Skip to main content
Erschienen in: The Cerebellum 5/2013

01.10.2013 | Review

Consensus Paper: Current Views on the Role of Cerebellar Interpositus Nucleus in Movement Control and Emotion

verfasst von: Vincenzo Perciavalle, Richard Apps, Vlastislav Bracha, José M. Delgado-García, Alan R. Gibson, Maria Leggio, Andrew J. Carrel, Nadia Cerminara, Marinella Coco, Agnès Gruart, Raudel Sánchez-Campusano

Erschienen in: The Cerebellum | Ausgabe 5/2013

Einloggen, um Zugang zu erhalten

Abstract

In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.
Literatur
1.
Zurück zum Zitat Larsell O, Jansen J. The comparative anatomy and histology of the cerebellum. III. The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: University of Minnesota Press; 1972. Larsell O, Jansen J. The comparative anatomy and histology of the cerebellum. III. The human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: University of Minnesota Press; 1972.
2.
Zurück zum Zitat Gould BB, Rakic P. The total number, time or origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the rhesus monkey. Exp Brain Res. 1981;44:195–206.PubMedCrossRef Gould BB, Rakic P. The total number, time or origin and kinetics of proliferation of neurons comprising the deep cerebellar nuclei in the rhesus monkey. Exp Brain Res. 1981;44:195–206.PubMedCrossRef
3.
Zurück zum Zitat Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.PubMed Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54(4):957–1006.PubMed
4.
Zurück zum Zitat Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–94.PubMedCrossRef Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–94.PubMedCrossRef
5.
Zurück zum Zitat Andersen BB, Fabricius K, Gundersen HJ, Jelsing J, Stark AK. No change in neuron numbers in the dentate nucleus of patients with schizophrenia estimated with a new stereological method—the smooth fractionator. J Anat. 2004;205:313–21.PubMedCrossRef Andersen BB, Fabricius K, Gundersen HJ, Jelsing J, Stark AK. No change in neuron numbers in the dentate nucleus of patients with schizophrenia estimated with a new stereological method—the smooth fractionator. J Anat. 2004;205:313–21.PubMedCrossRef
6.
Zurück zum Zitat Ito M, Yoshida M. The origin of cerebral-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp Brain Res. 1966;2(4):330–49.PubMed Ito M, Yoshida M. The origin of cerebral-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp Brain Res. 1966;2(4):330–49.PubMed
7.
Zurück zum Zitat Grant G. Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol Scand. 1962;56(193):1–45. Grant G. Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol Scand. 1962;56(193):1–45.
8.
Zurück zum Zitat Cooke JD, Larson B, Oscarsson O, Sjölund B. Origin and termination of cuneocerebellar tract. Exp Brain Res. 1971;13:339–58.PubMed Cooke JD, Larson B, Oscarsson O, Sjölund B. Origin and termination of cuneocerebellar tract. Exp Brain Res. 1971;13:339–58.PubMed
9.
Zurück zum Zitat Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull. 1990;25:919–27.PubMedCrossRef Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull. 1990;25:919–27.PubMedCrossRef
10.
Zurück zum Zitat Lan CT, Wen CY, Shieh JY. Anatomical studies on the cuneocerebellar neurons in the gerbil by using HRP method. Ann Anat. 1994;176:409–18.PubMedCrossRef Lan CT, Wen CY, Shieh JY. Anatomical studies on the cuneocerebellar neurons in the gerbil by using HRP method. Ann Anat. 1994;176:409–18.PubMedCrossRef
11.
Zurück zum Zitat Clendenin M, Ekerot CF, Oscarsson O, Rosén I. Functional organization of two spinocerebellar paths relayed through the lateral reticular nucleus in the cat. Brain Res. 1974;69:140–3.PubMedCrossRef Clendenin M, Ekerot CF, Oscarsson O, Rosén I. Functional organization of two spinocerebellar paths relayed through the lateral reticular nucleus in the cat. Brain Res. 1974;69:140–3.PubMedCrossRef
12.
Zurück zum Zitat Ekerot CF, Larson B. The dorsal spino-olivo-cerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979;36:219–32.PubMedCrossRef Ekerot CF, Larson B. The dorsal spino-olivo-cerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979;36:219–32.PubMedCrossRef
13.
Zurück zum Zitat Strominger NL, Nelson LR, Strominger RN. Banding of rubro-olivary terminations in the principal inferior olivary nucleus of the chimpanzee. Brain Res. 1985;343:185–7.PubMedCrossRef Strominger NL, Nelson LR, Strominger RN. Banding of rubro-olivary terminations in the principal inferior olivary nucleus of the chimpanzee. Brain Res. 1985;343:185–7.PubMedCrossRef
14.
Zurück zum Zitat Sousa-Pinto A, Brodal A. Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental-anatomical study. Exp Brain Res. 1969;8:364–86.PubMedCrossRef Sousa-Pinto A, Brodal A. Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental-anatomical study. Exp Brain Res. 1969;8:364–86.PubMedCrossRef
15.
Zurück zum Zitat Andersson G, Garwicz M, Hesslow G. Evidence for a GABAmediated cerebellar inhibition of the inferior olive in the cat. Exp Brain Res. 1988;72:450–6.PubMedCrossRef Andersson G, Garwicz M, Hesslow G. Evidence for a GABAmediated cerebellar inhibition of the inferior olive in the cat. Exp Brain Res. 1988;72:450–6.PubMedCrossRef
16.
Zurück zum Zitat Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One. 2009;4:e6623.PubMedCrossRef Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One. 2009;4:e6623.PubMedCrossRef
17.
Zurück zum Zitat Jang SH, Chang PH, Kwon HG. The neural connectivity of the inferior olivary nucleus in the human brain: a diffusion tensor tractography study. Neurosci Lett. 2012;523:67–70.PubMedCrossRef Jang SH, Chang PH, Kwon HG. The neural connectivity of the inferior olivary nucleus in the human brain: a diffusion tensor tractography study. Neurosci Lett. 2012;523:67–70.PubMedCrossRef
18.
Zurück zum Zitat Ruigrok TJ, Voogd J. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol. 2000;426:209–28.PubMedCrossRef Ruigrok TJ, Voogd J. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol. 2000;426:209–28.PubMedCrossRef
19.
Zurück zum Zitat Horn KM, Pong M, Gibson AR. Functional relations of cerebellar modules of the cat. J Neurosci. 2010;30:9411–23.PubMedCrossRef Horn KM, Pong M, Gibson AR. Functional relations of cerebellar modules of the cat. J Neurosci. 2010;30:9411–23.PubMedCrossRef
20.
