Skip to main content
Erschienen in: International Journal of Emergency Medicine 1/2011

Open Access 01.12.2011 | Original Research

CT angiography predicts use of tertiary interventional services in acute ischemic stroke patients

verfasst von: Lisa E Thomas, Joshua N Goldstein, Reza Hakimelahi, Yuchiao Chang, Albert J Yoo, Lee H Schwamm, R Gilberto Gonzalez

Erschienen in: International Journal of Emergency Medicine | Ausgabe 1/2011

Abstract

Background

Patients with acute stroke are often transferred to tertiary care centers for advanced interventional services. We hypothesized that the presence of a proximal cerebral artery occlusion on CT angiography (CTA) is an independent predictor of the use of these services.

Methods

We performed a historical cohort study of consecutive ischemic stroke patients presenting within 24 h of symptom onset to an academic emergency department who underwent emergent CTA. Use of tertiary care interventions including intra-arterial (IA) thrombolysis, mechanical clot retrieval, and neurosurgery were captured.

Results

During the study period, 207/290 (71%) of patients with acute ischemic stroke underwent emergent CTA. Of the patients, 74/207 (36%) showed evidence of a proximal cerebral artery occlusion, and 22/207 (11%) underwent an interventional procedure. Those with proximal occlusions were more likely to receive a neurointervention (26% vs. 2%, p < 0.001). They were more likely to undergo IA thrombolysis (9% vs. 0%, p = 0.001) or a mechanical intervention (19% vs. 0%, p < 0.0001), but not more likely to undergo neurosurgery (5% vs. 2%, p = 0.2). After controlling for the initial NIH stroke scale (NIHSS) score, proximal occlusion remained an independent predictor of the use of neurointerventional services (OR 8.5, 95% CI 2.2-33). Evidence of proximal occlusion on CTA predicted use of neurointervention with sensitivity of 82% (95% CI 59-94%), specificity of 71% (95% CI 64%-77%), positive predictive value (PPV) of 25% (95% CI 16%-37%), and negative predictive value (NPV) of 97% (95% CI 92%-99%).

Conclusion

Proximal cerebral artery occlusion on CTA predicts the need for advanced neurointerventional services.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1865-1380-4-62) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LET gathered data, performed analyses, and drafted the manuscript. JNG performed statistical analyses, developed study design, and critically revised the manuscript for important intellectual content. RH gathered data and reviewed all imaging. AJY provided critical revision of the manuscript and figures for important intellectual content. LHS provided advice on analysis and critical revision of the manuscript for important intellectual content. RGG conceived the study, supervised data collection, and imaging analyses, and critically revised the manuscript for important intellectual content. All authors read and approved the manuscript.
Abkürzungen
AHA
American Heart Association
CIN
contrast induced nephropathy
CSC
comprehensive stroke center
CTA
computed tomography angiography
ED
emergency department
IA
intra-arterial
ICU
intensive care unit
IV
intravenous
MRA
magnetic resonance angiography
MRI
magnetic resonance imaging
NIHSS
NIH stroke scale
PSC
primary stroke center
rtPA
recombinant tissue plasminogen activator

Background

Regional systems of care have been established in some localities, where acute ischemic stroke patients are preferentially admitted to "stroke centers" [1, 2]. However, no formal guidelines exist for determining which patients should be transferred from a primary stroke center (PSC), capable of administering thrombolysis, to a comprehensive stroke center (CSC), with advanced services including endovascular capabilities. As a result, there can be tremendous heterogeneity in which patients remain at a PSC versus which are transferred to a CSC. Furthermore, many PSCs are likely capable of providing maximal management to stroke patients and may reserve transfer for those who need additional services available only at a CSC [3, 4].
Efficient resource allocation may best be achieved by reserving such transfers for patients who will receive the most benefit. A rapidly available tool that predicts which patients are interventional candidates would help emergency physicians determine who might benefit from transfer to a CSC.
One candidate for such a tool is CT angiography (CTA), which can reliably detect large occlusive thrombi in proximal cerebral arteries [5]. While only 25-35% of patients with acute ischemic stroke have such occlusions, they are disproportionately responsible for high hospital costs, morbidity, and mortality [6, 7]. As intravenous (IV) recombinant tissue plasminogen activator (rtPA) is less effective in recanalizing proximally occluded vessels [8], these individuals may preferentially benefit from advanced therapies at tertiary care centers. In particular, intra-arterial thrombolysis [9, 10], mechanical clot disruption [11, 12], and device-aided thrombus extraction [1315] have been shown to recanalize occluded vessels at a rate higher than for IV rtPA, which may lead to better outcome [16]. Since multislice CT scanners are available 24/7 in the majority of US emergency departments [17], it may be that this technology can be harnessed to select patients for transfer.
We hypothesized that the presence of an occlusive thrombus in a proximal cerebral artery on CTA is an accurate predictor of the use of advanced neurointerventional services. We elected to perform an observational study at a center in which virtually all patients undergo emergency CT angiography as a clinical standard of care, in order to minimize selection bias.

Methods

Study design

This was an historical cohort study of consecutive ischemic stroke patients who presented to a single academic emergency department (ED) and who underwent emergent CTA. The study was approved by our Institutional Review Board.

