Skip to main content
Erschienen in: Clinical Oral Investigations 8/2014

01.11.2014 | Original Article

Cortical activation resulting from the stimulation of periodontal mechanoreceptors measured by functional magnetic resonance imaging (fMRI)

verfasst von: P. Habre-Hallage, L. Dricot, L. Hermoye, H. Reychler, D. van Steenberghe, R. Jacobs, C. B. Grandin

Erschienen in: Clinical Oral Investigations | Ausgabe 8/2014

Einloggen, um Zugang zu erhalten

Abstract

Objective

To describe the normal cortical projections of periodontal mechanoreceptors.

Material and methods

A device using von Frey filaments delivered 1-Hz punctate tactile stimuli to the teeth during fMRI. In a block design paradigm, tooth (T) 11 and T13 were stimulated in ten volunteers and T21 and T23 in ten other subjects. Random-effect group analyses were performed for each tooth, and differences between teeth were examined using ANOVA.

Results

The parietal operculum (S2) was activated bilaterally for all teeth; the postcentral gyrus (S1) was activated bilaterally for T21 and T23 and contralaterally for T11 and T13. In the second-level analysis including the four teeth, we found five clusters: bilateral S1 and S2, and left inferior frontal gyrus, with no difference between teeth in somatosensory areas. However, the ANOVA performed on the S1 clusters found separately in each tooth showed that S1 activation was more contralateral for the canines.

Conclusion

One-hertz mechanical stimulation activates periodontal mechanoreceptors and elicits bilateral cortical activity in S1 and S2, with a double representation in S2, namely in OP1 and OP4.

