1,790
 
13q14.2-34(tel)
N0155D15
M2323L19
66,900
 
20q13.12-20q13.33 (tel)
N0272C13
N0476I15
17,500
     
Peaks:
20q13.12-20q13.13 A
N0702E03
N0730O20
1,790
     
 
20q13.13 B
N0711M06
F0592G15
309
     
 
20q13.2 C
N0020J08
N0346B03
1,450
     
 
20q13.31 D
N0044A06
N0671P16
411
     
 
21q22.13-22.3(tel)
N0094J12
N0457P07
8,450
     
BT474
Amplifications
 
Amplifications
 
1q21.2-q25.1
    
15q11.2 -q12
N0607H20
N0208F21
5,030
Peaks:
1q21.2-q21.3 A
N0035F14
N0714N02
366
Peaks:
15q11.2 A
N0552D03
M2200G17
949
 
1q22-q23.1 B
N0647N20
N0740J19
510
 
15q11.2 B
N0484P15
N0710L06
624
 
1q24.2 C
N0137J06
N0616K15
540
 
17q12-21.2
N0196P12
N0278E15
4,090
 
1q31.3
N0662E13
N0141E20
1,661
 
17q21.32-23.2
N0771D19
M2014K24
13,800
 
1q32.1
N0783D13
N0617D19
936
Peaks:
17q21.32-q21.33 A
N0071G24
N0607H13
2,500
 
1q42.12-q42.13
M2185P06
M2016D17
500
 
17q22-23.2 B
N0515J20
N0473G17
2,180
 
1q43
N0236L13
N0614N14
449
 
17q23.2 C
N0399O18
N0767P09
1,170
 
1q44-q43
N0440F10
N0794A13
865
 
17q24.1-24.3
N0583F02
N0693H11
5,300
 
1q44
N0778E23
N0071K05
1,720
Peak:
17q24.1
N0583F02
N0394K10
482
 
4p16.1-15.33
N0270I03
N0652B07
1,210
 
19p13.2-13.12
N0295M02
N0441D06
6,310
 
4q21.1
N0598G02
N0772N01
2,700
 
20p12.1
N0134G22
N0022E15
800
 
9p13.3
N0069E18
N0795P12
2,060
 
20q11.22
N0601G07
N0552G16
1,300
 
9q33.1-34.13
M2248M11
N0738I14
12,600
 
20q13.11-13.32
N0809G24
N0261P09
14,800
 
11q13.1-13.5
N0813P09
N0360N22
19,800
 
20q13.33
N0648D07
N0694I10
305
Peaks:
11q13.1 A
N0029K11
N0804F01
704
 
20q13.33-tel
N0305P22
N0134L13
1,380
 
11q13.4 B
N0093M11
N0598G03
1,030
 
Deletions
 
11q22.1-22.2
N0795D03
N0347H03
3,560
 
5q14.1-14.3
N0129E04
N0291O24
5,390
 
14q11.2-q21.1
N0597A11
N0254B15
21,230
 
6q24.1
N0709J21
M22024J17
3,200
 
14q31.3-32.12
N0771O08
N0325L17
3,080
 
20q11.22
N0171G22
N0774C15
670
      
20p11.23-13.11
N0712N14
N0464F07
7,140
ZR 75 30
Amplifications
 
Amplifications
 
8q11.21
N0569I08
N0513O13
682
 
17q22-23.2
N0349F01
N0153J08
5,600
 
8q13.3
N0367C12
N0634L17
538
Peaks:
17q23.2 A
N0159D12
M2023J07
298
 
8q21.2
N0319A24
N0317J10
1,350
 
17q23.2 B
N0381A05
N0634F05
3,560
 
8q21.3
N0565H20
N0102D03
264
 
17q23.3-24.1
N0614F05
N0712A10
481
 
8q22.1
N0381I07
N0103P22
729
 
Deletions
 
8q22.2-24.3
N0281D17
N0620H01
45,600
 
1p36.33-35.3
N0206L10
N0758C04
26,700
Peaks:
8q23.1 A
N0078J05
N0357L07
907
 
1p35.2-35.1
N0629A12
N0068H10
775
 
8q24.12 B
N0760H22
N0088J18
1,440
 
1p34.3
N0452M14
N0020P17
1,510
 
8q24.22 C
N0100J23
N0422I20
440
 
1p21.2-13.3
N0293L15
N0813H10
10,800
 
8q24.3 D
N0662P06
F0530P15
2,740
 
4q21.1
N0184F15
N0184J11
151
 
17q11.1-11.2
N0260A09
N0147N18
3,050
 
11q13.5-25(tel)
N0149B15
M2270L17
57,600
 
17q12
N0600K04
N0560P04
980
 
17q11.2-12
N0082D14
N0104J23
6,020
 
17q12
N0722D15
N0062P03
1,360
 
17q21.1-21.32
N0278E15
N0046I22
7,700
 
17q12-21.1
N0689B15
N0032H06
490
 
17q23.33-22
N0368A16
N0379H09
994
 
17q21.32-21.33
N0771D19
M2190C10
3,910
 
17q22
N0466D20
N0515J20
881
      
21q11.2-q22.11
N0615H23
N0694N16
16,300
UACC 893
Amplifications
 
Deletions
 
7p21.1
N0116D07
N0746H13
733
 
11p15.1
N0118A14
N0614L12
995
 
11q13.3-q14.3
M2011L13
N0613M07
24,700
 
16p12.1
N0104F06
N0674B07
1,380
 
11q22.1
N0743I15
N0659E10
619
 
17p arm
p
p
p
 
17q12-21.2
N0600J16
N0686E05
1,490
     
 
17q21.33-24.2
N0095M07
N0068K09
17,700
     
 
17q25.1
N0076G04
N0449J21
999
     
SKBR3
Amplifications
 
Amplifications
 
3p22.2
N0091E04
N0325M12
432
 
17q12-21.2
N0062P03
N0606M07
3,390
 
3q25.1
N0739J07
N0118L18
678
 
17q25.3
N0305C04
N0781F24
1,550
 
3q22.3-q23
N0657M13
N0718H02
2,000
 
20p arm
p
p
p
 
3q26.2-q26.31
N0190I05
N0590E04
3,300
 
20q11.22-11.23
N0454F11
N0254N13
4,510
 
7q31.1-q32.3
M2023N18
N0019B03
17,800
 
20q12-13.32
N0434N22
N0290D09
16,200
 
8q13.3-21.13
N0746L20
N0125J17
10,600
 
Deletions
 
8q21.2-21.3
N0509F16
N0561A10
5,950
 
8q21.3-22.1
N0230C03
N0804A07
6,040
Peaks:
8q21.2 A
N0694L21
N0606L16
309
 
8q22.3-23.1
N0739L19
N0025P11
4,920
 
8q21.3 B
N0129P07
N0196C06
559
 
8q24.22
N0015L05
N1147M08
1,570
 
8q21.3 C
N0627A06
N0529J09
499
 
8q24.23-24.3
N0467B24
N0613F12
3,810
 
8q23.2-24.21
N0114O08
N0294P07
17,100
 
10q22.3-25.2
N0635P19
N0257E05
30,900
Peaks:
8q23.3 A
N0058O03
N0531C21
746
 
12q23.3-24.11
N0061L24
M2155D19
1,380
 
8q23.3 B
N0164M09
M2118B16
365
 
12q24.21-24.31
N0412G23
N0138I16
5,360
 
8q24.12 C
N0389M07
N0047A23
821
 
17q11.2-12
N0634A23
N0607B02
6,460
 
8q24.21 D
N0288B17
N0294P07
716
 
17q21.2-23.2
N0400F19
N0767P09
18,100
 
10q21.1-22.3
N0195P24
N0506E07
25,500
 
18q12.2-21.2
N0645I23
N0664P08
20,400
 
14q31.3-32.12
N0046B20
N0386D20
7,020
 
19p13.11
N0715L15
N0723M22
4,710
 
17q11.1-11.2
N0458L21
N0193M11
3,170
     
