Skip to main content
Erschienen in: Brain Topography 1/2013

01.01.2013 | Original Paper

Conventional and Reciprocal Approaches to the Inverse Dipole Localization Problem for N20–P20 Somatosensory Evoked Potentials

verfasst von: Stefan Finke, Ramesh M. Gulrajani, Jean Gotman, Pierre Savard

Erschienen in: Brain Topography | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N20–P20 somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current—scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N20–P20 SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N20–P20 SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N20–P20 SEP source localization.
Literatur
Zurück zum Zitat Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989) Human cortical potentials evoked by electrical stimulation of the median nerve. J Neurophysiol 62:694–710PubMed Allison T, McCarthy G, Wood CC, Darcey TM, Spencer DD, Williamson PD (1989) Human cortical potentials evoked by electrical stimulation of the median nerve. J Neurophysiol 62:694–710PubMed
Zurück zum Zitat Bittar RG, Olivier A, Sadikot AF, Andermann F, Comeau RM, Cyr M, Peters TM, Reutens DC (1999) Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg 90:478–483PubMedCrossRef Bittar RG, Olivier A, Sadikot AF, Andermann F, Comeau RM, Cyr M, Peters TM, Reutens DC (1999) Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg 90:478–483PubMedCrossRef
Zurück zum Zitat Broca P (1888) Description elémentaires des circonvolutions cérébrales de l’homme. Mémoires d’anthropologie. Reinwald, Paris, pp 707–804 Broca P (1888) Description elémentaires des circonvolutions cérébrales de l’homme. Mémoires d’anthropologie. Reinwald, Paris, pp 707–804
Zurück zum Zitat Buchner H, Fuchs M, Wischmann HA, Dössel O, Ludwig I, Knepper A, Berg P (1994) Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography. Brain Topogr 6:299–310PubMedCrossRef Buchner H, Fuchs M, Wischmann HA, Dössel O, Ludwig I, Knepper A, Berg P (1994) Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography. Brain Topogr 6:299–310PubMedCrossRef
Zurück zum Zitat Buchner H, Adams L, Müller A, Ludwig I, Knepper A, Thron A, Niemann K, Scherg M (1995a) Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography. Electroencephalogr Clin Neurophysiol 96:121–134PubMedCrossRef Buchner H, Adams L, Müller A, Ludwig I, Knepper A, Thron A, Niemann K, Scherg M (1995a) Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of early somatosensory evoked potentials and 3D-NMR tomography. Electroencephalogr Clin Neurophysiol 96:121–134PubMedCrossRef
Zurück zum Zitat Buchner H, Waberski TD, Fuchs M, Wischmann H-A, Wagner M, Drenckhahn R (1995b) Comparison of realistically shaped boundary-element and spherical head models in source localization of early somatosensory evoked potentials. Brain Topogr 8:137–143PubMedCrossRef Buchner H, Waberski TD, Fuchs M, Wischmann H-A, Wagner M, Drenckhahn R (1995b) Comparison of realistically shaped boundary-element and spherical head models in source localization of early somatosensory evoked potentials. Brain Topogr 8:137–143PubMedCrossRef
Zurück zum Zitat Cuffin BN, Cohen D, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy J, Schomer D (1991) Tests of EEG localization accuracy using implanted sources in the human brain. Ann Neurol 29:132–138PubMedCrossRef Cuffin BN, Cohen D, Yunokuchi K, Maniewski R, Purcell C, Cosgrove GR, Ives J, Kennedy J, Schomer D (1991) Tests of EEG localization accuracy using implanted sources in the human brain. Ann Neurol 29:132–138PubMedCrossRef
Zurück zum Zitat Fender DH (1991) Models for the human brain and the surrounding media: their influence on the reliability of source localization. J Clin Neurophysiol 8:381–390PubMedCrossRef Fender DH (1991) Models for the human brain and the surrounding media: their influence on the reliability of source localization. J Clin Neurophysiol 8:381–390PubMedCrossRef
Zurück zum Zitat Finke S, Gulrajani RM (2001) Conventional and reciprocal approaches to the forward problem of electroencephalography. Electromagnetics 21:513–530CrossRef Finke S, Gulrajani RM (2001) Conventional and reciprocal approaches to the forward problem of electroencephalography. Electromagnetics 21:513–530CrossRef
Zurück zum Zitat Finke S, Gulrajani RM, Gotman J (2003) Conventional and reciprocal approaches to the inverse dipole localization problem of electroencephalography. IEEE Trans Biomed Eng 50:657–666PubMedCrossRef Finke S, Gulrajani RM, Gotman J (2003) Conventional and reciprocal approaches to the inverse dipole localization problem of electroencephalography. IEEE Trans Biomed Eng 50:657–666PubMedCrossRef