Setting and selection of participants

All patients presenting within 24 h of symptom onset in 2006 to the ED were prospectively captured as described [6]. This hospital is a Massachusetts Department of Public Health-certified Stroke Center and offers a full range of CSC capabilities including tertiary care interventional and neurosurgical services 24/7. Patients requiring such services were treated at our study hospital as needed without being transferred.
Although MR angiography (MRA) can also identify proximal vessel occlusion, we did not include these studies because MRI is not available in the emergency department at most hospitals [17] and is not a required emergent service for PSCs. However, 96% of hospitals can perform an emergency CT with contrast [17], and so likely have the ability to detect a proximal artery occlusion.

Imaging

Standard imaging at our center for suspected acute ischemic stroke includes CTA and MRI. CT images were acquired according to standard protocols [6].

Classification of proximal cerebral artery occlusion on CTA imaging

Presence of a large-vessel proximal occlusive thrombus was defined as described previously [6]. This included obstruction in the distal/terminal (intracranial) internal carotid artery, proximal (M1 or M2) middle cerebral artery, and/or basilar artery (Figure 1). These regions were selected based on a prior study showing that occlusions of these segments were more likely to be associated with larger strokes [18] and based on the likelihood that proximal occlusions in these locations could be readily identified by physicians with minimal training in interpreting CTAs. The original neuroimaging report was reviewed by a neuroradiologist, who was blinded to whether the patient received any IA therapies, to confirm the official interpretations and to clarify any ambiguous descriptions to ensure uniform classification of proximal occlusion for study purposes. In the event of conflicting original and subsequent interpretations, a second neuroradiologist was available to review the images; however there was 100% interrater reliability with the original interpretation. An example of a patient with a proximal cerebral artery occlusion is shown in Figure 2.

Outcome measures

The primary outcomes of interest were use of tertiary care neurointervention, including IA thrombolysis, mechanical clot retrieval or removal, or any neurosurgical procedure. We had 85% power to detect a 15% difference in the primary outcome between patients with and without proximal occlusion at the 0.05 level. Decision for the type of treatment used was based on clinical judgment of the treating cerebrovascular specialists. Secondary outcomes included need for ICU admission, length of stay, and disposition after hospital stay (categorized as discharge to home, transfer to a rehabilitation center/skilled nursing facility, or death).

Data analysis

As most variables were not normally distributed, univariate analyses were performed using the Wilcoxon rank sum test for continuous variables and Fisher's exact test for categorical variables. Due to the small number of outcomes, we included proximal occlusion on CTA and only one additional variable, NIHSS score, in the multivariable logistic regression model. Goodness-of-fit test and regression diagnostics were performed for influential observations. Statistical analyses were performed using STATA software version 10 (STATACorp, College Station, TX).

Results

During the study period, 290 patients who presented within 24 h of symptom onset were admitted with acute stroke. Of these, seven were excluded for enrollment in the DIAS-2 clinical trial [19] since the intervention was blinded. Another 76 were excluded for not having a CTA performed (61 had MRA for cerebrovascular imaging and 15 had no vessel imaging because of contraindications to both studies), leaving 207 patients for final analysis. The median time to registration in the ED from the time last seen well was 3.9 h (IQR 2-5.8 h). Thirty-three percent of patients presented within 3 h of symptom onset, 75% within 6 h and 90% within 12 h. Of this cohort, 25% of patients received IV rtPA, 2.4% received IA thrombolysis, 6.8% received a mechanical intervention, 3.3% underwent surgery (4 decompressive hemicraniectomies and 3 carotid endarterectomies), and 52% were admitted to the neuroscience ICU.
Table 1 shows patient characteristics among those receiving an advanced neurointervention. Of note, there was no significant difference in rate of IV rtPA use between those who did and did not receive an intervention. Table 2 shows the comparison of patients with and without proximal occlusion. In multivariable logistic regression, proximal occlusion on CTA was an independent predictor of the use of neurointerventional services after controlling for initial NIHSS score (Table 3). Finally, test characteristics for the ability of a proximal cerebral arterial occlusion to predict the need for neurointervention were calculated (Table 4).
Table 1
Characteristics of patients who received advanced neurointerventional procedures*
Characteristics
No neuro-intervention
(n= 185)
Neuro-intervention*
(n= 22)
p-value
Age (IQR)
74 (62-81)
80 (60-85)
0.2
Female
45%
32%
0.3
Transferred
45%
64%
0.1
Initial NIHSS (IQR)
7 (3-12)
20 (10-22)
0.0001
Time (h) to presentation (IQR)
4 (2-6)
3.6 (2.5-4.5)
0.2
Proximal occlusion on CTA
30%
86%
< 0.001
IV rtPA
24%
32%
0.4
Length of stay (days) (IQR)
5 (3-7)
8 (7-15)
< 0.001
Outcome:
0.007
   Death
13%
27%
 
   Rehab
49%
64%
 
   Home
38%
9%
 
*Neurointerventional procedures included intra-arterial thrombolysis, intra-arterial mechanical clot retrieval or manipulation, or any neurosurgical procedure.
IQR, interquartile range; SD, standard deviation.
Table 2
Comparing patients with and without proximal cerebral arterial occlusion on CTA
Characteristics
No proximal occlusion
(n= 133)
Proximal occlusion
(n= 74)
p-value
Age (IQR)
72 (60-80)
76 (68-83)
0.04
Female
46%
39%
0.4
Transferred
43%
54%
0.14
NIHSS (IQR)
4 (2-9)
17 (9-21)
0.0001
Time (h) to presentation (IQR)
4 (2.1-6)
3.8 (1.8-5.6)
0.3
IV rtPA
17%
38%
0.002
Length of stay (days) (IQR)
4 (3-7)
6 (4-10)
0.0001
Neuroscience ICU stay
35%
85%
< 0.0001
Any neurointervention
2%
26%
< 0.001
Neurosurgical intervention
2%
5%
0.2
IA thrombolysis
0%
9%
0.001
Mechanical IA procedure
0%
19%
< 0.0001
Outcome:
< 0.001
   Death
6%
30%
 