Clinical relevance

The cortical somatotopy of periodontal mechanoreceptors is poorly described. These findings may serve as normal reference to further explore the cortical plasticity induced by periodontal or neurological diseases.
Literatur
1.
Zurück zum Zitat Trulsson M, Gunne HS (1998) Food-holding and -biting behavior in human subjects lacking periodontal receptors. J Dent Res 77:574–582PubMedCrossRef Trulsson M, Gunne HS (1998) Food-holding and -biting behavior in human subjects lacking periodontal receptors. J Dent Res 77:574–582PubMedCrossRef
2.
Zurück zum Zitat Trulsson M, Johansson RS (2002) Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav Brain Res 135:27–33PubMedCrossRef Trulsson M, Johansson RS (2002) Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav Brain Res 135:27–33PubMedCrossRef
3.
Zurück zum Zitat Trulsson M, Johansson RS, Olsson KA (1992) Directional sensitivity of human periodontal mechanoreceptive afferents to forces applied to the teeth. J Physiol 447:373–389PubMedPubMedCentral Trulsson M, Johansson RS, Olsson KA (1992) Directional sensitivity of human periodontal mechanoreceptive afferents to forces applied to the teeth. J Physiol 447:373–389PubMedPubMedCentral
4.
Zurück zum Zitat Trulsson M, Johansson RS (1994) Encoding of amplitude and rate of forces applied to the teeth by human periodontal mechanoreceptive afferents. J Neurophysiol 72:1734–1744PubMed Trulsson M, Johansson RS (1994) Encoding of amplitude and rate of forces applied to the teeth by human periodontal mechanoreceptive afferents. J Neurophysiol 72:1734–1744PubMed
5.
Zurück zum Zitat Trulsson M, Johansson RS (1996) Encoding of tooth loads by human periodontal afferents and their role in jaw motor control. Prog Neurobiol 49:267–284PubMedCrossRef Trulsson M, Johansson RS (1996) Encoding of tooth loads by human periodontal afferents and their role in jaw motor control. Prog Neurobiol 49:267–284PubMedCrossRef
6.
Zurück zum Zitat Ettlin DA, Zhang H, Lutz K, Jarmann T, Meier D, Gallo LM, Jancke L, Palla S (2004) Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (FMRI). J Dent Res 83:757–761PubMedCrossRef Ettlin DA, Zhang H, Lutz K, Jarmann T, Meier D, Gallo LM, Jancke L, Palla S (2004) Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (FMRI). J Dent Res 83:757–761PubMedCrossRef
7.
Zurück zum Zitat Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, Sadato N (2006) The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex 16:669–675PubMedCrossRef Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, Sadato N (2006) The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex 16:669–675PubMedCrossRef
8.
Zurück zum Zitat Trulsson M, Francis ST, Bowtell R, McGlone F (2010) Brain activations in response to vibrotactile tooth stimulation: a psychophysical and FMRI study. J Neurophysiol 104:2257–2265PubMedCrossRef Trulsson M, Francis ST, Bowtell R, McGlone F (2010) Brain activations in response to vibrotactile tooth stimulation: a psychophysical and FMRI study. J Neurophysiol 104:2257–2265PubMedCrossRef
9.
Zurück zum Zitat Penfield W (1950) The cerebral cortex of man: a clinical study of localization of function. Macmillan, New York Penfield W (1950) The cerebral cortex of man: a clinical study of localization of function. Macmillan, New York
10.
Zurück zum Zitat Van Loven K, Jacobs R, Van Hees J, Van Huffel S, van Steenberghe D (2001) Trigeminal somatosensory evoked potentials in humans. Electromyogr Clin Neurophysiol 41:357–375PubMed Van Loven K, Jacobs R, Van Hees J, Van Huffel S, van Steenberghe D (2001) Trigeminal somatosensory evoked potentials in humans. Electromyogr Clin Neurophysiol 41:357–375PubMed
11.
Zurück zum Zitat Nakahara H, Nakasato N, Kanno A, Murayama S, Hatanaka K, Itoh H, Yoshimoto T (2004) Somatosensory-evoked fields for gingiva, lip, and tongue. J Dent Res 83:307–311 Nakahara H, Nakasato N, Kanno A, Murayama S, Hatanaka K, Itoh H, Yoshimoto T (2004) Somatosensory-evoked fields for gingiva, lip, and tongue. J Dent Res 83:307–311
12.
Zurück zum Zitat Trulsson M (2006) Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil 33:262–273PubMedCrossRef Trulsson M (2006) Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil 33:262–273PubMedCrossRef
13.
Zurück zum Zitat Jantsch HH, Kemppainen P, Ringler R, Handwerker HO, Forster C (2005) Cortical representation of experimental tooth pain in humans. Pain 118:390–399PubMedCrossRef Jantsch HH, Kemppainen P, Ringler R, Handwerker HO, Forster C (2005) Cortical representation of experimental tooth pain in humans. Pain 118:390–399PubMedCrossRef
14.
Zurück zum Zitat Habre-Hallage P, Hermoye L, Gradkowski W, Jacobs R, Reychler H, Grandin CB (2010) A manually controlled new device for punctuate mechanical stimulation of teeth during functional magnetic resonance imaging studies. J Clin Periodontol 37:863–872PubMedCrossRef Habre-Hallage P, Hermoye L, Gradkowski W, Jacobs R, Reychler H, Grandin CB (2010) A manually controlled new device for punctuate mechanical stimulation of teeth during functional magnetic resonance imaging studies. J Clin Periodontol 37:863–872PubMedCrossRef
15.
Zurück zum Zitat Habre-Hallage P, Dricot L, Jacobs R, van Steenberghe D, Reychler H, Grandin CB (2012) Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI. Eur J Oral Implantol 5: 175–190 Habre-Hallage P, Dricot L, Jacobs R, van Steenberghe D, Reychler H, Grandin CB (2012) Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI. Eur J Oral Implantol 5: 175–190