MDA MB 231
Amplifications
 
Deletions
 
6p21.31-21.2
N0479F12
N0450J18
3,510
 
8q24.13
N0346M14
N0391A17
1,020
 
6p21.2-21.1
N0259H15
N0769C16
3,290
 
9p24.2-22.2
N0654D08
N0460F23
14,500
 
7q35
N0703N05
N0340G20
670
Peak:
9p22.3-22.2
N0141K07
N0460F23
2,000
      
9p21.3-21.2
N0066P03
N0486D12
5,210
     
Peak:
9p21.3
N0315I14
N0730N17
280
T47D
Amplifications
 
Deletions
 
3q26.2-29(tel)
N0415B12
M2110L16
28,700
 
12p13.32-12.3
N0312A03
N0056F05
11,700
 
11q23.3-25(tel)
N0081I13
M2013A02
15,200
 
18p11.32-11.32
N0619C21
N0193E15
349
 
Deletions
 
18q21.1
N0699O23
N0093N16
311
 
8p23.1
N0485I05
M2185F10
1,000
 
Xq
q
q
q
 
8p23.1
N0367E11
N0801I21
704
     
High-level peaks within complex alterations are denoted by italics. Alterations not previously characterized are in bold. Clones beginning with N0 or F0 belong to the Roswell Park Cancer Institute libraries 11 and 13 (RP11 and RP13), respectively; those beginning with M belong to the Caltech-D (CTD) library.

Novel features of the genome of model cell lines

Among the seven cell lines, 75 regions of high-level (multi-copy) segmental gains and 48 regions of multi-copy loss were identified. Because these cell lines serve as model systems for investigating breast cancer biology, a detailed understanding of their genetic alterations is essential to the interpretation of studies with these cell lines. We first describe noteworthy features of the individual genomes and then compare across multiple profiles to identify common alterations.

MCF-7 genome

The MCF-7 genome harbors 21 high-level CNAs, summarized in Table 1. Remarkably, many of the previously reported regions of genetic alteration split into multiple segments upon tiling resolution analysis. The 1p13 amplification described previously [40] in fact divides into three distinct segments of high-level amplifications: a 1,300 kb segment at 1p13.3, containing only two genes, those encoding arginine N-methyltransferase-6 (PMRT6) and netrin G1 (NTNG1); a 300 kb segment at 1p13.2, encompassing a single gene, that encoding potassium voltage-gated channel subfamily D member (KCND3); and a 1,300 kb region at the centromeric end of 1p13.2, containing 20 genes including BCAS2, which has been shown to be amplified and overexpressed in breast cancer cell lines and tumors (Figure 2) [4042]. Although a loss at 4p15-qter has been reported [14], we observed a 7 Mb loss at 4q34.3-q35.2. The same group also reported an 11p loss; however, our data show that this alteration represents a large 45 Mb segment at 11p15.5-p11.2 and an adjacent but distinct 2 Mb loss at 11p11.2. Similarly, amplifications at the distal end of 15q [13, 14] were fine mapped to reveal a 4.9 Mb high-level gain at 15q21.1-q21.3 encompassed by clones RP11-416B20 and 664B9 containing FGF7, CYP19A1 and MAPK6. A lower-level gain was also observed at 15q22.2-qter.

BT-474 genome

BT-474 possesses the greatest number of high-level gains and complex alterations and has previously been profiled with the SMRT array CGH platform [29]. In brief, the 1q arm showed multiple rearrangements. A complex aberration at 1q21.2-q25.1 is highlighted by three peaks of high-level gain: 1q21.2-q21.3 (350 kb), 1q22-q23.1 (500 kb) and 1q24.2 (550 kb). In addition, two previously undocumented, distinct regions of gain were identified at 1q31.3 (1,650 kb) and 1q32.1 (950 kb). Figure 3a shows FISH verification of the 1q32.1 amplicon. Although a 1q42-qter gain has been previously reported for BT-474 [14] we observed four separate regions of high-level gain: 1q42.12-q42.13 (500 kb), 1q43 (450 kb), 1q44-q43 (850 kb) and 1q44 (1,700 kb). A 11q13-q14 gain was redefined by SMRT array CGH as a complex high-level amplification at 11q13.1-13.5 (19.8 Mb) containing two distinct and localized high-level peaks at 11q13.1 (700 kb) and 11q13.4 (1,050 kb).
In addition to fine mapping of regions previously reported, several prominent novel alterations were detected: high-level gains at 4q21.1 (2,700 kb), 9p13.3 (2,050 kb), 11q22.1-q22.2 (3,600 kb), 14q11.2-q21.1 (21 Mb) and 14q31.3-q32.12 (3,100 kb). Gains of 20q have been well documented in breast cancer [13, 20, 23, 43]. In BT-474 we observed four distinct segments with increased copy numbers: 20q11.22 (1.3 Mb), 20q13.11-q13.32 (14.8 Mb), 20q13.33 (300 kb) and 20q13.33-tel (1.4 Mb). The gene encoding prefoldin 4 (PFDN4) located within 20q13.11-13.32 has been shown to be overexpressed in those cell lines in which it is amplified, including BT-474 [18]. This chromosome arm also harbors regions of loss at 20q11.22 (650 kb) and 20q11.23-13.11 (7,150 kb) that have not previously been reported.