   Rehab
45%
61%
 
   Home
49%
9%
 
ICU, intensive care unit; IA, intra-arterial; IQR, interquartile range; SD, standard deviation.
Table 3
Predictors of need for any advanced neurointervention using multivariable analysis
Variable
OR (95% CI)
p-value
NIHSS (per unit increase)
1.1 (1.01-1.2)
0.03
Proximal cerebral artery occlusion
8.5 (2.2-33)
0.002
Table 4
Test characteristics of proximal cerebral artery occlusion on CTA predicting need for neurointervention
 
Sensitivity
(95% CI)
Specificity
PPV
NPV
Any neuro-intervention*
82%
(59-94%)
71%
(64-77%)
25%
(16-37%)
97%
(92-99%)
IA thrombolysis
86%
(49-97%)
67%
(66-67%)
8%
(5-9%)
99%
(97-99%)
Mechanical IA procedure
100%
(79-100%)
70%
(69-70%)
19%
(15-19%)
100%
(98-100%)
IA, intra-arterial; PPV, positive predictive value; NPV, negative predictive value.
*Any neurointervention includes IA thrombolysis, IA mechanical clot retrieval or manipulation, or any neurosurgical procedure.

Discussion

We found that proximal cerebral artery occlusion on CTA predicts the use of acute neurointervention. While time to presentation and neurological exam findings are often used in decision-making regarding transfers, this specific radiographic finding appears to add independent value in predicting tertiary care interventions. Use of CTA in selected patients may therefore improve our ability to stratify which patients would benefit from emergent transfer to a CSC.
Although only a quarter of patients with a proximal occlusion actually received a neurointervention, distinguishing those with a large occlusion may be important for two reasons. First, if an occlusion is not seen, it is highly unlikely that a patient will need an intervention. In fact in our study, only 3% received an intervention without a large occlusion on CTA. All of these were patients with critical internal carotid stenosis that received carotid endarterectomies that were not performed on the same day as admission but during that hospital stay. Thus, most of the patients without proximal occlusion could potentially receive appropriate care at PSCs depending upon resources available. On the other hand, if a proximal occlusion is seen on CTA, these patients should be considered for emergent transfer or at least discussed with a CSC via teleradiology or phone consultation to determine whether they are interventional candidates. Even if they are not, they might still benefit from care at a CSC because they will tend to have larger strokes, worse outcomes [6], and may have more complicated care needs.
The commonly used practice of relying on clinical findings and noncontrast head CT for management decisions may provide inadequate information for triaging stroke patients for advanced therapies. For example, large artery occlusive strokes may not respond well to IV rtPA, but show better response to IA therapies [20, 21]. In addition, vascular imaging provides independent information regarding the patient's prognosis [18]. As a result, current American Heart Association (AHA) guidelines endorse vascular imaging in the initial evaluation of the patient with acute ischemic stroke symptoms [22].
Our data confirm findings from others that patients with proximal occlusions tend to have higher NIHSS scores [2326]. This raises the question of whether the NIHSS score alone can select those patients requiring advanced intervention. We conclude, however, that CTA does add independent value. First, one recent prospective study found that NIHSS alone has a poor negative predictive value for proximal occlusion amenable to intervention [27]. Second, we found that CTA provides independent information even when controlling for NIHSS. In particular, NIHSS is known to be influenced by location because it is so heavily weighted toward language function, with posterior circulation occlusions leading to a lower initial NIHSS but a worse clinical outcome [28, 29].
The major limitation of our study design is that it is a single center retrospective cohort. We chose this design for our initial analysis because our center routinely performs CTA on almost all stroke patients, minimizing selection bias. However, patients presenting to an academic center with available tertiary care services may not reflect the full range of ischemic stroke patients that present to community hospitals. More than half of the patients that had proximal occlusions on CTA or received neurointervention were transferred from outside hospitals; this likely reflects a concentrating effect providing a population of more severe strokes than that which might present to any single community hospital. While this enriched our cohort for those that achieved the primary outcome, improving our statistical power, a multicenter study in a larger cohort will be necessary to validate these findings in a more representative population. There may be logistical, financial, and ethical considerations in consenting stroke patients for CTA in other practice settings where it is not routine, but our results appear to provide justification for such a larger, prospective study of the use of CTA to guide transfer decisions.
Another limitation was the exclusion of those who were unable to undergo CTA, most often due to IV contrast allergy and renal insufficiency. While many such patients would also be excluded from interventional neuroradiological procedures, it is possible that some would still have been candidates. Also, there is the possibility that CTA, performed at centers unaccustomed to acquiring it during acute stroke or at off hours, might perform an inadequate study that could delay treatment or transfer decisions, or preclude repetition of the study at the receiving facility.
Finally, the CTA findings were used in clinical decision making, potentially confounding our analysis. This likely overestimates the association of CTA proximal occlusion and neurointervention. Unfortunately, it would likely be unethical to "blind" clinical decision makers to CTA findings. In addition, our primary goal was to aid emergency physicians in predicting clinical options that would ultimately be offered to patients, and in a real world setting such decisions are expected to incorporate all available clinical and radiographic data.
Several factors must be considered prior to incorporating the use of emergency CTA in transfer decisions. AHA guidelines highlight that decision-making regarding IV thrombolytics should not be delayed for vascular imaging such as CTA, and protocols would need to be in place to ensure that treatment decisions for IV rtPA are made prior to initiation of further imaging [1, 22]. Options can include only performing this test after IV thrombolysis in eligible patients, or only for those in whom decision-making would be changed based on the results. A rapid CTA can take less than 10 min to acquire, and the source images are available immediately on the CT scanner workstation. These images can then be rapidly processed and examined to detect proximal artery occlusion, and further studies should validate the ability of plain radiography technicians to generate the images and general radiologists or emergency physicians to reliably diagnose these occlusions. Another concern is the use of IV contrast, which can carry the risk of allergic reaction or contrast-induced nephropathy (CIN). Although traditionally thought to occur in 2-3% of cases, the risk of nephropathy after stroke or hospitalization is similar even without contrast, and many cases of CIN may simply be due to the nephropathy associated with hospitalization [3036]. Finally, protocols should be in place to ensure that the study would not need to be repeated upon arrival to a tertiary care center, either due to an inadequate initial study or problems with image transfer between facilities. Prearranged transfer agreements, or even remote consultation via telephone or telemedicine [37], can ensure appropriate usage and communication.