Zurück zum Zitat Boesten AJP, Voogd J. Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol. 1975;161:215–38.PubMedCrossRef Boesten AJP, Voogd J. Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol. 1975;161:215–38.PubMedCrossRef
21.
Zurück zum Zitat Berkley KJ, Worden IG. Projections to the inferior olive of the cat. I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cereberal cortex and the cerebellum. J Comp Neurol. 1978;180:237–52.PubMedCrossRef Berkley KJ, Worden IG. Projections to the inferior olive of the cat. I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino-olivary pathways, the cereberal cortex and the cerebellum. J Comp Neurol. 1978;180:237–52.PubMedCrossRef
22.
Zurück zum Zitat Ekerot CF, Larson B, Oscarsson O. Information carried by the spinocerebellar paths. In: Granit R, Pompeiano O, editors. Progress in brain research. Reflex control of posture and movement, vol. 50. Amsterdam: Elsevier; 1979. p. 79–90.CrossRef Ekerot CF, Larson B, Oscarsson O. Information carried by the spinocerebellar paths. In: Granit R, Pompeiano O, editors. Progress in brain research. Reflex control of posture and movement, vol. 50. Amsterdam: Elsevier; 1979. p. 79–90.CrossRef
23.
Zurück zum Zitat Molinari HH. Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats. J Comp Neurol. 1984;223:110–23.PubMedCrossRef Molinari HH. Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats. J Comp Neurol. 1984;223:110–23.PubMedCrossRef
24.
Zurück zum Zitat Porter CM, van Kan PLE, Horn KM, Bloedel JR, Gibson AR. Functional divisions of cat rMAO. Soc Neurosci Abstr. 1993;19:499.10. Porter CM, van Kan PLE, Horn KM, Bloedel JR, Gibson AR. Functional divisions of cat rMAO. Soc Neurosci Abstr. 1993;19:499.10.
25.
Zurück zum Zitat Onodera S, Hicks TP. Patterns of transmitter labelling and connectivity of the cat's nucleus of Darkschewitsch: a wheat germ agglutinin-horseradish peroxidase and immunocytochemical study at light and electron microscopical levels. J Comp Neurol. 1995;361:553–73.PubMedCrossRef Onodera S, Hicks TP. Patterns of transmitter labelling and connectivity of the cat's nucleus of Darkschewitsch: a wheat germ agglutinin-horseradish peroxidase and immunocytochemical study at light and electron microscopical levels. J Comp Neurol. 1995;361:553–73.PubMedCrossRef
26.
Zurück zum Zitat Cicirata F, Serapide MF, Parenti R, Pantò MR, Zappalà A, Nicotra A, et al. The basilar Pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. Prog Brain Res. 2005;148:259–82.PubMedCrossRef Cicirata F, Serapide MF, Parenti R, Pantò MR, Zappalà A, Nicotra A, et al. The basilar Pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. Prog Brain Res. 2005;148:259–82.PubMedCrossRef
27.
Zurück zum Zitat Brodal A, Drablos PA. Two types of mossy fiber terminals in the cerebellum and their regional distribution. J Comp Neurol. 1963;121:173–87.PubMedCrossRef Brodal A, Drablos PA. Two types of mossy fiber terminals in the cerebellum and their regional distribution. J Comp Neurol. 1963;121:173–87.PubMedCrossRef
28.
Zurück zum Zitat Szentagothai J, Rajkovits K. The origin of the climbing fibres of the cerebellum. Anat Entw Gesch. 1959;121:130–41.CrossRef Szentagothai J, Rajkovits K. The origin of the climbing fibres of the cerebellum. Anat Entw Gesch. 1959;121:130–41.CrossRef
29.
Zurück zum Zitat McCrea RA, Bishop GA, Kitai ST. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Res. 1977;122:215–28.PubMedCrossRef McCrea RA, Bishop GA, Kitai ST. Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Res. 1977;122:215–28.PubMedCrossRef
30.
Zurück zum Zitat Dietrichs E, Bjaalie JG, Brodal P. Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Res. 1983;259:127–31.PubMedCrossRef Dietrichs E, Bjaalie JG, Brodal P. Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Res. 1983;259:127–31.PubMedCrossRef
31.
Zurück zum Zitat McCrea RA, Bishop GA, Kitai ST. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol. 1978;181:397–419.PubMedCrossRef McCrea RA, Bishop GA, Kitai ST. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol. 1978;181:397–419.PubMedCrossRef
32.
Zurück zum Zitat Robinson FR, Houk JC, Gibson AR. Limb specific connections of the cat magnocellular red nucleus. J Comp Neurol. 1987;257:553–77. Erratum in: J Comp Neurol. 1987;259:622.PubMedCrossRef Robinson FR, Houk JC, Gibson AR. Limb specific connections of the cat magnocellular red nucleus. J Comp Neurol. 1987;257:553–77. Erratum in: J Comp Neurol. 1987;259:622.PubMedCrossRef
33.
Zurück zum Zitat May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res. 2006;151:321–78.PubMedCrossRef May PJ. The mammalian superior colliculus: laminar structure and connections. Prog Brain Res. 2006;151:321–78.PubMedCrossRef
34.
Zurück zum Zitat Miller RA, Strominger NL. An experimental study of the efferent connections of the superior cerebellar peduncle in the rhesus monkey. Brain Res. 1977;133:237–50.PubMedCrossRef Miller RA, Strominger NL. An experimental study of the efferent connections of the superior cerebellar peduncle in the rhesus monkey. Brain Res. 1977;133:237–50.PubMedCrossRef
35.
Zurück zum Zitat Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52:93–106.PubMedCrossRef Zhu JN, Yung WH, Kwok-Chong CB, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52:93–106.PubMedCrossRef
36.
Zurück zum Zitat Voogd J, Bigaré. Topographical distribution of olivary and corticonuclear fibres in the cerebellum: a review. In: de Montigny C, Courville J, editors. The olivary nucleus. Anatomy and physiology. New York: Raven; 1980. p. 207–34. Voogd J, Bigaré. Topographical distribution of olivary and corticonuclear fibres in the cerebellum: a review. In: de Montigny C, Courville J, editors. The olivary nucleus. Anatomy and physiology. New York: Raven; 1980. p. 207–34.
37.
Zurück zum Zitat Buisseret-Delmas C, Angaut P. The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol. 1993;40:63–87.PubMedCrossRef Buisseret-Delmas C, Angaut P. The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol. 1993;40:63–87.PubMedCrossRef
38.
Zurück zum Zitat Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedCrossRef Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedCrossRef
39.