ZR-75-30 genome

In total, 11 high-level losses and 13 high-level gains were identified in ZR-75-30. Multiple discrete alterations were observed on chromosome arms frequently implicated in breast cancer, including 1p (four deletions), 8q (eight amplicons) and 17q (seven amplicons and four deletions). Novel segmental losses of varying sizes were detected at 4q21.1 (150 kb), 11q13.5-qter (57.6 Mb) and 21q11.2-q22.11 (16.3 Mb). The discrete high-level amplifications on 8q at 8q11.21 (700 kb), 8q13.3 (500 kb) and 8q22.1 (700 kb) encompassed interesting gene loci such as those for the following: protein kinase DNA-activated catalytic subunit (PRKDC), which might have a role in DNA repair and non-homologous DNA end joining; transient receptor potential cation channel A1 (ANKTM1), which when overexpressed, affects normal eukaryotic cell growth; and cadherin 17 (CDH17), which shares structural features with the cadherin superfamily of calcium-dependent cell–cell adhesion proteins [4447].

UACC 893 genome

High-level gains at 11q13-q14 have been documented in UACC 893 [14]. We also observed this alteration (11q13.3-q14.3, 24.7 Mb); however, an additional discrete high-level gain at 11q22.1 (600 kb) was also discovered, which interrupts a portion of the gene locus for contactin 5 (CNTN5), a neural adhesion molecule. A novel gain at 7p21.1 (700 kb) was also detected that encompasses several gene loci, including those for anterior gradient 2 (AGR2) and breast cancer membrane protein (BCMP1). AGR2 has been shown to be positively correlated with estrogen receptor expression and negatively with epidermal growth factor receptor expression in breast cancer tissue [48]. A loss at 16p12.1 (1,400 kb) was also observed.

SK-BR-3 genome

Amplifications at 3p22-pter in SK-BR-3 have previously been reported [13, 14]. We observed a 400 kb amplification at 3p22.2 as well as two novel regions of high-level amplification at 3q25.1 (700 kb) and 3q22.3-q23 (2,000 kb). Figure 3b shows FISH confirmation of this amplification. Genetic alterations of 8q seem to be complex in SK-BR-3. We observed the three previously reported regions of gain at 8q13.2-q21.13 (10.6 Mb), 8q21.2-q21.3 (6 Mb) and 8q23.2-q24.21 (17 Mb). However, we also identified three distinct amplicons within the 6 Mb region (8q21.2 (300 kb), 8q21.3 (550 kb) and 8q21.3 (500 kb)) and also four distinct high-level peaks within the 17 Mb gain described above: 8q23.3 (750 kb), 8q23.3 (350 kb), 8q24.12 (800 kb) and 8q24.21 (700 kb, contains c-MYC). We also observed four regions of deletion not previously reported on 8q: 8q21.3-q22.1 (6 Mb), 8q22.3-q23.1 (4.9 Mb), 8q24.22 (1.6 Mb) and 8q24.23-q24.3 (3.8 Mb). In addition to losses on chromosomes 3 and 8, our analysis has also identified novel regions of loss at 12q23.3-q24.11 (1.4 Mb) and 12q24.21-q24.31 (5.4 Mb) and further delineated a 17q12 gain into two distinct high-level gains at 17q11.1-11.2 (3.2 Mb) and 17q12-21.2 (3.4 Mb). In addition a previously reported gain of 17q24-qter fine mapped to a 1,550 kb amplicon at 17q25.3 [13, 14].

MDA-MB-231 genome

MDA-MB-231 possessed the fewest number of high-level alterations. Gains at 6p have previously been reported [14, 49]; however, two distinct regions of high-level gain were observed within this arm in our analysis: at 6p21.31-21.2 (3.5 Mb) and at 6p21.2-21.1 (3.3 Mb). We also observed a novel 670 kb gain at 7q35. Loss at 9p has also been reported; however, we were able to discern two distinct segmental losses each containing an amplicon [4951].

T-47D genome

T-47D was unique in that it possessed three times as many genomic losses as gains. We observed gains at 18p11.32-p11.32 (350 kb) and 18q21.1 (300 kb) that have not previously been reported [14, 38, 49, 51]. Only five genes reside within the 18q21.1 region: that encoding protein inhibitor of activated STAT2 (PIAS2), elongin genes TCEB3L2 and TCEB3L and hypothetical genes DKFZP564D1378 and HSPC039.