16.
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
17.
Zurück zum Zitat Talairach G, Tournoux P (eds) (1988) Co-planar stereotaxic atlas of the human brain. Thieme Verlag, New York Talairach G, Tournoux P (eds) (1988) Co-planar stereotaxic atlas of the human brain. Thieme Verlag, New York
18.
Zurück zum Zitat Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMed Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMed
19.
Zurück zum Zitat Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279PubMedCrossRef Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279PubMedCrossRef
20.
Zurück zum Zitat Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267. Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267.
21.
Zurück zum Zitat Hari R, Kaukoranta E (1985) Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol 24:233–256PubMedCrossRef Hari R, Kaukoranta E (1985) Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol 24:233–256PubMedCrossRef
22.
Zurück zum Zitat Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546PubMed Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546PubMed
23.
Zurück zum Zitat Hagen MC, Pardo JV (2002) PET studies of somatosensory processing of light touch. Behav Brain Res 135:133–140PubMedCrossRef Hagen MC, Pardo JV (2002) PET studies of somatosensory processing of light touch. Behav Brain Res 135:133–140PubMedCrossRef
24.
Zurück zum Zitat Iannetti GD, Porro CA, Pantano P, Romanelli PL, Galeotti F, Cruccu G (2003) Representation of different trigeminal divisions within the primary and secondary human somatosensory cortex. Neuroimage 19:906–912PubMedCrossRef Iannetti GD, Porro CA, Pantano P, Romanelli PL, Galeotti F, Cruccu G (2003) Representation of different trigeminal divisions within the primary and secondary human somatosensory cortex. Neuroimage 19:906–912PubMedCrossRef
25.
Zurück zum Zitat Fox PT, Burton H, Raichle ME (1987) Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:34–43PubMedCrossRef Fox PT, Burton H, Raichle ME (1987) Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:34–43PubMedCrossRef
26.
Zurück zum Zitat Huang RS, Sereno MI (2007) Dodecapus: an MR-compatible system for somatosensory stimulation. Neuroimage 34:1060–1073PubMedCrossRef Huang RS, Sereno MI (2007) Dodecapus: an MR-compatible system for somatosensory stimulation. Neuroimage 34:1060–1073PubMedCrossRef
27.
Zurück zum Zitat Dresel C, Parzinger A, Rimpau C, Zimmer C, Ceballos-Baumann AO, Haslinger B (2008) A new device for tactile stimulation during fMRI. Neuroimage 39:1094–1103PubMedCrossRef Dresel C, Parzinger A, Rimpau C, Zimmer C, Ceballos-Baumann AO, Haslinger B (2008) A new device for tactile stimulation during fMRI. Neuroimage 39:1094–1103PubMedCrossRef
28.
Zurück zum Zitat Kopietz R, Sakar V, Albrecht J, Kleemann AM, Schopf V, Yousry I, Linn J, Fesl G, Wiesmann M (2009) Activation of primary and secondary somatosensory regions following tactile stimulation of the face. Klin Neuroradiol 19:135–144PubMedCrossRef Kopietz R, Sakar V, Albrecht J, Kleemann AM, Schopf V, Yousry I, Linn J, Fesl G, Wiesmann M (2009) Activation of primary and secondary somatosensory regions following tactile stimulation of the face. Klin Neuroradiol 19:135–144PubMedCrossRef
29.
Zurück zum Zitat Jousmaki V, Nishitani N, Hari R (2007) A brush stimulator for functional brain imaging. Clin Neurophysiol 118:2620–2624PubMedCrossRef Jousmaki V, Nishitani N, Hari R (2007) A brush stimulator for functional brain imaging. Clin Neurophysiol 118:2620–2624PubMedCrossRef
30.
Zurück zum Zitat Disbrow EA, Hinkley LB, Roberts TP (2003) Ipsilateral representation of oral structures in human anterior parietal somatosensory cortex and integration of inputs across the midline. J Comp Neurol 467:487–495PubMedCrossRef Disbrow EA, Hinkley LB, Roberts TP (2003) Ipsilateral representation of oral structures in human anterior parietal somatosensory cortex and integration of inputs across the midline. J Comp Neurol 467:487–495PubMedCrossRef
31.
Zurück zum Zitat Robertson EM, Pascual-Leone A (2003) Prefrontal cortex: procedural sequence learning and awareness. Curr Biol 13:R65–R67PubMedCrossRef Robertson EM, Pascual-Leone A (2003) Prefrontal cortex: procedural sequence learning and awareness. Curr Biol 13:R65–R67PubMedCrossRef
32.
Zurück zum Zitat Rausell E, Jones EG (1991) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225PubMed Rausell E, Jones EG (1991) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225PubMed
33.
Zurück zum Zitat Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237PubMed Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–237PubMed
34.
Zurück zum Zitat Weigelt A, Terekhin P, Kemppainen P, Dorfler A, Forster C (2010) The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway. Pain 149:529–538PubMedCrossRef Weigelt A, Terekhin P, Kemppainen P, Dorfler A, Forster C (2010) The representation of experimental tooth pain from upper and lower jaws in the human trigeminal pathway. Pain 149:529–538PubMedCrossRef
35.