40.
Zurück zum Zitat Trott JR, Apps R, Armstrong DM. Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1. The C1 zone. Exp Brain Res. 1998;118:298–315.PubMedCrossRef Trott JR, Apps R, Armstrong DM. Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1. The C1 zone. Exp Brain Res. 1998;118:298–315.PubMedCrossRef
41.
Zurück zum Zitat Voogd J, Pardoe J, Ruigrok TJ, Apps R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci. 2003;23:4645–56.PubMed Voogd J, Pardoe J, Ruigrok TJ, Apps R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci. 2003;23:4645–56.PubMed
42.
Zurück zum Zitat Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci. 2006;26:12067–80.PubMedCrossRef Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci. 2006;26:12067–80.PubMedCrossRef
43.
Zurück zum Zitat Ekerot CF, Garwicz M, Schouenborg J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol. 1991;441:257–74.PubMed Ekerot CF, Garwicz M, Schouenborg J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol. 1991;441:257–74.PubMed
44.
Zurück zum Zitat Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.PubMedCrossRef Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.PubMedCrossRef
45.
Zurück zum Zitat Garwicz M, Apps R, Trott JR. Micro-organization of olivocerebellar and corticonuclear connections of the paravermal cerebellum in the cat. Eur J Neurosci. 1996;8:2726–38.PubMedCrossRef Garwicz M, Apps R, Trott JR. Micro-organization of olivocerebellar and corticonuclear connections of the paravermal cerebellum in the cat. Eur J Neurosci. 1996;8:2726–38.PubMedCrossRef
46.
Zurück zum Zitat Apps R, Garwicz M. Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J Neurosci. 2000;12:205–14.PubMedCrossRef Apps R, Garwicz M. Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J Neurosci. 2000;12:205–14.PubMedCrossRef
47.
Zurück zum Zitat Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10:449–63.PubMedCrossRef Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. Cerebellum. 2011;10:449–63.PubMedCrossRef
48.
Zurück zum Zitat Garwicz M, Ekerot CF. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol. 1994;474:245–60.PubMed Garwicz M, Ekerot CF. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol. 1994;474:245–60.PubMed
49.
Zurück zum Zitat van Kan PL, Houk JC, Gibson AR. Output organization of intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:57–73.PubMed van Kan PL, Houk JC, Gibson AR. Output organization of intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:57–73.PubMed
50.
Zurück zum Zitat Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.PubMedCrossRef Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.PubMedCrossRef
51.
Zurück zum Zitat Ekerot CF, Jorntell H, Garwicz M. Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res. 1995;106:365–76.PubMedCrossRef Ekerot CF, Jorntell H, Garwicz M. Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res. 1995;106:365–76.PubMedCrossRef
52.
Zurück zum Zitat Giuffrida R, Li Volsi G, Panto MR, Periciavalle V, Sapienza S, Urbano A. Single muscle organization of interposito-rubral projections. Exp Brain Res. 1980;39:261–7.PubMedCrossRef Giuffrida R, Li Volsi G, Panto MR, Periciavalle V, Sapienza S, Urbano A. Single muscle organization of interposito-rubral projections. Exp Brain Res. 1980;39:261–7.PubMedCrossRef
53.
Zurück zum Zitat Palkovits M, Mezey E, Hamori J, Szentagothai J. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res. 1977;28:189–209.PubMed Palkovits M, Mezey E, Hamori J, Szentagothai J. Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res. 1977;28:189–209.PubMed
54.
Zurück zum Zitat De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci. 1995;7:2322–33.PubMedCrossRef De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci. 1995;7:2322–33.PubMedCrossRef
55.
Zurück zum Zitat Bell CC, Kawasaki T. Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol. 1972;35:155–69.PubMed Bell CC, Kawasaki T. Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol. 1972;35:155–69.PubMed
56.
Zurück zum Zitat Sasaki K, Bower JM, Llinas R. Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci. 1989;1:572–86.PubMedCrossRef Sasaki K, Bower JM, Llinas R. Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci. 1989;1:572–86.PubMedCrossRef
57.
Zurück zum Zitat Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol. 2010;588:2373–90.PubMedCrossRef Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol. 2010;588:2373–90.PubMedCrossRef
58.
Zurück zum Zitat Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481:502–5.PubMedCrossRef Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481:502–5.PubMedCrossRef
59.
Zurück zum Zitat Bengtsson F, Ekerot CF, Jörntell H. In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One. 2011;6:e18822.PubMedCrossRef Bengtsson F, Ekerot CF, Jörntell H. In vivo analysis of inhibitory synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One. 2011;6:e18822.PubMedCrossRef
60.
Zurück zum Zitat Ito M, Yoshida M, Obata K. Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia. 1964;20:575–6.PubMedCrossRef Ito M, Yoshida M, Obata K. Monosynaptic inhibition of the intracerebellar nuclei induced from the cerebellar cortex. Experientia. 1964;20:575–6.PubMedCrossRef
61.
Zurück zum Zitat Armstrong DM, Edgley SA. Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol. 1984;351:411–32.PubMed Armstrong DM, Edgley SA. Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol. 1984;351:411–32.PubMed
62.
Zurück zum Zitat Van Der Want JJL, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.PubMedCrossRef Van Der Want JJL, Wiklund L, Guegan M, Ruigrok T, Voogd J. Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol. 1989;288:1–18.PubMedCrossRef
63.
Zurück zum Zitat Shinoda Y, Izawa Y, Sugiuchi Y, Futami T. Functional significance of excitatory projections from the precerebellar nuclei to interpositus and dentate nucleus neurons for mediating motor, premotor and parietal cortical inputs. Prog Brain Res. 1997;114:193–207.PubMedCrossRef Shinoda Y, Izawa Y, Sugiuchi Y, Futami T. Functional significance of excitatory projections from the precerebellar nuclei to interpositus and dentate nucleus neurons for mediating motor, premotor and parietal cortical inputs. Prog Brain Res. 1997;114:193–207.PubMedCrossRef
64.
Zurück zum Zitat Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequence(s). Behav Brain Sci. 1996;19:384–98.CrossRef Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequence(s). Behav Brain Sci. 1996;19:384–98.CrossRef
65.
Zurück zum Zitat Bloedel JR, Bracha V. Current concepts of climbing fiber function. Anat Rec. 1998;253:118–26.PubMedCrossRef Bloedel JR, Bracha V. Current concepts of climbing fiber function. Anat Rec. 1998;253:118–26.PubMedCrossRef
66.
Zurück zum Zitat De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.PubMedCrossRef De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.PubMedCrossRef
67.
68.