Conclusions

In summary, the finding of a large proximal cerebral arterial occlusion on CTA predicts the use of neurointerventional services in patients with acute ischemic stroke. Thus, our results provide justification for conducting future prospective studies on using CTA as a rapid decision-making tool to select patients who may be candidates for endovascular therapies at CSCs.

Acknowledgements

This work was supported by the Harvard Affiliated Emergency Medicine Residency Richard Wuerz Scholarship for Emergency Medicine Research and Public Health Service Award K23NS059774.
Patient consent
Patient consent was waived by the IRB since this was a retrospective review.
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://​creativecommons.​org/​licenses/​by-nc/​2.​0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LET gathered data, performed analyses, and drafted the manuscript. JNG performed statistical analyses, developed study design, and critically revised the manuscript for important intellectual content. RH gathered data and reviewed all imaging. AJY provided critical revision of the manuscript and figures for important intellectual content. LHS provided advice on analysis and critical revision of the manuscript for important intellectual content. RGG conceived the study, supervised data collection, and imaging analyses, and critically revised the manuscript for important intellectual content. All authors read and approved the manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF, American Heart Association, American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 2007, 38: 1655–1711. 10.1161/STROKEAHA.107.181486CrossRefPubMed Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF, American Heart Association, American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 2007, 38: 1655–1711. 10.1161/STROKEAHA.107.181486CrossRefPubMed
2.
Zurück zum Zitat Chenkin J, Gladstone DJ, Verbeek PR, Lindsay P, Fang J, Black SE, Morrison L: Predictive value of the Ontario prehospital stroke screening tool for the identification of patients with acute stroke. Prehosp Emerg Care 2009, 13: 153–159. 10.1080/10903120802706146CrossRefPubMed Chenkin J, Gladstone DJ, Verbeek PR, Lindsay P, Fang J, Black SE, Morrison L: Predictive value of the Ontario prehospital stroke screening tool for the identification of patients with acute stroke. Prehosp Emerg Care 2009, 13: 153–159. 10.1080/10903120802706146CrossRefPubMed
3.
Zurück zum Zitat Alberts MJ, Hademenos G, Latchaw RE, Jagoda A, Marler JR, Mayberg MR, Starke RD, Todd HW, Viste KM, Girgus M, Shephard T, Emr M, Shwayder P, Walker MD: Recommendations for the establishment of primary stroke centers. Brain Attack Coalition. JAMA 2000, 283: 3102–3109. 10.1001/jama.283.23.3102CrossRefPubMed Alberts MJ, Hademenos G, Latchaw RE, Jagoda A, Marler JR, Mayberg MR, Starke RD, Todd HW, Viste KM, Girgus M, Shephard T, Emr M, Shwayder P, Walker MD: Recommendations for the establishment of primary stroke centers. Brain Attack Coalition. JAMA 2000, 283: 3102–3109. 10.1001/jama.283.23.3102CrossRefPubMed
4.
Zurück zum Zitat Alberts MJ, Latchaw RE, Selman WR, Shephard T, Hadley MN, Brass LM, Koroshetz W, Marler JR, Booss J, Zorowitz RD, Croft JB, Magnis E, Mulligan D, Jagoda A, O'Connor R, Cawley CM, Connors JJ, Rose-DeRenzy JA, Emr M, Warren M, Walker MD, Brain Attack Coalition: Recommendations for comprehensive stroke centers: a consensus statement from the Brain Attack Coalition. Stroke 2005, 36: 1597–1616. 10.1161/01.STR.0000170622.07210.b4CrossRefPubMed Alberts MJ, Latchaw RE, Selman WR, Shephard T, Hadley MN, Brass LM, Koroshetz W, Marler JR, Booss J, Zorowitz RD, Croft JB, Magnis E, Mulligan D, Jagoda A, O'Connor R, Cawley CM, Connors JJ, Rose-DeRenzy JA, Emr M, Warren M, Walker MD, Brain Attack Coalition: Recommendations for comprehensive stroke centers: a consensus statement from the Brain Attack Coalition. Stroke 2005, 36: 1597–1616. 10.1161/01.STR.0000170622.07210.b4CrossRefPubMed
5.
Zurück zum Zitat Lev MH, Farkas J, Rodriguez VR, Schwamm LH, Hunter GJ, Putman CM, Rordorf GA, Buonanno FS, Budzik R, Koroshetz WJ, Gonzalez RG: CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 2001, 25: 520–528. 10.1097/00004728-200107000-00003CrossRefPubMed Lev MH, Farkas J, Rodriguez VR, Schwamm LH, Hunter GJ, Putman CM, Rordorf GA, Buonanno FS, Budzik R, Koroshetz WJ, Gonzalez RG: CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 2001, 25: 520–528. 10.1097/00004728-200107000-00003CrossRefPubMed