Zurück zum Zitat Manger PR, Woods TM, Jones EG (1996) Representation of face and intra-oral structures in area 3b of macaque monkey somatosensory cortex. J Comp Neurol 371:513–521PubMedCrossRef Manger PR, Woods TM, Jones EG (1996) Representation of face and intra-oral structures in area 3b of macaque monkey somatosensory cortex. J Comp Neurol 371:513–521PubMedCrossRef
36.
Zurück zum Zitat Merzenich MM, Kaas JH, Sur M, Lin CS (1978) Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). J Comp Neurol 181:41–73PubMedCrossRef Merzenich MM, Kaas JH, Sur M, Lin CS (1978) Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). J Comp Neurol 181:41–73PubMedCrossRef
37.
Zurück zum Zitat Jain N, Qi HX, Catania KC, Kaas JH (2001) Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. J Comp Neurol 429:455–468PubMedCrossRef Jain N, Qi HX, Catania KC, Kaas JH (2001) Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. J Comp Neurol 429:455–468PubMedCrossRef
38.
Zurück zum Zitat Iyengar S, Qi HX, Jain N, Kaas JH (2007) Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys. J Comp Neurol 501:95–120PubMedCrossRef Iyengar S, Qi HX, Jain N, Kaas JH (2007) Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys. J Comp Neurol 501:95–120PubMedCrossRef
39.
Zurück zum Zitat Henry EC, Marasco PD, Catania KC (2005) Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol 485:64–74PubMedCrossRef Henry EC, Marasco PD, Catania KC (2005) Plasticity of the cortical dentition representation after tooth extraction in naked mole-rats. J Comp Neurol 485:64–74PubMedCrossRef
40.
Zurück zum Zitat Trulsson M (1993) Multiple-tooth receptive fields of single human periodontal mechanoreceptive afferents. J Neurophysiol 69:474–481PubMed Trulsson M (1993) Multiple-tooth receptive fields of single human periodontal mechanoreceptive afferents. J Neurophysiol 69:474–481PubMed
41.
Zurück zum Zitat Johnsen SE, Trulsson M (2003) Receptive field properties of human periodontal afferents responding to loading of premolar and molar teeth. J Neurophysiol 89:1478–1487PubMedCrossRef Johnsen SE, Trulsson M (2003) Receptive field properties of human periodontal afferents responding to loading of premolar and molar teeth. J Neurophysiol 89:1478–1487PubMedCrossRef
42.
Zurück zum Zitat Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316PubMedCrossRef Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316PubMedCrossRef
43.
Zurück zum Zitat Toda T, Taoka M (2001) The complexity of receptive fields of periodontal mechanoreceptive neurons in the postcentral area 2 of conscious macaque monkey brains. Arch Oral Biol 46:1079–1084PubMedCrossRef Toda T, Taoka M (2001) The complexity of receptive fields of periodontal mechanoreceptive neurons in the postcentral area 2 of conscious macaque monkey brains. Arch Oral Biol 46:1079–1084PubMedCrossRef
44.
Zurück zum Zitat Manzoni T, Conti F, Fabri M (1986) Callosal projections from area SII to SI in monkeys: anatomical organization and comparison with association projections. J Comp Neurol 252:245–263PubMedCrossRef Manzoni T, Conti F, Fabri M (1986) Callosal projections from area SII to SI in monkeys: anatomical organization and comparison with association projections. J Comp Neurol 252:245–263PubMedCrossRef
45.
Zurück zum Zitat Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 13:1071–1079PubMedCrossRef Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 13:1071–1079PubMedCrossRef
46.
Zurück zum Zitat Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81:2017–2025PubMed Karhu J, Tesche CD (1999) Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol 81:2017–2025PubMed
47.
Zurück zum Zitat Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17:1800–1811PubMedCrossRef Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17:1800–1811PubMedCrossRef
48.
Zurück zum Zitat Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271PubMedCrossRef Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271PubMedCrossRef
49.
Zurück zum Zitat Trulsson M, Johansson RS (1996) Forces applied by the incisors and roles of periodontal afferents during food-holding and -biting tasks. Exp Brain Res 107:486–496PubMedCrossRef Trulsson M, Johansson RS (1996) Forces applied by the incisors and roles of periodontal afferents during food-holding and -biting tasks. Exp Brain Res 107:486–496PubMedCrossRef
50.
Zurück zum Zitat Picton DC (1989) The periodontal enigma: eruption versus tooth support. Eur J Orthod 11:430–439PubMed Picton DC (1989) The periodontal enigma: eruption versus tooth support. Eur J Orthod 11:430–439PubMed
51.
Zurück zum Zitat Dong WK, Shiwaku T, Kawakami Y, Chudler EH (1993) Static and dynamic responses of periodontal ligament mechanoreceptors and intradental mechanoreceptors. J Neurophysiol 69:1567–1582 Dong WK, Shiwaku T, Kawakami Y, Chudler EH (1993) Static and dynamic responses of periodontal ligament mechanoreceptors and intradental mechanoreceptors. J Neurophysiol 69:1567–1582
Metadaten
Titel
Cortical activation resulting from the stimulation of periodontal mechanoreceptors measured by functional magnetic resonance imaging (fMRI)
verfasst von
P. Habre-Hallage
L. Dricot
L. Hermoye
H. Reychler
D. van Steenberghe
R. Jacobs
C. B. Grandin
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Oral Investigations / Ausgabe 8/2014
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-013-1174-1

Weitere Artikel der Ausgabe 8/2014

Clinical Oral Investigations 8/2014 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.