Zurück zum Zitat Llinás RR. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story. J Physiol. 2011;589:3423–32.PubMedCrossRef Llinás RR. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story. J Physiol. 2011;589:3423–32.PubMedCrossRef
69.
Zurück zum Zitat Colin F, Manil J, Desclin JC. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980;187:3–27.PubMedCrossRef Colin F, Manil J, Desclin JC. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980;187:3–27.PubMedCrossRef
70.
Zurück zum Zitat Cerminara NL, Rawson JA. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci. 2004;24:4510–7.PubMedCrossRef Cerminara NL, Rawson JA. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci. 2004;24:4510–7.PubMedCrossRef
71.
Zurück zum Zitat Rawson JA, Tilokskulchai K. Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neurosci Lett. 1981;25:125–30.PubMedCrossRef Rawson JA, Tilokskulchai K. Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neurosci Lett. 1981;25:125–30.PubMedCrossRef
72.
Zurück zum Zitat Fukuda M, Yamamoto T, Llinas R. The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study. Eur J Neurosci. 2001;13:315–26.PubMedCrossRef Fukuda M, Yamamoto T, Llinas R. The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study. Eur J Neurosci. 2001;13:315–26.PubMedCrossRef
73.
Zurück zum Zitat Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31:14708–20.PubMedCrossRef Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31:14708–20.PubMedCrossRef
74.
Zurück zum Zitat Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci. 2010;107:8410–5.PubMedCrossRef Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci. 2010;107:8410–5.PubMedCrossRef
75.
Zurück zum Zitat Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nature Neurosci. 2008;11:1256–8.PubMedCrossRef Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nature Neurosci. 2008;11:1256–8.PubMedCrossRef
76.
Zurück zum Zitat Cody FW, Moore RB, Richardson HC. Patterns of activity evoked in cerebellar interpositus nuclear neurones by natural somatosensory stimuli in awake cats. J Physiol. 1981;317:1–20.PubMed Cody FW, Moore RB, Richardson HC. Patterns of activity evoked in cerebellar interpositus nuclear neurones by natural somatosensory stimuli in awake cats. J Physiol. 1981;317:1–20.PubMed
77.
Zurück zum Zitat Armstrong DM, Rawson JA. Responses of neurones in nucleus interpositus of the cerebellum to cutaneous nerve volleys in the awake cat. J Physiol. 1979;289:403–23.PubMed Armstrong DM, Rawson JA. Responses of neurones in nucleus interpositus of the cerebellum to cutaneous nerve volleys in the awake cat. J Physiol. 1979;289:403–23.PubMed
78.
Zurück zum Zitat Gellman R, Gibson AR, Houk JC. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol. 1985;54:40–60.PubMed Gellman R, Gibson AR, Houk JC. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol. 1985;54:40–60.PubMed
79.
Zurück zum Zitat Apps R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog Neurobiol. 1999;57:537–62.PubMedCrossRef Apps R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog Neurobiol. 1999;57:537–62.PubMedCrossRef
80.
Zurück zum Zitat Apps R, Hartell NA, Armstrong DM. Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol. 1995;483:687–702.PubMed Apps R, Hartell NA, Armstrong DM. Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol. 1995;483:687–702.PubMed
81.
Zurück zum Zitat Monzée J, Smith AM. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol. 2004;91:1230–9.PubMedCrossRef Monzée J, Smith AM. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J Neurophysiol. 2004;91:1230–9.PubMedCrossRef
82.
Zurück zum Zitat Chen S, Hillman DE. Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol. 1993;22:81–91.PubMedCrossRef Chen S, Hillman DE. Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol. 1993;22:81–91.PubMedCrossRef
83.
Zurück zum Zitat Tarnecki R. Functional connections between neurons of interpositus nucleus of the cerebellum and the red nucleus. Behav Brain Res. 1988;28:117–25.PubMedCrossRef Tarnecki R. Functional connections between neurons of interpositus nucleus of the cerebellum and the red nucleus. Behav Brain Res. 1988;28:117–25.PubMedCrossRef
84.
Zurück zum Zitat Teune TM, van der Burg J, Ruigrok TJ. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res. 1995;673:313–9.PubMedCrossRef Teune TM, van der Burg J, Ruigrok TJ. Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Res. 1995;673:313–9.PubMedCrossRef
85.
Zurück zum Zitat Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience. 2002;110:105–21.PubMedCrossRef Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience. 2002;110:105–21.PubMedCrossRef
86.
Zurück zum Zitat Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.PubMedCrossRef Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.PubMedCrossRef
87.
Zurück zum Zitat Rispal-Padel L, Cicirata F, Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47:365–80.PubMedCrossRef Rispal-Padel L, Cicirata F, Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47:365–80.PubMedCrossRef
88.
Zurück zum Zitat Asanuma C, Thach WR, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286:267–97.PubMed Asanuma C, Thach WR, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286:267–97.PubMed
89.
Zurück zum Zitat Schwartz AB, Ebner TJ, Bloedel JR. Responses of interposed and dentate neurons to perturbations of the locomotor cycle. Exp Brain Res. 1987;67:323–38.PubMedCrossRef Schwartz AB, Ebner TJ, Bloedel JR. Responses of interposed and dentate neurons to perturbations of the locomotor cycle. Exp Brain Res. 1987;67:323–38.PubMedCrossRef
90.
Zurück zum Zitat Berthier NE, Moore JW. Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Exp Brain Res. 1990;83:44–54.PubMedCrossRef Berthier NE, Moore JW. Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Exp Brain Res. 1990;83:44–54.PubMedCrossRef
91.
Zurück zum Zitat van Kan PL, Horn KM, Gibson AR. The importance of hand use to discharge of interpositus neurones of the monkey. J Physiol. 1994;480:171–90.PubMed van Kan PL, Horn KM, Gibson AR. The importance of hand use to discharge of interpositus neurones of the monkey. J Physiol. 1994;480:171–90.PubMed
92.
Zurück zum Zitat Gibson AR, Horn KM, Stein JF, Van Kan PL. Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol. 1996;74:499–512.PubMedCrossRef Gibson AR, Horn KM, Stein JF, Van Kan PL. Activity of interpositus neurons during a visually guided reach. Can J Physiol Pharmacol. 1996;74:499–512.PubMedCrossRef
93.
Zurück zum Zitat Zhang H, Gamlin PD. Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol. 1998;79:1255–69.PubMed Zhang H, Gamlin PD. Neurons in the posterior interposed nucleus of the cerebellum related to vergence and accommodation. I. Steady-state characteristics. J Neurophysiol. 1998;79:1255–69.PubMed
94.