6.
Zurück zum Zitat Torres-Mozqueda F, He J, Yeh IB, Schwamm LH, Lev MH, Schaefer PW, Gonzalez RG: An acute ischemic stroke classification instrument that includes CT or MR angiography: the Boston Acute Stroke Imaging Scale. AJNR Am J Neuroradiol 2008, 29: 1111–1117. 10.3174/ajnr.A1000CrossRefPubMed Torres-Mozqueda F, He J, Yeh IB, Schwamm LH, Lev MH, Schaefer PW, Gonzalez RG: An acute ischemic stroke classification instrument that includes CT or MR angiography: the Boston Acute Stroke Imaging Scale. AJNR Am J Neuroradiol 2008, 29: 1111–1117. 10.3174/ajnr.A1000CrossRefPubMed
7.
Zurück zum Zitat Cipriano LE, Steinberg ML, Gazelle GS, Gonzalez RG: Comparing and predicting the costs and outcomes of patients with major and minor stroke using the Boston Acute Stroke Imaging Scale neuroimaging classification system. AJNR Am J Neuroradiol 2009, 30: 703–709. 10.3174/ajnr.A1441CrossRefPubMed Cipriano LE, Steinberg ML, Gazelle GS, Gonzalez RG: Comparing and predicting the costs and outcomes of patients with major and minor stroke using the Boston Acute Stroke Imaging Scale neuroimaging classification system. AJNR Am J Neuroradiol 2009, 30: 703–709. 10.3174/ajnr.A1441CrossRefPubMed
8.
Zurück zum Zitat Sims JR, Rordorf G, Smith EE, Koroshetz WJ, Lev MH, Buonanno F, Schwamm LH: Arterial occlusion revealed by CT angiography predicts NIH stroke score and acute outcomes after IV tPA treatment. AJNR Am J Neuroradiol 2005, 26: 246–251.PubMed Sims JR, Rordorf G, Smith EE, Koroshetz WJ, Lev MH, Buonanno F, Schwamm LH: Arterial occlusion revealed by CT angiography predicts NIH stroke score and acute outcomes after IV tPA treatment. AJNR Am J Neuroradiol 2005, 26: 246–251.PubMed
9.
Zurück zum Zitat Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F: Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 1999, 282: 2003–2011. 10.1001/jama.282.21.2003CrossRefPubMed Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F: Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 1999, 282: 2003–2011. 10.1001/jama.282.21.2003CrossRefPubMed
10.
Zurück zum Zitat Lisboa RC, Jovanovic BD, Alberts MJ: Analysis of the safety and efficacy of intra-arterial thrombolytic therapy in ischemic stroke. Stroke 2002, 33: 2866–2871. 10.1161/01.STR.0000038987.62325.14CrossRefPubMed Lisboa RC, Jovanovic BD, Alberts MJ: Analysis of the safety and efficacy of intra-arterial thrombolytic therapy in ischemic stroke. Stroke 2002, 33: 2866–2871. 10.1161/01.STR.0000038987.62325.14CrossRefPubMed
11.
Zurück zum Zitat Noser EA, Shaltoni HM, Hall CE, Alexandrov AV, Garami Z, Cacayorin ED, Song JK, Grotta JC, Campbell MS: Aggressive mechanical clot disruption: a safe adjunct to thrombolytic therapy in acute stroke? Stroke 2005, 36: 292–296. 10.1161/01.STR.0000152331.93770.18CrossRefPubMed Noser EA, Shaltoni HM, Hall CE, Alexandrov AV, Garami Z, Cacayorin ED, Song JK, Grotta JC, Campbell MS: Aggressive mechanical clot disruption: a safe adjunct to thrombolytic therapy in acute stroke? Stroke 2005, 36: 292–296. 10.1161/01.STR.0000152331.93770.18CrossRefPubMed
12.
Zurück zum Zitat Brekenfeld C, Remonda L, Nedeltchev K, v Bredow F, Ozdoba C, Wiest R, Arnold M, Mattle HP, Schroth G: Endovascular neuroradiological treatment of acute ischemic stroke: techniques and results in 350 patients. Neurol Res 2005, 27(Suppl 1):S29–35.CrossRefPubMed Brekenfeld C, Remonda L, Nedeltchev K, v Bredow F, Ozdoba C, Wiest R, Arnold M, Mattle HP, Schroth G: Endovascular neuroradiological treatment of acute ischemic stroke: techniques and results in 350 patients. Neurol Res 2005, 27(Suppl 1):S29–35.CrossRefPubMed
13.
Zurück zum Zitat Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, Lutsep HL, Nesbit GM, Grobelny T, Rymer MM, Silverman IE, Higashida RT, Budzik RF, Marks MP, MERCI Trial Investigators: Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005, 36: 1432–1438. 10.1161/01.STR.0000171066.25248.1dCrossRefPubMed Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, Lutsep HL, Nesbit GM, Grobelny T, Rymer MM, Silverman IE, Higashida RT, Budzik RF, Marks MP, MERCI Trial Investigators: Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 2005, 36: 1432–1438. 10.1161/01.STR.0000171066.25248.1dCrossRefPubMed
14.