Common regions of copy number alteration

Gains at 8q, 17q and 20q are among the most frequently documented alterations in breast cancer. Eight of the nine cell lines (MDA-MB-231 was the exception) showed high-level gains at one or more of these chromosome arms. Multiple alignment of genomic profiles delineated novel minimum altered regions (MARs) common to these cell lines.
Gains at 8q are arguably the most frequently documented alteration in a variety of cancers including breast and prostate cancer [5]. We have highlighted four that were common to multiple cell lines (Additional file 10). First, a discrete 500 kb amplicon at 8q13.3 in ZR-75-30 is also included within the larger alteration at 8q13.33-q21.13 in SK-BR-3. Only one gene resides within this MAR: that encoding transient receptor potential cation channel subfamily A, member 1 (TRAPA1). Hyman and coleagues [26] investigated 14 breast cancer cell lines including BT-474, MCF7, SK-BR-3, T47D and ZR-75-30 with a 13K cDNA array identifying four independent genomic amplicons at 8q, including 8q21.11-q21.13, 8q21.3, 8q23.3-q24.14 and 8q24.22. However, the distinct amplicon at 8q13.3 in ZR-75-30 detected by SMRT array CGH was missed in this study. We observed a second larger MAR at 8q21.2-q21.3 common to alterations in MCF7 and SK-BR-3. About 20 genes reside in this 5 Mb region, including those encoding E2F transcription factor, exonuclease GOR and matrix metalloproteinase 16. A third MAR is located at 8q24.12-q24.21 and is common to MCF-7, ZR-75-30 and SK-BR-3, whereas lower-level gains are apparent in BT-474, UACC-893 and MDA-MB-231. Although the genes encoding zinc finger transcription factor (TRPSI) and eukaryotic translation initiation factor 3 (EIF3S3) are excluded from this MAR (c-MYC is included), some of the cell lines possess highly complex gains that extend through a much larger region of the arm and can include the TRPSI and EIF3S3 loci. Savinainen and colleagues [37] reported 41 copies of TRPS1 and 21 copies of EIF3S3 and MYC in Sk-Br-3. The fourth and most telomeric MAR, 8q24.3, has boundaries defined by a peak of high-level change within the large complex alteration 8q22.2-q24.3 found in ZR-75-30. MCF-7, BT-474 and UACC-893 share low-level gains within this region of about 10 genes.
Chromosome 17q gains have been well documented in both breast cancer cell lines and clinical cases [14, 15, 21, 39, 50, 52]. Re-examination of this chromosome arm at tiling resolution suggests that the 17q amplification is complex and involves multiple but distinct regions (Fig. 4). First we identified a common high-level gain at 17q25.1 containing a narrow MAR of 760 kb bounded by BAC clones RP11-76G4 and RP11-552F3. The genes encoding RECQ protein-like 5 (RECQL5), H3 histone family 3B (H3F3B) and growth factor receptor-bound protein 2 (GRB2) reside within this gene-rich region, with GRB2 shown to interact with epidermal growth factor receptor (EGFR) [53]. Second, at 17q23, two separate amplicons in MCF-7 and one large amplicon in BT-474 have been described previously, although it is unclear whether these amplicons are overlapping and harbor the same candidate oncogene [25, 54]. Our data show the presence of a large complex alteration in MCF-7 at 17q21.32-q24.3 with a high-level amplification at 17q23.2. BT-474 contained two regions of complex alterations at 17q21.32-q23.2 comprising three distinct high-level peaks as well as a single peak at 17q24.1-q24.3 with a single peak. Similarly, three regions of high-level gains were observed in ZR-75-30 and one large region of lower-level gain in UACC-893. Interestingly, our alignment revealed that the high-level peaks involving the 17q23.2 region in MCF-7, BT-474 and UACC893 do overlap, defining a 800 kb MAR from RP11-50F16 to RP11-653P10 containing candidate genes RPS6KB1, LOC51136, FLJ22087, CA4, NY-REN-60, APPBP2 and PPM1D.
Another striking feature identified through our tiling resolution scan of 17q is the overlapping amplicons at 17q21.32-q21.33 present in BT-474 and ZR-75-30. The 600 kb MAR from RP11-71G24 to RP11-600O7 harbors the HOXB family (HOXB1 to HOXB9). Previously described by Hyman and colleagues [26], this amplicon is shown to be present in 10.2% of primary breast cancers, suggesting the involvement of developmental genes in breast cancer pathogenesis (Fig. 4).
Chromosome arm 20q has been shown to be frequently amplified in breast cancer, and amplification of 20q13 is associated with aggressive tumor phenotype, disease recurrence and reduced duration of survival [20]. We identified multiple copy number alterations within this cytoband and defined distinct minimal regions of alteration (Additional file 11). The detection of a 1.5 Mb MAR at 20q13.2 in MCF-7, BT-474 and SK-BR-3 (RP11-20J8 to RP11-346B3) containing the genes encoding zinc finger protein 217 (ZNF217), breast cancer-amplified sequence 1 (BCAS1), cytochrome P450 24A1 (CYP24A1), prefolding 4 (PFDN4) and docking protein 5 (DOK5) is consistent with previous CGH studies that identified amplification of this region in breast cancer [18, 19]. Similarly, we identified a MAR at 20q13.31 from RP11-44A6 to RP11-671P16, containing the gene encoding bone morphogenic protein 7 (BMP7), SPO11 and the gene encoding RNA export 1 (RAE1), corresponding to a previous report in MCF-7 and BT-474 [43]. A large 1.5 Mb amplification at 20q13.12 has also been reported in MCF-7 and BT-474 [43]. Our analysis identified an amplification at 20q13.12-q13.13 common to MCF-7, BT-474 and SK-BR-3. This spanned BAC clones RP11-702E3 to RP11-637D22 defining a narrow 680 kb MAR implicating the genes encoding protein kinase C-binding protein (PRKCBP1) and nuclear receptor coactivator (NCOA3) as potential oncogenes relevant to breast cancer.

EGFR (ERBB1) and associated pathways

The EGFR and associated pathways have an important role in several aspects of mammalian cell growth such as cell survival, proliferation and differentiation [55, 56]. The receptor family is composed of four type-1 tyrosine kinases (ERBB1 to ERBB4) that dimerize after stimulation by ligand and initiate downstream signaling. Receptor ligand recognition is redundant to some extent, and affinity varies. Although ERBB2 has no known ligand, it becomes activated after heterodimerization with other ERBB family members, the most preferred and potent combination being with ERBB1, whereas the ERBB3 homodimer remains inactive [57].
The redundancy of this pathway suggests its importance as cells have invested in the mechanisms to make this regulatory pathway fail safe. We have investigated genomic loci for about 60 genes implicated in this pathway (Table 2) [56]. Overall, gains were 2.4 times more frequent than losses, and all cell lines contained at least three loci of change. Our data revealed that, as expected, the ERBB2 locus is highly amplified in four cell lines (UACC-893, ZR-75-30, BT-474 and SK-BR-3), and overexpression has been shown in two of them [9]. Although amplification of EGFR-interacting genes RECQL5, H3F3B and GRB2 has been described above, other frequently altered loci include c-MYC, LIMK1, PRCKA, CHN2, ERBB2, PYK2, MAP2K3, MAP2K3 and PLG1. Interestingly, T-47D and the two ERBB2-overexpressing lines, BT-474 and SK-BR-3, share amplifications at five gene loci: MAP2K6, CHN2, PRKCA, LIMK1 and c-MYC.
Table 2
Components of the epidermal growth factor receptor pathway affected by copy number change
Gene
Locus
MCF-7
BT-474
ZR-75-30
UACC-893
Sk-Br-3
MDA-MB-231
T47D
EGF
4q25
    