Zurück zum Zitat Chen FP, Evinger C. Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J Neurosci. 2006;26:10569–76.PubMedCrossRef Chen FP, Evinger C. Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J Neurosci. 2006;26:10569–76.PubMedCrossRef
95.
Zurück zum Zitat Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci. 2007;27:6620–32.PubMedCrossRef Sánchez-Campusano R, Gruart A, Delgado-García JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci. 2007;27:6620–32.PubMedCrossRef
96.
Zurück zum Zitat Krupa DJ, Thompson JK, Thompson RF. Localization of a memory trace in the mammalian brain. Science. 1993;260:989–91.PubMedCrossRef Krupa DJ, Thompson JK, Thompson RF. Localization of a memory trace in the mammalian brain. Science. 1993;260:989–91.PubMedCrossRef
97.
Zurück zum Zitat Bracha V, Webster ML, Winters NK, Irwin KB, Bloedel JR. Effects of muscimol inactivation of the cerebellar interposed-dentate nuclear complex on the performance of the nictitating membrane response in the rabbit. Exp Brain Res. 1994;100:453–68.PubMedCrossRef Bracha V, Webster ML, Winters NK, Irwin KB, Bloedel JR. Effects of muscimol inactivation of the cerebellar interposed-dentate nuclear complex on the performance of the nictitating membrane response in the rabbit. Exp Brain Res. 1994;100:453–68.PubMedCrossRef
98.
Zurück zum Zitat Kolb FP, Irwin KB, Bloedel JR, Bracha V. Conditioned and unconditioned forelimb reflex systems in the cat: involvement of the intermediate cerebellum. Exp Brain Res. 1997;114:255–70.PubMedCrossRef Kolb FP, Irwin KB, Bloedel JR, Bracha V. Conditioned and unconditioned forelimb reflex systems in the cat: involvement of the intermediate cerebellum. Exp Brain Res. 1997;114:255–70.PubMedCrossRef
99.
Zurück zum Zitat Kreider JC, Mauk MD. Eyelid conditioning to a target amplitude: adding how much to whether and when. J Neurosci. 2010;30:14145–52.PubMedCrossRef Kreider JC, Mauk MD. Eyelid conditioning to a target amplitude: adding how much to whether and when. J Neurosci. 2010;30:14145–52.PubMedCrossRef
100.
Zurück zum Zitat Bracha V, Zhao L, Irwin K, Bloedel JR. Intermediate cerebellum and conditioned eyeblinks. Parallel involvement in eyeblinks and tonic eyelid closure. Exp Brain Res. 2001;136:41–9.PubMedCrossRef Bracha V, Zhao L, Irwin K, Bloedel JR. Intermediate cerebellum and conditioned eyeblinks. Parallel involvement in eyeblinks and tonic eyelid closure. Exp Brain Res. 2001;136:41–9.PubMedCrossRef
101.
Zurück zum Zitat Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.PubMed Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.PubMed
102.
Zurück zum Zitat Bracha V, Kolb FP, Irwin KB, Bloedel JR. Inactivation of interposed nuclei in the cat: classically conditioned withdrawal reflexes, voluntary limb movements and the action primitive hypothesis. Exp Brain Res. 1999;126:77–92.PubMedCrossRef Bracha V, Kolb FP, Irwin KB, Bloedel JR. Inactivation of interposed nuclei in the cat: classically conditioned withdrawal reflexes, voluntary limb movements and the action primitive hypothesis. Exp Brain Res. 1999;126:77–92.PubMedCrossRef
103.
Zurück zum Zitat Martin JH, Cooper SE, Hacking A, Ghez C. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol. 2000;83:1886–99.PubMed Martin JH, Cooper SE, Hacking A, Ghez C. Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control. J Neurophysiol. 2000;83:1886–99.PubMed
104.
Zurück zum Zitat Aksenov D, Serdyukova N, Irwin K, Bracha V. GABA neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2004;91:719–27.PubMedCrossRef Aksenov D, Serdyukova N, Irwin K, Bracha V. GABA neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2004;91:719–27.PubMedCrossRef
105.
Zurück zum Zitat Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.PubMedCrossRef Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.PubMedCrossRef
106.
Zurück zum Zitat Aksenov DP, Serdyukova NA, Bloedel JR, Bracha V. Glutamate neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2005;93:44–52.PubMedCrossRef Aksenov DP, Serdyukova NA, Bloedel JR, Bracha V. Glutamate neurotransmission in the cerebellar interposed nuclei: involvement in classically conditioned eyeblinks and neuronal activity. J Neurophysiol. 2005;93:44–52.PubMedCrossRef
107.
Zurück zum Zitat Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP. Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience. 1986;4:1045–50.CrossRef Somogyi P, Halasy K, Somogyi J, Storm-Mathisen J, Ottersen OP. Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience. 1986;4:1045–50.CrossRef
108.
Zurück zum Zitat Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988;404:241–58.PubMed Llinas R, Muhlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988;404:241–58.PubMed
109.
Zurück zum Zitat Konnerth A, Llano I. Armstrong synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1990;87:2662–5.PubMedCrossRef Konnerth A, Llano I. Armstrong synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1990;87:2662–5.PubMedCrossRef
110.
Zurück zum Zitat Silver RA, Traynelis SF, Cull-Candy SG. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 1992;355:163–6.PubMedCrossRef Silver RA, Traynelis SF, Cull-Candy SG. Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 1992;355:163–6.PubMedCrossRef
111.
Zurück zum Zitat Mihailoff GA. Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol. 1993;330:130–46.PubMedCrossRef Mihailoff GA. Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol. 1993;330:130–46.PubMedCrossRef
112.
Zurück zum Zitat Attwell PJ, Ivarsson M, Millar L, Yeo CH. Cerebellar mechanisms in eyeblink conditioning. Ann N Y Acad Sci. 2002;978:79–92.PubMedCrossRef Attwell PJ, Ivarsson M, Millar L, Yeo CH. Cerebellar mechanisms in eyeblink conditioning. Ann N Y Acad Sci. 2002;978:79–92.PubMedCrossRef
113.
Zurück zum Zitat Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26:12656–63.PubMedCrossRef Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26:12656–63.PubMedCrossRef
114.
Zurück zum Zitat Kalmbach BE, Davis T, Ohyama T, Riusech F, Nores WL, Mauk MD. Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J Neurophysiol. 2010;103(4):2039–49.PubMedCrossRef Kalmbach BE, Davis T, Ohyama T, Riusech F, Nores WL, Mauk MD. Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J Neurophysiol. 2010;103(4):2039–49.PubMedCrossRef
115.