Zurück zum Zitat Fletcher DJ, Amir A, Jewett DL, Fein G (1995) Improved method for computation of potentials in a realistic head shape model. IEEE Trans Biomed Eng 42:1094–1104PubMedCrossRef Fletcher DJ, Amir A, Jewett DL, Fein G (1995) Improved method for computation of potentials in a realistic head shape model. IEEE Trans Biomed Eng 42:1094–1104PubMedCrossRef
Zurück zum Zitat Forsythe GE, Moler CB (1967) Computer solution of linear algebraic systems. Prentice-Hall, Englewood Cliffs Forsythe GE, Moler CB (1967) Computer solution of linear algebraic systems. Prentice-Hall, Englewood Cliffs
Zurück zum Zitat Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: I. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269PubMedCrossRef Gabriel S, Lau R, Gabriel C (1996) The dielectric properties of biological tissues: I. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269PubMedCrossRef
Zurück zum Zitat Geddes L, Baker L (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293PubMedCrossRef Geddes L, Baker L (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293PubMedCrossRef
Zurück zum Zitat Gevins A, Bricked P, Costales B, Le J, Reuter B (1990) Beyond topographic mapping: towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs. Brain Topogr 3:53–64PubMedCrossRef Gevins A, Bricked P, Costales B, Le J, Reuter B (1990) Beyond topographic mapping: towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs. Brain Topogr 3:53–64PubMedCrossRef
Zurück zum Zitat Gross DW, Merlet I, Boling W, Gotman J (2000) Relationships between the epileptic focus and hand area in central epilepsy: combining dipole models and anatomical landmarks. J Neurosurg 92:785–792PubMedCrossRef Gross DW, Merlet I, Boling W, Gotman J (2000) Relationships between the epileptic focus and hand area in central epilepsy: combining dipole models and anatomical landmarks. J Neurosurg 92:785–792PubMedCrossRef
Zurück zum Zitat He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T (1987) Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans Biomed Eng 34:406–414PubMedCrossRef He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T (1987) Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans Biomed Eng 34:406–414PubMedCrossRef
Zurück zum Zitat Kristeva-Feige R, Walter H, Lütkenhöner B, Hampson S, Ross B, Knorr U, Steinmetz H, Cheyne D (1994) A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J Neurosci 6:632–639PubMedCrossRef Kristeva-Feige R, Walter H, Lütkenhöner B, Hampson S, Ross B, Knorr U, Steinmetz H, Cheyne D (1994) A neuromagnetic study of the functional organization of the sensorimotor cortex. Eur J Neurosci 6:632–639PubMedCrossRef
Zurück zum Zitat Kurth R, Villringer K, Mackert BM, Schwiemann J, Braun J, Curio G, Villringer A, Wolf KJ (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9:207–212PubMedCrossRef Kurth R, Villringer K, Mackert BM, Schwiemann J, Braun J, Curio G, Villringer A, Wolf KJ (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9:207–212PubMedCrossRef
Zurück zum Zitat Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6:99–109PubMedCrossRef Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6:99–109PubMedCrossRef
Zurück zum Zitat Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remond A (eds) Methods of analysis of brain electrical and magnetic signals. EEG handbook. Elsevier, Amsterdam, pp 309–354 Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remond A (eds) Methods of analysis of brain electrical and magnetic signals. EEG handbook. Elsevier, Amsterdam, pp 309–354
Zurück zum Zitat Lüders H, Dinner DS, Lesser RP, Morris HH (1986) Evoked potentials in cortical localization. J Clin Neurophysiol 3:75–84PubMedCrossRef Lüders H, Dinner DS, Lesser RP, Morris HH (1986) Evoked potentials in cortical localization. J Clin Neurophysiol 3:75–84PubMedCrossRef
Zurück zum Zitat Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441CrossRef Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441CrossRef
Zurück zum Zitat Mauguière F (2005) Somatosensory evoked potentials: normal responses, abnormal waveforms, and clinical applications in neurological diseases. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott, Williams & Wilkins, Philadelphia, pp 1067–1120 Mauguière F (2005) Somatosensory evoked potentials: normal responses, abnormal waveforms, and clinical applications in neurological diseases. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott, Williams & Wilkins, Philadelphia, pp 1067–1120