+
  
TGFA
2p13.3
 
-
  
-
  
NRG2
5q31.2
    
+
  
NRG1
8p12
--
 
--
-
   
EGFR
7p12.3-p12.1
 
+
  
+
  
ErBB2
17q12
 
+++
+++
+++
+++
  
ErBB3
12q13
       
ErBB4
2q33.3-q34
       
SH3KBP1
Xp22.12
--
      
RASA2
3q23
 
+
    
+
VAV2
9q34.2
+
+
-
    
GRB2
17q25.1
++
  
+++
   
PLCG1
20q12
+++
-
   
+
+
PLCG2
16q23.2
  
-
 
-
 
+
RNTRE
10p14
      
+
SSH3BP1
10p12.1
   
+
   
SOS1
2p22.1
 
-
-
    
PTK2B
8p21.2
-
-
--
--
   
SRC
20q11.23
 
--
  
+++
++
 
NRAS
1p13.2
+++
  
-
   
CDC42
1p36.12
 
-
     
RAC1
7p22.1
    
+
  
RIN1
11q13.2
 
+
     
RAF1
3p25.2
+
     
+
MAP3K4
6q26
--
-
     
MAP3K11
11q13.1
+
+++
     
PAK1
11q13.5
      
+
ADAM9
8p11.23
      
+
ADAM12
10q26.2
 
---
 
-
   
ADAM17
2p25.1
 
+
     
RAB5a
3p24.3
    
+
  
MAP2K1
15q21
-
      
MAP2K7
19p13.2
  
-
    
MAP2K4
17q11.2
  
--
--
   
MAP2K3
17p11.2
  
-
-
-
  
MAP2K6
17q24.3
 
+++
  
+
 
+
PDPK1
16p13.3
 
+
     
CHN2
7p15.1
 
+
 
+
++
 
+
PRKCA
17q24.2
+++
++
  
+
 
+
ERK1
16p11.2
+
      
ERK2
22q11.21
    
-
  
MAPK8
10q11.22
      
+
MAPK9
5q35.3
 
-
-
    
MAPK14
6p21.31
     
++
 
AKT1
14q32.33
+
+
    
+
BAD
11q13.1
 
+++
     
LIMK1
7q11.23
 
+
+++
 
+++
 
+
PLD1
3q26.31
    
+
 
++
RPS6KA3
Xp22.12
-
      
FOS
14q24.3
+
      
JUN
1p32-p31
-
      
TP53
17p13.1
 
+
--
   
-
MYC
8q24
+++
++
+++
+
+++
 
+
ELK1
Xp11.23
-
-
 
+
   
JUN
1p32.1
-
      
EGF
4q25
    
+
  
Scores: +, log2 ratio +0.4 to +0.7; ++, log2 ratio +0.7 to +0.99; +++, log2 ratio more than +1.0; -, log2 ratio -0.4 to -0.7; --, log2 ratio -0.7 to -0.99; ---, log2 ratio less than -1.0.

Conclusion

We examined the genomes of seven commonly used breast cancer cell models in unprecedented detail for segmental copy number status, cataloging the boundaries of gains and losses throughout these genomes. In addition, we demonstrated that copy number alteration of multiple genetic loci involved in the EGF family of pathways is common in these cell lines, which suggests that disruption of this frequently dysregulated pathway in breast cancer may occur at several points in the signaling cascade and that several disruptions may occur in combination.
Furthermore, because these cell lines serve as models for studying the molecular biology of breast cancer, it is essential to take into account the potential influence of genetic alterations when interpreting biological data. For example, using these lines to study the EGF family of pathways, multiple endogenous genetic alterations may have a role in biochemical and biological observations. Our work provides a comprehensive list of high-level segmental gains and losses for each genome, providing a database of copy number alterations as a resource for breast cancer research with these cell lines.

