Skip to main content
Erschienen in: Experimental Brain Research 1/2012

01.03.2012 | Research Article

Contact points during multidigit grasping of geometric objects

verfasst von: René Gilster, Constanze Hesse, Heiner Deubel

Erschienen in: Experimental Brain Research | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

We investigated the choice of contact points during multidigit grasping of different objects. In Experiment 1, cylinders were grasped and lifted. Participants were either instructed as to the number of fingers they should use, ranging from a two-finger grasp to a five-finger grasp, or could grasp with their preferred number of fingers. We found a strong relationship between the position of the fingertips on the object and the number of fingers used. In general, variability in the choice of contact points was low within- as well as between participants. The virtual finger, defined as the geometric mean position of fingers opposing the thumb, was in almost perfect opposition to the thumb, suggesting the formation of a functional unit using all contributing fingers in the grasp. In Experiment 2, four more complex shapes (rectangle, hexagon, pentagon, curved object) were grasped. Although we found some moderate between-participant variability in the choice of contact points, the within-participant variability was again remarkably low. In both experiments, participants showed a strong preference to use four or five fingers during grasping when left with free choice. Taken together, our findings suggest a preplanning of the grasping movement and that grasping results from a coordinated interplay between the fingers contributing to the grasp that cannot be understood as independent digit movements.
Literatur
Zurück zum Zitat Arbib MA (1990) Programs, schemas, and neural networks for control of hand movements: beyond the RS framework. In: Jeannerod M (ed) Attention and performance XIII: motor representation and control. Erlbaum, Hillsdale, pp 111–137 Arbib MA (1990) Programs, schemas, and neural networks for control of hand movements: beyond the RS framework. In: Jeannerod M (ed) Attention and performance XIII: motor representation and control. Erlbaum, Hillsdale, pp 111–137
Zurück zum Zitat Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodman AW, Darian-Smith I (eds) Hand function and the neocortex. Springer, Berlin, pp 137–170 Arbib MA, Iberall T, Lyons D (1985) Coordinated control programs for movements of the hand. In: Goodman AW, Darian-Smith I (eds) Hand function and the neocortex. Springer, Berlin, pp 137–170
Zurück zum Zitat Baud-Bovy G, Soechting JF (2001) Two virtual fingers in the control of the tripod grasp. J Neurophysiol 86:604–615PubMed Baud-Bovy G, Soechting JF (2001) Two virtual fingers in the control of the tripod grasp. J Neurophysiol 86:604–615PubMed
Zurück zum Zitat Bingham GP, Muchisky MM (1993) Center of mass perception and inertial frames of reference. Percept Psychophys 54:617–632PubMedCrossRef Bingham GP, Muchisky MM (1993) Center of mass perception and inertial frames of reference. Percept Psychophys 54:617–632PubMedCrossRef
Zurück zum Zitat Cesari P, Newell KM (1999) The scaling of human grip configurations. J Exp Psychol Human Percept Perform 25:927–935CrossRef Cesari P, Newell KM (1999) The scaling of human grip configurations. J Exp Psychol Human Percept Perform 25:927–935CrossRef
Zurück zum Zitat Cuijpers RH, Brenner E, Smeets JBJ (2006) Grasping reveals visual misjudgements of shape. Exp Brain Res 175:32–44PubMedCrossRef Cuijpers RH, Brenner E, Smeets JBJ (2006) Grasping reveals visual misjudgements of shape. Exp Brain Res 175:32–44PubMedCrossRef
Zurück zum Zitat Flanagan JR, Burstedt MK, Johansson RS (1999) Control of fingertip forces in multidigit manipulation. J Neurophysiol 81:1706–1717PubMed Flanagan JR, Burstedt MK, Johansson RS (1999) Control of fingertip forces in multidigit manipulation. J Neurophysiol 81:1706–1717PubMed
Zurück zum Zitat Friedman J, Flash T (2007) Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex 43:444–460PubMedCrossRef Friedman J, Flash T (2007) Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex 43:444–460PubMedCrossRef
Zurück zum Zitat Gentilucci M, Caselli L, Secchi C (2003) Finger control in the tripod grasp. Exp Brain Res 149:351–360PubMed Gentilucci M, Caselli L, Secchi C (2003) Finger control in the tripod grasp. Exp Brain Res 149:351–360PubMed
Zurück zum Zitat Goodale MA, Meenan JP, Bülthoff HH et al (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610PubMedCrossRef Goodale MA, Meenan JP, Bülthoff HH et al (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610PubMedCrossRef
Zurück zum Zitat Hayter AJ (1986) The maximum familywise error rate of Fisher’s least significant difference test. J Am Stat Assoc 81:1000–1004CrossRef Hayter AJ (1986) The maximum familywise error rate of Fisher’s least significant difference test. J Am Stat Assoc 81:1000–1004CrossRef
Zurück zum Zitat Iberall T (1987) A neural model of human prehension. University of Massachusetts, Amherst Iberall T (1987) A neural model of human prehension. University of Massachusetts, Amherst
Zurück zum Zitat Iberall T, Bingham GP, Arbib MA (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. In: Heuer H, Fromm C (eds) Generation and modulation of action patterns. Springer, Berlin, pp 158–173 Iberall T, Bingham GP, Arbib MA (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. In: Heuer H, Fromm C (eds) Generation and modulation of action patterns. Springer, Berlin, pp 158–173