Zurück zum Zitat Mostofi A, Holtzman T, Grout AS, Yeo CH, Edgley SA. Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci. 2010;30:8920–34.PubMedCrossRef Mostofi A, Holtzman T, Grout AS, Yeo CH, Edgley SA. Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci. 2010;30:8920–34.PubMedCrossRef
116.
Zurück zum Zitat Attwell PJ, Rahman S, Ivarsson M, Yeo CH. Cerebellar cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictitating membrane responses. J Neurosci. 1999;19:RC45.PubMed Attwell PJ, Rahman S, Ivarsson M, Yeo CH. Cerebellar cortical AMPA-kainate receptor blockade prevents performance of classically conditioned nictitating membrane responses. J Neurosci. 1999;19:RC45.PubMed
117.
Zurück zum Zitat Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.PubMedCrossRef Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.PubMedCrossRef
118.
Zurück zum Zitat Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275. Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275.
119.
120.
Zurück zum Zitat Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 1997;20:177–81.PubMedCrossRef Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 1997;20:177–81.PubMedCrossRef
121.
Zurück zum Zitat McCormick DA, Thompson RF. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J Neurosci. 1984;4:2811–22.PubMed McCormick DA, Thompson RF. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J Neurosci. 1984;4:2811–22.PubMed
122.
Zurück zum Zitat Weiss C, Disterhoft JF, Gibson AR, Houk JC. Receptive fields of single cells from the face zone of the cat rostral dorsal accessory olive. Brain Res. 1993;605:207–13.PubMedCrossRef Weiss C, Disterhoft JF, Gibson AR, Houk JC. Receptive fields of single cells from the face zone of the cat rostral dorsal accessory olive. Brain Res. 1993;605:207–13.PubMedCrossRef
123.
Zurück zum Zitat Gruart A, Delgado-García JM. Discharge of identified deep cerebellar nuclei neurons related to eye blinks in the alert cat. Neuroscience. 1994;61:665–81.PubMedCrossRef Gruart A, Delgado-García JM. Discharge of identified deep cerebellar nuclei neurons related to eye blinks in the alert cat. Neuroscience. 1994;61:665–81.PubMedCrossRef
124.
Zurück zum Zitat Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.PubMed Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.PubMed
125.
Zurück zum Zitat Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vozeh F, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol. 2010;104:346–65.PubMedCrossRef Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vozeh F, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol. 2010;104:346–65.PubMedCrossRef
126.
Zurück zum Zitat Sun LW. Transsynaptic tracing of conditioned eyeblink circuits in the mouse cerebellum. Neuroscience. 2012;203:122–34.PubMedCrossRef Sun LW. Transsynaptic tracing of conditioned eyeblink circuits in the mouse cerebellum. Neuroscience. 2012;203:122–34.PubMedCrossRef
127.
Zurück zum Zitat Morcuende S, Delgado-García JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.PubMed Morcuende S, Delgado-García JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.PubMed
128.
Zurück zum Zitat Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18:666–77.PubMedCrossRef Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18:666–77.PubMedCrossRef
129.
Zurück zum Zitat Delgado-García JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002;1:289–308.PubMedCrossRef Delgado-García JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002;1:289–308.PubMedCrossRef
130.
Zurück zum Zitat Jiménez-Díaz L, de JD N-L, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.PubMedCrossRef Jiménez-Díaz L, de JD N-L, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.PubMedCrossRef
131.
Zurück zum Zitat Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.PubMedCrossRef Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.PubMedCrossRef
132.
Zurück zum Zitat Delgado-García JM, Gruart A. Firing activities of identified posterior interpositus nucleus neurons during associative learning in behaving cats. Brain Res Brain Res Rev. 2005;49:367–76.PubMedCrossRef Delgado-García JM, Gruart A. Firing activities of identified posterior interpositus nucleus neurons during associative learning in behaving cats. Brain Res Brain Res Rev. 2005;49:367–76.PubMedCrossRef
134.
Zurück zum Zitat Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar-motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.PubMedCrossRef Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar-motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.PubMedCrossRef
135.
Zurück zum Zitat Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. Cerebellum. 2011;10:702–10.PubMedCrossRef Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. Cerebellum. 2011;10:702–10.PubMedCrossRef
137.
Zurück zum Zitat Holstege G, Blok BF, Ralston DD. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett. 1988;95:97–101.PubMedCrossRef Holstege G, Blok BF, Ralston DD. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett. 1988;95:97–101.PubMedCrossRef
138.
Zurück zum Zitat Fujito Y, Aoki M. Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat. Exp Brain Res. 1995;105:181–90.PubMedCrossRef Fujito Y, Aoki M. Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat. Exp Brain Res. 1995;105:181–90.PubMedCrossRef
139.
Zurück zum Zitat McCurdy ML, Hansma DI, Houk JC, Gibson AR. Selective projections from cat red nucleus to digit motor neurons. J Comp Neurol. 1987;265:367–79. Erratum in: J Comp Neurol. 1988;273:445.PubMedCrossRef McCurdy ML, Hansma DI, Houk JC, Gibson AR. Selective projections from cat red nucleus to digit motor neurons. J Comp Neurol. 1987;265:367–79. Erratum in: J Comp Neurol. 1988;273:445.PubMedCrossRef
140.
Zurück zum Zitat Ralston DD, Milroy AM, Holstege G. Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneuron in Macaca mulatta. Neurosci Lett. 1988;95:102–6.PubMedCrossRef Ralston DD, Milroy AM, Holstege G. Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneuron in Macaca mulatta. Neurosci Lett. 1988;95:102–6.PubMedCrossRef
141.
Zurück zum Zitat Gibson AR, Houk JC, Kohlerman NJ. Magnocellular red nucleus activity during different types of limb movement in the macaque monkey. J Physiol. 1985;358:527–49.PubMed Gibson AR, Houk JC, Kohlerman NJ. Magnocellular red nucleus activity during different types of limb movement in the macaque monkey. J Physiol. 1985;358:527–49.PubMed
142.
Zurück zum Zitat van Kan PL, McCurdy ML. Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp. J Neurophysiol. 2001;85:1461–78.PubMed van Kan PL, McCurdy ML. Role of primate magnocellular red nucleus neurons in controlling hand preshaping during reaching to grasp. J Neurophysiol. 2001;85:1461–78.PubMed
143.
Zurück zum Zitat Toyama K, Tsukahara N, Kosaka K, Matsunami K. Synaptic excitation of red nucleus neurones by fibres from interpositus nucleus. Exp Brain Res. 1970;11:187–98.PubMedCrossRef Toyama K, Tsukahara N, Kosaka K, Matsunami K. Synaptic excitation of red nucleus neurones by fibres from interpositus nucleus. Exp Brain Res. 1970;11:187–98.PubMedCrossRef
144.