Acknowledgements

We thank Chad Malloff and Jonathan Davies for their guidance in data analysis and manuscript preparation, Sean Minaker and Teresa Mastracci for providing interphase slides, and Carol Cheng for her technical assistance. This work was supported by funds from Genome Canada/Genome British Columbia.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AS performed the array CGH experiments, data analysis and drafted the manuscript. WLL is the Principal Investigator. Both authors participated in the development of concepts and framework for the manuscript, the generation of figures, multiple rounds of text editing, and fact checking. Both authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108.CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108.CrossRefPubMed
2.
Zurück zum Zitat Bray F, McCarron P, Parkin DM: The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res. 2004, 6: 229-239. 10.1186/bcr932.CrossRefPubMedPubMedCentral Bray F, McCarron P, Parkin DM: The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res. 2004, 6: 229-239. 10.1186/bcr932.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Simpson PT, Reis-Filho JS, Gale T, Lakhani SR: Molecular evolution of breast cancer. J Pathol. 2005, 205: 248-254. 10.1002/path.1691.CrossRefPubMed Simpson PT, Reis-Filho JS, Gale T, Lakhani SR: Molecular evolution of breast cancer. J Pathol. 2005, 205: 248-254. 10.1002/path.1691.CrossRefPubMed
4.
Zurück zum Zitat Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
5.
Zurück zum Zitat Garnis C, Buys TP, Lam WL: Genetic alteration and gene expression modulation during cancer progression. Mol Cancer. 2004, 3: 9-10.1186/1476-4598-3-9.CrossRefPubMedPubMedCentral Garnis C, Buys TP, Lam WL: Genetic alteration and gene expression modulation during cancer progression. Mol Cancer. 2004, 3: 9-10.1186/1476-4598-3-9.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Kallioniemi OP, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, Waldman FM, Pinkel D, Gray JW: ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA. 1992, 89: 5321-5325.CrossRefPubMedPubMedCentral Kallioniemi OP, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, Waldman FM, Pinkel D, Gray JW: ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA. 1992, 89: 5321-5325.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Shimada M, Imura J, Kozaki T, Fujimori T, Asakawa S, Shimizu N, Kawaguchi R: Detection of Her2/neu, c-MYC and ZNF217 gene amplification during breast cancer progression using fluorescence in situ hybridization. Oncol Rep. 2005, 13: 633-641.PubMed Shimada M, Imura J, Kozaki T, Fujimori T, Asakawa S, Shimizu N, Kawaguchi R: Detection of Her2/neu, c-MYC and ZNF217 gene amplification during breast cancer progression using fluorescence in situ hybridization. Oncol Rep. 2005, 13: 633-641.PubMed
8.
Zurück zum Zitat Jarvinen TA, Tanner M, Rantanen V, Barlund M, Borg A, Grenman S, Isola J: Amplification and deletion of topoisomerase IIalpha associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol. 2000, 156: 839-847.CrossRefPubMedPubMedCentral Jarvinen TA, Tanner M, Rantanen V, Barlund M, Borg A, Grenman S, Isola J: Amplification and deletion of topoisomerase IIalpha associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol. 2000, 156: 839-847.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004, 83: 249-289. 10.1023/B:BREA.0000014042.54925.cc.CrossRefPubMed Lacroix M, Leclercq G: Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat. 2004, 83: 249-289. 10.1023/B:BREA.0000014042.54925.cc.CrossRefPubMed
10.
Zurück zum Zitat Emens LA, Davidson NE: Trastuzumab in breast cancer. Oncology (Williston Park). 2004, 18: 1117-1128. Emens LA, Davidson NE: Trastuzumab in breast cancer. Oncology (Williston Park). 2004, 18: 1117-1128.
11.
Zurück zum Zitat Baselga J: Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology. 2001, 61 (Suppl 2): 14-21. 10.1159/000055397.CrossRefPubMed Baselga J: Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology. 2001, 61 (Suppl 2): 14-21. 10.1159/000055397.CrossRefPubMed
12.
Zurück zum Zitat Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, et al: First-line Herceptin monotherapy in metastatic breast cancer. Oncology. 2001, 61 (Suppl 2): 37-42. 10.1159/000055400.CrossRefPubMed Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, et al: First-line Herceptin monotherapy in metastatic breast cancer. Oncology. 2001, 61 (Suppl 2): 37-42. 10.1159/000055400.CrossRefPubMed
13.
Zurück zum Zitat Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994, 91: 2156-2160.CrossRefPubMedPubMedCentral Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM: Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994, 91: 2156-2160.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kytola S, Rummukainen J, Nordgren A, Karhu R, Farnebo F, Isola J, Larsson C: Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer. 2000, 28: 308-317. 10.1002/1098-2264(200007)28:3<308::AID-GCC9>3.0.CO;2-B.CrossRefPubMed Kytola S, Rummukainen J, Nordgren A, Karhu R, Farnebo F, Isola J, Larsson C: Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes Chromosomes Cancer. 2000, 28: 308-317. 10.1002/1098-2264(200007)28:3<308::AID-GCC9>3.0.CO;2-B.CrossRefPubMed
15.
Zurück zum Zitat Forozan F, Mahlamaki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP: Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res. 2000, 60: 4519-4525.PubMed Forozan F, Mahlamaki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP: Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res. 2000, 60: 4519-4525.PubMed
16.
Zurück zum Zitat Davies JJ, Wilson IM, Lam WL: Array CGH technologies and their applications to cancer genomes. Chromosome Res. 2005, 13: 237-248. 10.1007/s10577-005-2168-x.CrossRefPubMed Davies JJ, Wilson IM, Lam WL: Array CGH technologies and their applications to cancer genomes. Chromosome Res. 2005, 13: 237-248. 10.1007/s10577-005-2168-x.CrossRefPubMed
17.
Zurück zum Zitat Pinkel D, Albertson DG: Array comparative genomic hybridization and its applications in cancer. Nat Genet. 2005, 37 (Suppl): S11-17. 10.1038/ng1569.CrossRefPubMed Pinkel D, Albertson DG: Array comparative genomic hybridization and its applications in cancer. Nat Genet. 2005, 37 (Suppl): S11-17. 10.1038/ng1569.CrossRefPubMed
18.
Zurück zum Zitat Collins C, Volik S, Kowbel D, Ginzinger D, Ylstra B, Cloutier T, Hawkins T, Predki P, Martin C, Wernick M, et al: Comprehensive genome sequence analysis of a breast cancer amplicon. Genome Res. 2001, 11: 1034-1042. 10.1101/gr.GR1743R.CrossRefPubMedPubMedCentral Collins C, Volik S, Kowbel D, Ginzinger D, Ylstra B, Cloutier T, Hawkins T, Predki P, Martin C, Wernick M, et al: Comprehensive genome sequence analysis of a breast cancer amplicon. Genome Res. 2001, 11: 1034-1042. 10.1101/gr.GR1743R.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D: Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000, 25: 144-146. 10.1038/75985.CrossRefPubMed Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D: Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000, 25: 144-146. 10.1038/75985.CrossRefPubMed
20.
Zurück zum Zitat Hodgson JG, Chin K, Collins C, Gray JW: Genome amplification of chromosome 20 in breast cancer. Breast Cancer Res Treat. 2003, 78: 337-345. 10.1023/A:1023085825042.CrossRefPubMed Hodgson JG, Chin K, Collins C, Gray JW: Genome amplification of chromosome 20 in breast cancer. Breast Cancer Res Treat. 2003, 78: 337-345. 10.1023/A:1023085825042.CrossRefPubMed