Zurück zum Zitat Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, pp 153–169 Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale, pp 153–169
Zurück zum Zitat Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254PubMed Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16:235–254PubMed
Zurück zum Zitat John S (1971) Some optimal multivariate tests. Biometrika 58:123–127 John S (1971) Some optimal multivariate tests. Biometrika 58:123–127
Zurück zum Zitat Kirk RE (1994) Experimental design: procedures for behavioral sciences, 3rd edn. Wadsworth Publishing Kirk RE (1994) Experimental design: procedures for behavioral sciences, 3rd edn. Wadsworth Publishing
Zurück zum Zitat Kleinholdermann U, Brenner E, Franz VH, Smeets JBJ (2007) Grasping trapezoidal objects. Exp Brain Res 180:415–420PubMedCrossRef Kleinholdermann U, Brenner E, Franz VH, Smeets JBJ (2007) Grasping trapezoidal objects. Exp Brain Res 180:415–420PubMedCrossRef
Zurück zum Zitat Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152:156–165PubMedCrossRef Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152:156–165PubMedCrossRef
Zurück zum Zitat Lukos JR, Ansuini C, Santello M (2008) Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics. J Neurosci 28:12765PubMedCrossRef Lukos JR, Ansuini C, Santello M (2008) Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics. J Neurosci 28:12765PubMedCrossRef
Zurück zum Zitat MacKenzie CL, Iberall T (1994) The grasping hand. Elsevier, Amsterdam MacKenzie CL, Iberall T (1994) The grasping hand. Elsevier, Amsterdam
Zurück zum Zitat Marteniuk RG, Bertram CP (1999) On achieving strong inference in prehension research. Mot Control 3:272–275 Marteniuk RG, Bertram CP (1999) On achieving strong inference in prehension research. Mot Control 3:272–275
Zurück zum Zitat Napier JR (1956) The prehensile movements of the human Hand. J Bone Joint Surg Br 38:902–913PubMed Napier JR (1956) The prehensile movements of the human Hand. J Bone Joint Surg Br 38:902–913PubMed
Zurück zum Zitat Newell KM, Cesari P (1999) On taking the grasping out of prehension. Mot Control 3:285–288 Newell KM, Cesari P (1999) On taking the grasping out of prehension. Mot Control 3:285–288
Zurück zum Zitat Newell KM, Scully DM, Tenenbaum F, Hardiman S (1989) Body scale and the development of prehension. Dev Psychobiol 22:1–13PubMedCrossRef Newell KM, Scully DM, Tenenbaum F, Hardiman S (1989) Body scale and the development of prehension. Dev Psychobiol 22:1–13PubMedCrossRef
Zurück zum Zitat Newell KM, McDonald PV, Baillargeon R (1993) Body scale and infant grip configurations. Dev Psychobiol 26:195–205PubMedCrossRef Newell KM, McDonald PV, Baillargeon R (1993) Body scale and infant grip configurations. Dev Psychobiol 26:195–205PubMedCrossRef
Zurück zum Zitat Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83:502–512PubMedCrossRef Paulignan Y, MacKenzie C, Marteniuk R, Jeannerod M (1991) Selective perturbation of visual input during prehension movements. 1. The effects of changing object position. Exp Brain Res 83:502–512PubMedCrossRef
Zurück zum Zitat Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234PubMedCrossRef Paulignan Y, Frak VG, Toni I, Jeannerod M (1997) Influence of object position and size on human prehension movements. Exp Brain Res 114:226–234PubMedCrossRef
Zurück zum Zitat Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol 94:59–85CrossRef Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol 94:59–85CrossRef
Zurück zum Zitat Rosenbaum DA, Meulenbroek RJG, Vaughan J, Elsinger C (1999) Approaching grasping from different perspectives. Mot Control 3:289–297 Rosenbaum DA, Meulenbroek RJG, Vaughan J, Elsinger C (1999) Approaching grasping from different perspectives. Mot Control 3:289–297
Zurück zum Zitat Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467PubMedCrossRef Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467PubMedCrossRef
Zurück zum Zitat Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271 Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271
Zurück zum Zitat Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100PubMedCrossRef Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100PubMedCrossRef
Zurück zum Zitat Steenbergen B (1999) What can be learned from Smeets and Brenner’s model about the control of grasping? Mot Control 3:302–306 Steenbergen B (1999) What can be learned from Smeets and Brenner’s model about the control of grasping? Mot Control 3:302–306
Zurück zum Zitat Wing AM, Lederman SJ (1998) Anticipating load torques produced by voluntary movements. J Exp Psychol Hum Percept Perform 24:1571–1581PubMedCrossRef Wing AM, Lederman SJ (1998) Anticipating load torques produced by voluntary movements. J Exp Psychol Hum Percept Perform 24:1571–1581PubMedCrossRef
Metadaten
Titel
Contact points during multidigit grasping of geometric objects
verfasst von
René Gilster
Constanze Hesse
Heiner Deubel
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 1/2012
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-011-2980-9

Weitere Artikel der Ausgabe 1/2012

Experimental Brain Research 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.