Zurück zum Zitat Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS, Lutsep HL, Rymer MM, Higashida RT, Starkman S, Gobin YP, Multi MERCI Investigators, Frei D, Grobelny T, Hellinger F, Huddle D, Kidwell C, Koroshetz W, Marks M, Nesbit G, Silverman IE: Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 2008, 39: 1205–1212. 10.1161/STROKEAHA.107.497115CrossRefPubMed Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS, Lutsep HL, Rymer MM, Higashida RT, Starkman S, Gobin YP, Multi MERCI Investigators, Frei D, Grobelny T, Hellinger F, Huddle D, Kidwell C, Koroshetz W, Marks M, Nesbit G, Silverman IE: Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 2008, 39: 1205–1212. 10.1161/STROKEAHA.107.497115CrossRefPubMed
15.
Zurück zum Zitat Penumbra Pivotal Stroke Trial Investigators: The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009, 40: 2761–2768.CrossRef Penumbra Pivotal Stroke Trial Investigators: The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 2009, 40: 2761–2768.CrossRef
16.
Zurück zum Zitat Rha JH, Saver JL: The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 2007, 38: 967–973. 10.1161/01.STR.0000258112.14918.24CrossRefPubMed Rha JH, Saver JL: The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 2007, 38: 967–973. 10.1161/01.STR.0000258112.14918.24CrossRefPubMed
17.
Zurück zum Zitat Ginde AA, Foianini A, Renner DM, Valley M, Camargo CA Jr: Availability and quality of computed tomography and magnetic resonance imaging equipment in US emergency departments. Acad Emerg Med 2008, 15: 780–783. 10.1111/j.1553-2712.2008.00192.xCrossRefPubMed Ginde AA, Foianini A, Renner DM, Valley M, Camargo CA Jr: Availability and quality of computed tomography and magnetic resonance imaging equipment in US emergency departments. Acad Emerg Med 2008, 15: 780–783. 10.1111/j.1553-2712.2008.00192.xCrossRefPubMed
18.
Zurück zum Zitat Smith WS, Tsao JW, Billings ME, Johnston SC, Hemphill JC, Bonovich DC, Dillon WP: Prognostic significance of angiographically confirmed large vessel intracranial occlusion in patients presenting with acute brain ischemia. Neurocrit Care 2006, 4: 14–17. 10.1385/NCC:4:1:014CrossRefPubMed Smith WS, Tsao JW, Billings ME, Johnston SC, Hemphill JC, Bonovich DC, Dillon WP: Prognostic significance of angiographically confirmed large vessel intracranial occlusion in patients presenting with acute brain ischemia. Neurocrit Care 2006, 4: 14–17. 10.1385/NCC:4:1:014CrossRefPubMed
19.
Zurück zum Zitat Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Sohngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S: Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009, 8: 141–150. 10.1016/S1474-4422(08)70267-9PubMedCentralCrossRefPubMed Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Sohngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S: Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009, 8: 141–150. 10.1016/S1474-4422(08)70267-9PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Mattle HP, Arnold M, Georgiadis D, Baumann C, Nedeltchev K, Benninger D, Remonda L, von Budingen C, Diana A, Pangalu A, Schroth G, Baumgartner RW: Comparison of intraarterial and intravenous thrombolysis for ischemic stroke with hyperdense middle cerebral artery sign. Stroke 2008, 39: 379–383. 10.1161/STROKEAHA.107.492348CrossRefPubMed Mattle HP, Arnold M, Georgiadis D, Baumann C, Nedeltchev K, Benninger D, Remonda L, von Budingen C, Diana A, Pangalu A, Schroth G, Baumgartner RW: Comparison of intraarterial and intravenous thrombolysis for ischemic stroke with hyperdense middle cerebral artery sign. Stroke 2008, 39: 379–383. 10.1161/STROKEAHA.107.492348CrossRefPubMed
21.
Zurück zum Zitat Sen S, Huang DY, Akhavan O, Wilson S, Verro P, Solander S: IV vs. IA TPA in acute ischemic stroke with CT angiographic evidence of major vessel occlusion: a feasibility study. Neurocrit Care 2009, 11: 76–81. 10.1007/s12028-009-9204-1CrossRefPubMed Sen S, Huang DY, Akhavan O, Wilson S, Verro P, Solander S: IV vs. IA TPA in acute ischemic stroke with CT angiographic evidence of major vessel occlusion: a feasibility study. Neurocrit Care 2009, 11: 76–81. 10.1007/s12028-009-9204-1CrossRefPubMed
22.