Zurück zum Zitat Gibson AR, Houk JC, Kohlerman NJ. Relation between red nucleus discharge and movement parameters in trained macaque monkeys. J Physiol. 1985;358:551–70.PubMed Gibson AR, Houk JC, Kohlerman NJ. Relation between red nucleus discharge and movement parameters in trained macaque monkeys. J Physiol. 1985;358:551–70.PubMed
145.
Zurück zum Zitat Mason CR, Miller LE, Baker JF, Houk JC. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J Neurophysiol. 1998;79:537–54.PubMed Mason CR, Miller LE, Baker JF, Houk JC. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J Neurophysiol. 1998;79:537–54.PubMed
146.
Zurück zum Zitat Goldberger ME, Growdon JH. Pattern of recovery following cerebellar deep nuclear lesions in monkeys. Exp Neurol. 1973;39:307–22.PubMedCrossRef Goldberger ME, Growdon JH. Pattern of recovery following cerebellar deep nuclear lesions in monkeys. Exp Neurol. 1973;39:307–22.PubMedCrossRef
147.
Zurück zum Zitat Apps R, Lee S. Central regulation of cerebellar climbing fibre input during motor learning. J Physiol. 2002;541:301–17.PubMedCrossRef Apps R, Lee S. Central regulation of cerebellar climbing fibre input during motor learning. J Physiol. 2002;541:301–17.PubMedCrossRef
148.
149.
150.
Zurück zum Zitat Lincoln JS, McCormick DA, Thompson RF. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res. 1982;242:190–3.PubMedCrossRef Lincoln JS, McCormick DA, Thompson RF. Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res. 1982;242:190–3.PubMedCrossRef
151.
Zurück zum Zitat Welker W. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy (summary of Wisconsin studies). In: King JS, editor. New concepts in cerebellar neurobiology. New York: Alan R. Liss; 1987. p. 239–80. Welker W. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy (summary of Wisconsin studies). In: King JS, editor. New concepts in cerebellar neurobiology. New York: Alan R. Liss; 1987. p. 239–80.
152.
Zurück zum Zitat Giaquinta G, Valle MS, Caserta C, Casabona A, Bosco G, Perciavalle V. Sensory representation of passive movement kinematics by rat's spinocerebellar Purkinje cells. Neurosci Lett. 2000;285:41–4.PubMedCrossRef Giaquinta G, Valle MS, Caserta C, Casabona A, Bosco G, Perciavalle V. Sensory representation of passive movement kinematics by rat's spinocerebellar Purkinje cells. Neurosci Lett. 2000;285:41–4.PubMedCrossRef
153.
Zurück zum Zitat Burton JE, Onoda N. Dependence of the activity of interpositus and red nucleus neurons on sensory input data generated by movement. Brain Res. 1978;152:41–63.PubMedCrossRef Burton JE, Onoda N. Dependence of the activity of interpositus and red nucleus neurons on sensory input data generated by movement. Brain Res. 1978;152:41–63.PubMedCrossRef
154.
Zurück zum Zitat Soechting JF, Burton JE, Onoda N. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement. Brain Res. 1978;152:65–79.PubMedCrossRef Soechting JF, Burton JE, Onoda N. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement. Brain Res. 1978;152:65–79.PubMedCrossRef
155.
Zurück zum Zitat Harvey RJ, Porter R, Rawson JA. Discharges of intracerebellar nuclear cells in monkeys. J Physiol. 1979;297:559–80.PubMed Harvey RJ, Porter R, Rawson JA. Discharges of intracerebellar nuclear cells in monkeys. J Physiol. 1979;297:559–80.PubMed
156.
Zurück zum Zitat Casabona A, Valle MS, Bosco G, Garifoli A, Lombardo SA, Perciavalle V. Anisotropic representation of forelimb position in the cerebellar cortex and nucleus interpositus of the rat. Brain Res. 2003;972:127–36.PubMedCrossRef Casabona A, Valle MS, Bosco G, Garifoli A, Lombardo SA, Perciavalle V. Anisotropic representation of forelimb position in the cerebellar cortex and nucleus interpositus of the rat. Brain Res. 2003;972:127–36.PubMedCrossRef
157.
Zurück zum Zitat Casabona A, Valle MS, Bosco G, Perciavalle V. Cerebellar encoding of limb position. Cerebellum. 2004;3:172–7.PubMedCrossRef Casabona A, Valle MS, Bosco G, Perciavalle V. Cerebellar encoding of limb position. Cerebellum. 2004;3:172–7.PubMedCrossRef
158.
Zurück zum Zitat Casabona A, Valle MS, Bosco G, Perciavalle V. Comparison of neuronal activities of external cuneate nucleus, spinocerebellar cortex and interpositus nucleus during passive movements of the rat's forelimb. Neuroscience. 2008;157:271–9.PubMedCrossRef Casabona A, Valle MS, Bosco G, Perciavalle V. Comparison of neuronal activities of external cuneate nucleus, spinocerebellar cortex and interpositus nucleus during passive movements of the rat's forelimb. Neuroscience. 2008;157:271–9.PubMedCrossRef
159.
Zurück zum Zitat Valle MS, Bosco G, Casabona A, Garifoli A, Perciavalle V, Coco M, et al. Representation of movement velocity in the rat's interpositus nucleus during passive forelimb movements. Cerebellum. 2010;9:249–58.PubMedCrossRef Valle MS, Bosco G, Casabona A, Garifoli A, Perciavalle V, Coco M, et al. Representation of movement velocity in the rat's interpositus nucleus during passive forelimb movements. Cerebellum. 2010;9:249–58.PubMedCrossRef
160.
Zurück zum Zitat MacKay WA. Unit activity in the cerebellar nuclei related to arm reaching movements. Brain Res. 1988;442:240–54.PubMedCrossRef MacKay WA. Unit activity in the cerebellar nuclei related to arm reaching movements. Brain Res. 1988;442:240–54.PubMedCrossRef
161.
Zurück zum Zitat Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol. 2005;94:1236–51.PubMedCrossRef Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol. 2005;94:1236–51.PubMedCrossRef
162.
Zurück zum Zitat Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRef Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRef
163.
Zurück zum Zitat Soteropoulos DS, Baker SN. Bilateral representation in the deep cerebellar nuclei. J Physiol. 2008;586:1117–36.PubMedCrossRef Soteropoulos DS, Baker SN. Bilateral representation in the deep cerebellar nuclei. J Physiol. 2008;586:1117–36.PubMedCrossRef
164.