Zurück zum Zitat Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557PubMedCrossRef Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557PubMedCrossRef
Zurück zum Zitat Nunez PL (1981) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York Nunez PL (1981) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York
Zurück zum Zitat Nunez PL (1990) Localization of brain activity with electroencephalography. In: Sato S (ed) Magnetoencephalography. Raven Press, New York, pp 39–65 Nunez PL (1990) Localization of brain activity with electroencephalography. In: Sato S (ed) Magnetoencephalography. Raven Press, New York, pp 39–65
Zurück zum Zitat Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487–1492PubMedCrossRef Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487–1492PubMedCrossRef
Zurück zum Zitat Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef
Zurück zum Zitat Richards JE (2004) Recovering dipole sources from scalp-recorded event-related-potentials using component analysis: principal component analysis and independent component analysis. Int J Psychophysiol 54:201–220PubMedCrossRef Richards JE (2004) Recovering dipole sources from scalp-recorded event-related-potentials using component analysis: principal component analysis and independent component analysis. Int J Psychophysiol 54:201–220PubMedCrossRef
Zurück zum Zitat Rush S, Driscoll DA (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47:717–723PubMedCrossRef Rush S, Driscoll DA (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47:717–723PubMedCrossRef
Zurück zum Zitat Scherg M, Bast T, Berg P (1999) Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J Clin Neurophysiol 16:214–224PubMedCrossRef Scherg M, Bast T, Berg P (1999) Multiple source analysis of interictal spikes: goals, requirements, and clinical value. J Clin Neurophysiol 16:214–224PubMedCrossRef
Zurück zum Zitat Vanrumste B, Van Hoey R, Van de Walle R, D’Havé MRP, Lemahieu IA, Boon PAJM (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topogr 14:83–92PubMedCrossRef Vanrumste B, Van Hoey R, Van de Walle R, D’Havé MRP, Lemahieu IA, Boon PAJM (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topogr 14:83–92PubMedCrossRef
Zurück zum Zitat Weinstein D, Zhukov L, Johnson C (2000) Lield-field bases for electroencephalography source imaging. Ann Biomed Eng 28:1059–1065PubMedCrossRef Weinstein D, Zhukov L, Johnson C (2000) Lield-field bases for electroencephalography source imaging. Ann Biomed Eng 28:1059–1065PubMedCrossRef
Zurück zum Zitat Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 120:141–157PubMedCrossRef Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus: a new landmark. Brain 120:141–157PubMedCrossRef
Zurück zum Zitat Zhang Z, Jewett DL, Goodwill G (1994) Insidious errors in dipole parameter due to shell model misspecification using multiple time-points. Brain Topogr 6:283–298PubMedCrossRef Zhang Z, Jewett DL, Goodwill G (1994) Insidious errors in dipole parameter due to shell model misspecification using multiple time-points. Brain Topogr 6:283–298PubMedCrossRef
Metadaten
Titel
Conventional and Reciprocal Approaches to the Inverse Dipole Localization Problem for N20–P20 Somatosensory Evoked Potentials
verfasst von
Stefan Finke
Ramesh M. Gulrajani
Jean Gotman
Pierre Savard
Publikationsdatum
01.01.2013
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 1/2013
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-012-0238-x

Weitere Artikel der Ausgabe 1/2013

Brain Topography 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

Stuhltransfusion könnte Fortschreiten von Parkinson-Symptomen bremsen

03.05.2024 Parkinson-Krankheit Nachrichten

Kann eine frühzeitige Stuhltransplantation das Fortschreiten von Parkinson-Symptomen verlangsamen? Die Ergebnisse einer randomisierten Phase-2-Studie scheinen dafür zu sprechen.

Frühe Tranexamsäure-Therapie nützt wenig bei Hirnblutungen

02.05.2024 Hirnblutung Nachrichten

Erhalten Personen mit einer spontanen Hirnblutung innerhalb von zwei Stunden nach Symptombeginn eine Tranexamsäure-Therapie, kann dies weder die Hämatomexpansion eindämmen noch die Mortalität senken.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.