Zurück zum Zitat Latchaw RE, Alberts MJ, Lev MH, Connors JJ, Harbaugh RE, Higashida RT, Hobson R, Kidwell CS, Koroshetz WJ, Mathews V, Villablanca P, Warach S, Walters B, The American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, The Interdisciplinary Council on Peripheral Vascular Disease: Recommendations for Imaging of Acute Ischemic Stroke. A Scientific Statement From the American Heart Association. Stroke 2009, 40: 3646–3678. 10.1161/STROKEAHA.108.192616CrossRefPubMed Latchaw RE, Alberts MJ, Lev MH, Connors JJ, Harbaugh RE, Higashida RT, Hobson R, Kidwell CS, Koroshetz WJ, Mathews V, Villablanca P, Warach S, Walters B, The American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, The Interdisciplinary Council on Peripheral Vascular Disease: Recommendations for Imaging of Acute Ischemic Stroke. A Scientific Statement From the American Heart Association. Stroke 2009, 40: 3646–3678. 10.1161/STROKEAHA.108.192616CrossRefPubMed
23.
Zurück zum Zitat Derex L, Nighoghossian N, Hermier M, Adeleine P, Froment JC, Trouillas P: Early detection of cerebral arterial occlusion on magnetic resonance angiography: predictive value of the baseline NIHSS score and impact on neurological outcome. Cerebrovasc Dis 2002, 13: 225–229. 10.1159/000057847CrossRefPubMed Derex L, Nighoghossian N, Hermier M, Adeleine P, Froment JC, Trouillas P: Early detection of cerebral arterial occlusion on magnetic resonance angiography: predictive value of the baseline NIHSS score and impact on neurological outcome. Cerebrovasc Dis 2002, 13: 225–229. 10.1159/000057847CrossRefPubMed
24.
Zurück zum Zitat Lewandowski CA, Frankel M, Tomsick TA, Broderick J, Frey J, Clark W, Starkman S, Grotta J, Spilker J, Khoury J, Brott T: Combined intravenous and intra-arterial r-TPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke 1999, 30: 2598–2605. 10.1161/01.STR.30.12.2598CrossRefPubMed Lewandowski CA, Frankel M, Tomsick TA, Broderick J, Frey J, Clark W, Starkman S, Grotta J, Spilker J, Khoury J, Brott T: Combined intravenous and intra-arterial r-TPA versus intra-arterial therapy of acute ischemic stroke: Emergency Management of Stroke (EMS) Bridging Trial. Stroke 1999, 30: 2598–2605. 10.1161/01.STR.30.12.2598CrossRefPubMed
25.
Zurück zum Zitat Nakajima M, Kimura K, Ogata T, Takada T, Uchino M, Minematsu K: Relationships between angiographic findings and National Institutes of Health stroke scale score in cases of hyperacute carotid ischemic stroke. AJNR Am J Neuroradiol 2004, 25: 238–241.PubMed Nakajima M, Kimura K, Ogata T, Takada T, Uchino M, Minematsu K: Relationships between angiographic findings and National Institutes of Health stroke scale score in cases of hyperacute carotid ischemic stroke. AJNR Am J Neuroradiol 2004, 25: 238–241.PubMed
26.
Zurück zum Zitat Fischer U, Arnold M, Nedeltchev K, Brekenfeld C, Ballinari P, Remonda L, Schroth G, Mattle HP: NIHSS score and arteriographic findings in acute ischemic stroke. Stroke 2005, 36: 2121–2125. 10.1161/01.STR.0000182099.04994.fcCrossRefPubMed Fischer U, Arnold M, Nedeltchev K, Brekenfeld C, Ballinari P, Remonda L, Schroth G, Mattle HP: NIHSS score and arteriographic findings in acute ischemic stroke. Stroke 2005, 36: 2121–2125. 10.1161/01.STR.0000182099.04994.fcCrossRefPubMed
27.
Zurück zum Zitat Maas MB, Furie KL, Lev MH, Ay H, Singhal AB, Greer DM, Harris GJ, Halpern E, Koroshetz WJ, Smith WS: National Institutes of Health Stroke Scale Score Is Poorly Predictive of Proximal Occlusion in Acute Cerebral Ischemia. Stroke 2009, 40: 2988–2993. 10.1161/STROKEAHA.109.555664PubMedCentralCrossRefPubMed Maas MB, Furie KL, Lev MH, Ay H, Singhal AB, Greer DM, Harris GJ, Halpern E, Koroshetz WJ, Smith WS: National Institutes of Health Stroke Scale Score Is Poorly Predictive of Proximal Occlusion in Acute Cerebral Ischemia. Stroke 2009, 40: 2988–2993. 10.1161/STROKEAHA.109.555664PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Sato S, Toyoda K, Uehara T, Toratani N, Yokota C, Moriwaki H, Naritomi H, Minematsu K: Baseline NIH Stroke Scale Score predicting outcome in anterior and posterior circulation strokes. Neurology 2008, 70: 2371–2377. 10.1212/01.wnl.0000304346.14354.0bCrossRefPubMed Sato S, Toyoda K, Uehara T, Toratani N, Yokota C, Moriwaki H, Naritomi H, Minematsu K: Baseline NIH Stroke Scale Score predicting outcome in anterior and posterior circulation strokes. Neurology 2008, 70: 2371–2377. 10.1212/01.wnl.0000304346.14354.0bCrossRefPubMed
29.
Zurück zum Zitat Linfante I, Llinas RH, Schlaug G, Chaves C, Warach S, Caplan LR: Diffusion-weighted imaging and National Institutes of Health Stroke Scale in the acute phase of posterior-circulation stroke. Arch Neurol 2001, 58: 621–628. 10.1001/archneur.58.4.621CrossRefPubMed Linfante I, Llinas RH, Schlaug G, Chaves C, Warach S, Caplan LR: Diffusion-weighted imaging and National Institutes of Health Stroke Scale in the acute phase of posterior-circulation stroke. Arch Neurol 2001, 58: 621–628. 10.1001/archneur.58.4.621CrossRefPubMed