21.
Zurück zum Zitat Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Ursule L, Nguyen C, Redon R, du Manoir S, Rodriguez C, et al: Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res. 2004, 64: 6453-6460. 10.1158/0008-5472.CAN-04-0756.CrossRefPubMed Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Ursule L, Nguyen C, Redon R, du Manoir S, Rodriguez C, et al: Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res. 2004, 64: 6453-6460. 10.1158/0008-5472.CAN-04-0756.CrossRefPubMed
22.
Zurück zum Zitat Albertson DG: Profiling breast cancer by array CGH. Breast Cancer Res Treat. 2003, 78: 289-298. 10.1023/A:1023025506386.CrossRefPubMed Albertson DG: Profiling breast cancer by array CGH. Breast Cancer Res Treat. 2003, 78: 289-298. 10.1023/A:1023025506386.CrossRefPubMed
23.
Zurück zum Zitat Nessling M, Richter K, Schwaenen C, Roerig P, Wrobel G, Wessendorf S, Fritz B, Bentz M, Sinn HP, Radlwimmer B, et al: Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res. 2005, 65: 439-447.PubMed Nessling M, Richter K, Schwaenen C, Roerig P, Wrobel G, Wessendorf S, Fritz B, Bentz M, Sinn HP, Radlwimmer B, et al: Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res. 2005, 65: 439-447.PubMed
24.
Zurück zum Zitat Kauraniemi P, Barlund M, Monni O, Kallioniemi A: New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Res. 2001, 61: 8235-8240.PubMed Kauraniemi P, Barlund M, Monni O, Kallioniemi A: New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Res. 2001, 61: 8235-8240.PubMed
25.
Zurück zum Zitat Monni O, Barlund M, Mousses S, Kononen J, Sauter G, Heiskanen M, Paavola P, Avela K, Chen Y, Bittner ML, et al: Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc Natl Acad Sci USA. 2001, 98: 5711-5716. 10.1073/pnas.091582298.CrossRefPubMedPubMedCentral Monni O, Barlund M, Mousses S, Kononen J, Sauter G, Heiskanen M, Paavola P, Avela K, Chen Y, Bittner ML, et al: Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc Natl Acad Sci USA. 2001, 98: 5711-5716. 10.1073/pnas.091582298.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E, Ringner M, Sauter G, Monni O, Elkahloun A, et al: Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002, 62: 6240-6245.PubMed Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E, Ringner M, Sauter G, Monni O, Elkahloun A, et al: Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 2002, 62: 6240-6245.PubMed
27.
Zurück zum Zitat Clark J, Edwards S, John M, Flohr P, Gordon T, Maillard K, Giddings I, Brown C, Bagherzadeh A, Campbell C, et al: Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clones. Genes Chromosomes Cancer. 2002, 34: 104-114. 10.1002/gcc.10039.CrossRefPubMed Clark J, Edwards S, John M, Flohr P, Gordon T, Maillard K, Giddings I, Brown C, Bagherzadeh A, Campbell C, et al: Identification of amplified and expressed genes in breast cancer by comparative hybridization onto microarrays of randomly selected cDNA clones. Genes Chromosomes Cancer. 2002, 34: 104-114. 10.1002/gcc.10039.CrossRefPubMed
28.
Zurück zum Zitat Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002, 99: 12963-12968. 10.1073/pnas.162471999.CrossRefPubMedPubMedCentral Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002, 99: 12963-12968. 10.1073/pnas.162471999.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, et al: A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004, 36: 299-303. 10.1038/ng1307.CrossRefPubMed Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, et al: A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004, 36: 299-303. 10.1038/ng1307.CrossRefPubMed
30.
Zurück zum Zitat de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ, Staudt LM, Martinez-Climent JA, Lam WL: Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes. Hum Mol Genet. 2004, 13: 1827-1837. 10.1093/hmg/ddh195.CrossRefPubMed de Leeuw RJ, Davies JJ, Rosenwald A, Bebb G, Gascoyne RD, Dyer MJ, Staudt LM, Martinez-Climent JA, Lam WL: Comprehensive whole genome array CGH profiling of mantle cell lymphoma model genomes. Hum Mol Genet. 2004, 13: 1827-1837. 10.1093/hmg/ddh195.CrossRefPubMed
31.
Zurück zum Zitat Watson SK, deLeeuw RJ, Ishkanian AS, Malloff CA, Lam WL: Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics. 2004, 5: 6-10.1186/1471-2164-5-6.CrossRefPubMedPubMedCentral Watson SK, deLeeuw RJ, Ishkanian AS, Malloff CA, Lam WL: Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics. 2004, 5: 6-10.1186/1471-2164-5-6.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Chi B, DeLeeuw RJ, Coe BP, MacAulay C, Lam WL: SeeGH – a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics. 2004, 5: 13-10.1186/1471-2105-5-13.CrossRefPubMedPubMedCentral Chi B, DeLeeuw RJ, Coe BP, MacAulay C, Lam WL: SeeGH – a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics. 2004, 5: 13-10.1186/1471-2105-5-13.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B: Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics. 2004, 20: 3636-3637.CrossRefPubMed Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B: Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics. 2004, 20: 3636-3637.CrossRefPubMed
36.
Zurück zum Zitat Henderson LJ, Lestou VS, Ludkovski O, Robichaud M, Chhanabhai M, Gascoyne RD, Klasa RJ, Connors JM, Marra MA, Horsman DE, et al: Delineation of a minimal region of deletion at 6q16.3 in follicular lymphoma and construction of a bacterial artificial chromosome contig spanning a 6-megabase region of 6q16-q21. Genes Chromosomes Cancer. 2004, 40: 60-65. 10.1002/gcc.20013.CrossRefPubMed Henderson LJ, Lestou VS, Ludkovski O, Robichaud M, Chhanabhai M, Gascoyne RD, Klasa RJ, Connors JM, Marra MA, Horsman DE, et al: Delineation of a minimal region of deletion at 6q16.3 in follicular lymphoma and construction of a bacterial artificial chromosome contig spanning a 6-megabase region of 6q16-q21. Genes Chromosomes Cancer. 2004, 40: 60-65. 10.1002/gcc.20013.CrossRefPubMed
37.
Zurück zum Zitat Savinainen KJ, Linja MJ, Saramaki OR, Tammela TL, Chang GT, Brinkmann AO, Visakorpi T: Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer. 2004, 90: 1041-1046. 10.1038/sj.bjc.6601648.CrossRefPubMedPubMedCentral Savinainen KJ, Linja MJ, Saramaki OR, Tammela TL, Chang GT, Brinkmann AO, Visakorpi T: Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer. 2004, 90: 1041-1046. 10.1038/sj.bjc.6601648.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Rummukainen J, Kytola S, Karhu R, Farnebo F, Larsson C, Isola JJ: Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping. Cancer Genet Cytogenet. 2001, 126: 1-7. 10.1016/S0165-4608(00)00387-3.CrossRefPubMed Rummukainen J, Kytola S, Karhu R, Farnebo F, Larsson C, Isola JJ: Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping. Cancer Genet Cytogenet. 2001, 126: 1-7. 10.1016/S0165-4608(00)00387-3.CrossRefPubMed
39.
Zurück zum Zitat Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, Girard L, Minna J, Christiani D, Leo C, et al: An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 2004, 64: 3060-3071. 10.1158/0008-5472.CAN-03-3308.CrossRefPubMed Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, Girard L, Minna J, Christiani D, Leo C, et al: An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 2004, 64: 3060-3071. 10.1158/0008-5472.CAN-03-3308.CrossRefPubMed
40.
Zurück zum Zitat Maass N, Rosel F, Schem C, Hitomi J, Jonat W, Nagasaki K: Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer Lett. 2002, 185: 219-223. 10.1016/S0304-3835(02)00286-0.CrossRefPubMed Maass N, Rosel F, Schem C, Hitomi J, Jonat W, Nagasaki K: Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer Lett. 2002, 185: 219-223. 10.1016/S0304-3835(02)00286-0.CrossRefPubMed