Zurück zum Zitat Casabona A, Bosco G, Perciavalle V, Valle MS. Processing of limb kinematics in the interpositus nucleus. Cerebellum. 2010;9:103–10.PubMedCrossRef Casabona A, Bosco G, Perciavalle V, Valle MS. Processing of limb kinematics in the interpositus nucleus. Cerebellum. 2010;9:103–10.PubMedCrossRef
165.
Zurück zum Zitat Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.PubMed Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.PubMed
166.
Zurück zum Zitat Zackowski KM, Thach Jr WT, Bastian AJ. Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res. 2002;146:511–22.PubMedCrossRef Zackowski KM, Thach Jr WT, Bastian AJ. Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res. 2002;146:511–22.PubMedCrossRef
167.
Zurück zum Zitat Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.PubMedCrossRef Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.PubMedCrossRef
168.
Zurück zum Zitat Cooper SE, Martin JH, Ghez C. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol. 2000;84:1988–2000.PubMed Cooper SE, Martin JH, Ghez C. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol. 2000;84:1988–2000.PubMed
169.
Zurück zum Zitat Miall RC, Weir DJ, Stein JF. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65:455–64.PubMedCrossRef Miall RC, Weir DJ, Stein JF. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65:455–64.PubMedCrossRef
170.
171.
172.
Zurück zum Zitat Greenough WT, Anderson BJ. Cerebellar synaptic plasticity. Relation to learning versus neural activity. Ann N Y Acad Sci. 1991;627:231–47.PubMedCrossRef Greenough WT, Anderson BJ. Cerebellar synaptic plasticity. Relation to learning versus neural activity. Ann N Y Acad Sci. 1991;627:231–47.PubMedCrossRef
173.
Zurück zum Zitat Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23:305–14.PubMedCrossRef Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, et al. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex. 2013;23:305–14.PubMedCrossRef
174.
Zurück zum Zitat Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.PubMedCrossRef Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.PubMedCrossRef
175.
Zurück zum Zitat Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRef
176.
Zurück zum Zitat Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–70.PubMedCrossRef Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–70.PubMedCrossRef
177.
Zurück zum Zitat Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRef Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRef
178.
Zurück zum Zitat Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRef Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRef
179.
Zurück zum Zitat Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–28.PubMedCrossRef Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44:113–28.PubMedCrossRef
180.
Zurück zum Zitat Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50.PubMedCrossRef Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50.PubMedCrossRef
181.
Zurück zum Zitat Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.PubMedCrossRef Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.PubMedCrossRef
182.
Zurück zum Zitat Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.PubMedCrossRef Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.PubMedCrossRef
183.
Zurück zum Zitat Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.PubMedCrossRef Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127:561–74.PubMedCrossRef
184.
Zurück zum Zitat Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.PubMed Molinari M, Petrosini L, Misciagna S, Leggio MG. Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry. 2004;75:235–40.PubMed
185.
Zurück zum Zitat Chiricozzi FR, Clausi S, Molinari M. Leggio MG phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia. 2008;46:1940–53.PubMedCrossRef Chiricozzi FR, Clausi S, Molinari M. Leggio MG phonological short-term store impairment after cerebellar lesion: a single case study. Neuropsychologia. 2008;46:1940–53.PubMedCrossRef
186.
Zurück zum Zitat Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.PubMedCrossRef Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.PubMedCrossRef
187.
Zurück zum Zitat Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11:336–51.PubMedCrossRef Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11:336–51.PubMedCrossRef
188.
Zurück zum Zitat Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRef Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRef
189.
Zurück zum Zitat Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.PubMedCrossRef Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.PubMedCrossRef
190.
Zurück zum Zitat Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedCrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedCrossRef
191.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.PubMedCrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.PubMedCrossRef
192.
Zurück zum Zitat O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMedCrossRef O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMedCrossRef
193.
Zurück zum Zitat Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.PubMedCrossRef Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.PubMedCrossRef
194.
Zurück zum Zitat Annoni JM, Ptak R, Caldara-Schnetzer AS, Khateb A, Pollermann BZ. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53:654–8.PubMedCrossRef Annoni JM, Ptak R, Caldara-Schnetzer AS, Khateb A, Pollermann BZ. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53:654–8.PubMedCrossRef
195.
Zurück zum Zitat Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4:290–4.PubMedCrossRef Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4:290–4.PubMedCrossRef
196.
Zurück zum Zitat Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMedCrossRef Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMedCrossRef
197.
Zurück zum Zitat Çavdar S, Şan T, Aker R, Şehirli U, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.PubMedCrossRef Çavdar S, Şan T, Aker R, Şehirli U, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198:37–45.PubMedCrossRef
198.
Zurück zum Zitat Zhu JN, Li HZ, Ding Y, Wang JJ. Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J Neurosci Res. 2006;84:1597–609.PubMedCrossRef Zhu JN, Li HZ, Ding Y, Wang JJ. Cerebellar modulation of feeding-related neurons in rat dorsomedial hypothalamic nucleus. J Neurosci Res. 2006;84:1597–609.PubMedCrossRef
199.
Zurück zum Zitat Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett. 2004;370(1):25–9.PubMedCrossRef Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett. 2004;370(1):25–9.PubMedCrossRef
200.
Zurück zum Zitat Sauter DA, Eisner F, Ekman P, Scott SK. Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proc Natl Acad Sci U S A. 2010;107:2408–12.PubMedCrossRef Sauter DA, Eisner F, Ekman P, Scott SK. Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proc Natl Acad Sci U S A. 2010;107:2408–12.PubMedCrossRef
201.
Zurück zum Zitat Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci. 2002;99:8406–11.PubMedCrossRef Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci. 2002;99:8406–11.PubMedCrossRef
202.
Zurück zum Zitat Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897:150–6.PubMedCrossRef Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897:150–6.PubMedCrossRef
203.
Zurück zum Zitat Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109:18980–4.PubMedCrossRef Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109:18980–4.PubMedCrossRef
Metadaten
Titel
Consensus Paper: Current Views on the Role of Cerebellar Interpositus Nucleus in Movement Control and Emotion
verfasst von
Vincenzo Perciavalle
Richard Apps
Vlastislav Bracha
José M. Delgado-García
Alan R. Gibson
Maria Leggio
Andrew J. Carrel
Nadia Cerminara
Marinella Coco
Agnès Gruart
Raudel Sánchez-Campusano
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 5/2013
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-013-0464-0

Weitere Artikel der Ausgabe 5/2013

The Cerebellum 5/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Vierten reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.