30.
Zurück zum Zitat Gleeson TG, Bulugahapitiya S: Contrast-induced nephropathy. AJR Am J Roentgenol 2004, 183: 1673–1689.CrossRefPubMed Gleeson TG, Bulugahapitiya S: Contrast-induced nephropathy. AJR Am J Roentgenol 2004, 183: 1673–1689.CrossRefPubMed
31.
Zurück zum Zitat Dittrich R, Akdeniz S, Kloska SP, Fischer T, Ritter MA, Seidensticker P, Heindel W, Ringelstein EB, Nabavi DG: Low rate of contrast-induced Nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol 2007, 254: 1491–1497. 10.1007/s00415-007-0528-5CrossRefPubMed Dittrich R, Akdeniz S, Kloska SP, Fischer T, Ritter MA, Seidensticker P, Heindel W, Ringelstein EB, Nabavi DG: Low rate of contrast-induced Nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol 2007, 254: 1491–1497. 10.1007/s00415-007-0528-5CrossRefPubMed
32.
Zurück zum Zitat Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI: Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. AJNR Am J Neuroradiol 2008, 29: 1826–1830. 10.3174/ajnr.A1257CrossRefPubMed Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI: Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. AJNR Am J Neuroradiol 2008, 29: 1826–1830. 10.3174/ajnr.A1257CrossRefPubMed
33.
Zurück zum Zitat Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM: Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. Stroke 2007, 38: 2364–2366. 10.1161/STROKEAHA.107.482778CrossRefPubMed Krol AL, Dzialowski I, Roy J, Puetz V, Subramaniam S, Coutts SB, Demchuk AM: Incidence of radiocontrast nephropathy in patients undergoing acute stroke computed tomography angiography. Stroke 2007, 38: 2364–2366. 10.1161/STROKEAHA.107.482778CrossRefPubMed
34.
Zurück zum Zitat Oleinik A, Romero JM, Schwab K, Lev MH, Jhawar N, Delgado Almandoz JE, Smith EE, Greenberg SM, Rosand J, Goldstein JN: CT angiography for intracerebral hemorrhage does not increase risk of acute nephropathy. Stroke 2009, 40: 2393–2397. 10.1161/STROKEAHA.108.546127PubMedCentralCrossRefPubMed Oleinik A, Romero JM, Schwab K, Lev MH, Jhawar N, Delgado Almandoz JE, Smith EE, Greenberg SM, Rosand J, Goldstein JN: CT angiography for intracerebral hemorrhage does not increase risk of acute nephropathy. Stroke 2009, 40: 2393–2397. 10.1161/STROKEAHA.108.546127PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Baumgarten DA, Ellis JH: Contrast-induced nephropathy: contrast material not required? AJR Am J Roentgenol 2008, 191: 383–386. 10.2214/AJR.08.1310CrossRefPubMed Baumgarten DA, Ellis JH: Contrast-induced nephropathy: contrast material not required? AJR Am J Roentgenol 2008, 191: 383–386. 10.2214/AJR.08.1310CrossRefPubMed
36.
Zurück zum Zitat Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, Gonzalez RG, Koroshetz WJ, Smith WS, Furie KL: Functional Contrast-Enhanced CT For Evaluation of Acute Ischemic Stroke Does Not Increase the Risk of Contrast-Induced Nephropathy. AJNR Am J Neuroradiol 2010, 31: 817–821. 10.3174/ajnr.A1927PubMedCentralCrossRefPubMed Lima FO, Lev MH, Levy RA, Silva GS, Ebril M, de Camargo EC, Pomerantz S, Singhal AB, Greer DM, Ay H, Gonzalez RG, Koroshetz WJ, Smith WS, Furie KL: Functional Contrast-Enhanced CT For Evaluation of Acute Ischemic Stroke Does Not Increase the Risk of Contrast-Induced Nephropathy. AJNR Am J Neuroradiol 2010, 31: 817–821. 10.3174/ajnr.A1927PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD: Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. Lancet Neurol 2008, 7: 787–795. 10.1016/S1474-4422(08)70171-6PubMedCentralCrossRefPubMed Meyer BC, Raman R, Hemmen T, Obler R, Zivin JA, Rao R, Thomas RG, Lyden PD: Efficacy of site-independent telemedicine in the STRokE DOC trial: a randomised, blinded, prospective study. Lancet Neurol 2008, 7: 787–795. 10.1016/S1474-4422(08)70171-6PubMedCentralCrossRefPubMed
Metadaten
Titel
CT angiography predicts use of tertiary interventional services in acute ischemic stroke patients
verfasst von
Lisa E Thomas
Joshua N Goldstein
Reza Hakimelahi
Yuchiao Chang
Albert J Yoo
Lee H Schwamm
R Gilberto Gonzalez
Publikationsdatum
01.12.2011
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Emergency Medicine / Ausgabe 1/2011
Print ISSN: 1865-1372
Elektronische ISSN: 1865-1380
DOI
https://doi.org/10.1186/1865-1380-4-62

Weitere Artikel der Ausgabe 1/2011

International Journal of Emergency Medicine 1/2011 Zur Ausgabe