41.
Zurück zum Zitat Qi C, Zhu YT, Chang J, Yeldandi AV, Rao MS, Zhu YJ: Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun. 2005, 328: 393-398. 10.1016/j.bbrc.2004.12.187.CrossRefPubMed Qi C, Zhu YT, Chang J, Yeldandi AV, Rao MS, Zhu YJ: Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochem Biophys Res Commun. 2005, 328: 393-398. 10.1016/j.bbrc.2004.12.187.CrossRefPubMed
42.
Zurück zum Zitat Nagasaki K, Maass N, Manabe T, Hanzawa H, Tsukada T, Kikuchi K, Yamaguchi K: Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer Lett. 1999, 140 (1–2): 219-226. 10.1016/S0304-3835(99)00091-9.CrossRefPubMed Nagasaki K, Maass N, Manabe T, Hanzawa H, Tsukada T, Kikuchi K, Yamaguchi K: Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer Lett. 1999, 140 (1–2): 219-226. 10.1016/S0304-3835(99)00091-9.CrossRefPubMed
43.
Zurück zum Zitat Lapuk A, Volik S, Vincent R, Chin K, Kuo WL, de Jong P, Collins C, Gray JW: Computational BAC clone contig assembly for comprehensive genome analysis. Genes Chromosomes Cancer. 2004, 40: 66-71. 10.1002/gcc.20016.CrossRefPubMed Lapuk A, Volik S, Vincent R, Chin K, Kuo WL, de Jong P, Collins C, Gray JW: Computational BAC clone contig assembly for comprehensive genome analysis. Genes Chromosomes Cancer. 2004, 40: 66-71. 10.1002/gcc.20016.CrossRefPubMed
44.
Zurück zum Zitat Falck J, Coates J, Jackson SP: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005, 434: 605-611. 10.1038/nature03442.CrossRefPubMed Falck J, Coates J, Jackson SP: Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005, 434: 605-611. 10.1038/nature03442.CrossRefPubMed
45.
Zurück zum Zitat Jaquemar D, Schenker T, Trueb B: An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem. 1999, 274: 7325-7333. 10.1074/jbc.274.11.7325.CrossRefPubMed Jaquemar D, Schenker T, Trueb B: An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem. 1999, 274: 7325-7333. 10.1074/jbc.274.11.7325.CrossRefPubMed
46.
Zurück zum Zitat Dantzig AH, Hoskins JA, Tabas LB, Bright S, Shepard RL, Jenkins IL, Duckworth DC, Sportsman JR, Mackensen D, Rosteck PR, et al: Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science. 1994, 264: 430-433.CrossRefPubMed Dantzig AH, Hoskins JA, Tabas LB, Bright S, Shepard RL, Jenkins IL, Duckworth DC, Sportsman JR, Mackensen D, Rosteck PR, et al: Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science. 1994, 264: 430-433.CrossRefPubMed
47.
Zurück zum Zitat Ma Y, Pannicke U, Schwarz K, Lieber MR: Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002, 108: 781-794. 10.1016/S0092-8674(02)00671-2.CrossRefPubMed Ma Y, Pannicke U, Schwarz K, Lieber MR: Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002, 108: 781-794. 10.1016/S0092-8674(02)00671-2.CrossRefPubMed
48.
Zurück zum Zitat Fletcher GC, Patel S, Tyson K, Adam PJ, Schenker M, Loader JA, Daviet L, Legrain P, Parekh R, Harris AL, et al: hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. Br J Cancer. 2003, 88: 579-585. 10.1038/sj.bjc.6600740.CrossRefPubMedPubMedCentral Fletcher GC, Patel S, Tyson K, Adam PJ, Schenker M, Loader JA, Daviet L, Legrain P, Parekh R, Harris AL, et al: hAG-2 and hAG-3, human homologues of genes involved in differentiation, are associated with oestrogen receptor-positive breast tumours and interact with metastasis gene C4.4a and dystroglycan. Br J Cancer. 2003, 88: 579-585. 10.1038/sj.bjc.6600740.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K, et al: Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001, 29: 263-264. 10.1038/ng754.CrossRefPubMed Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K, et al: Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001, 29: 263-264. 10.1038/ng754.CrossRefPubMed
50.
Zurück zum Zitat Xie D, Jauch A, Miller CW, Bartram CR, Koeffler HP: Discovery of over-expressed genes and genetic alterations in breast cancer cells using a combination of suppression subtractive hybridization, multiplex FISH and comparative genomic hybridization. Int J Oncol. 2002, 21: 499-507.PubMed Xie D, Jauch A, Miller CW, Bartram CR, Koeffler HP: Discovery of over-expressed genes and genetic alterations in breast cancer cells using a combination of suppression subtractive hybridization, multiplex FISH and comparative genomic hybridization. Int J Oncol. 2002, 21: 499-507.PubMed
51.
Zurück zum Zitat Watson MB, Bahia H, Ashman JN, Berrieman HK, Drew P, Lind MJ, Greenman J, Cawkwell L: Chromosomal alterations in breast cancer revealed by multicolour fluorescence in situ hybridization. Int J Oncol. 2004, 25: 277-283.PubMed Watson MB, Bahia H, Ashman JN, Berrieman HK, Drew P, Lind MJ, Greenman J, Cawkwell L: Chromosomal alterations in breast cancer revealed by multicolour fluorescence in situ hybridization. Int J Oncol. 2004, 25: 277-283.PubMed
52.
Zurück zum Zitat Barlund M, Tirkkonen M, Forozan F, Tanner MM, Kallioniemi O, Kallioniemi A: Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer. 1997, 20: 372-376. 10.1002/(SICI)1098-2264(199712)20:4<372::AID-GCC8>3.0.CO;2-Z.CrossRefPubMed Barlund M, Tirkkonen M, Forozan F, Tanner MM, Kallioniemi O, Kallioniemi A: Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer. 1997, 20: 372-376. 10.1002/(SICI)1098-2264(199712)20:4<372::AID-GCC8>3.0.CO;2-Z.CrossRefPubMed
53.
Zurück zum Zitat Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992, 70: 431-442. 10.1016/0092-8674(92)90167-B.CrossRefPubMed Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992, 70: 431-442. 10.1016/0092-8674(92)90167-B.CrossRefPubMed
54.
Zurück zum Zitat Wu GJ, Sinclair CS, Paape J, Ingle JN, Roche PC, James CD, Couch FJ: 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes. Cancer Res. 2000, 60: 5371-5375.PubMed Wu GJ, Sinclair CS, Paape J, Ingle JN, Roche PC, James CD, Couch FJ: 17q23 amplifications in breast cancer involve the PAT1, RAD51C, PS6K, and SIGma1B genes. Cancer Res. 2000, 60: 5371-5375.PubMed
55.
Zurück zum Zitat Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen B: EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol. 2005, 18: 1027-1033. 10.1038/modpathol.3800438.CrossRefPubMed Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen B: EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol. 2005, 18: 1027-1033. 10.1038/modpathol.3800438.CrossRefPubMed
56.
Zurück zum Zitat Oda K, Matsuoka Y, Funahashi A, Kitano H: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005, 1: msb4100014-E1-msb4100014-E17. 10.1038/msb4100014.CrossRef Oda K, Matsuoka Y, Funahashi A, Kitano H: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005, 1: msb4100014-E1-msb4100014-E17. 10.1038/msb4100014.CrossRef
57.
Zurück zum Zitat Graus-Porta D, Beerli RR, Daly JM, Hynes NE: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997, 16: 1647-1655. 10.1093/emboj/16.7.1647.CrossRefPubMedPubMedCentral Graus-Porta D, Beerli RR, Daly JM, Hynes NE: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997, 16: 1647-1655. 10.1093/emboj/16.7.1647.CrossRefPubMedPubMedCentral
Metadaten
Titel
Comprehensive copy number profiles of breast cancer cell model genomes
verfasst von
Ashleen Shadeo
Wan L Lam
Publikationsdatum
01.02.2006
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 1/2005
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr1370

Weitere Artikel der Ausgabe 1/2005

Breast Cancer Research 1/2005 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.