Skip to main content
Erschienen in: Inflammation 5/2018

27.06.2018 | ORIGINAL ARTICLE

Cyclic Stretching Exacerbates Tendinitis by Enhancing NLRP3 Inflammasome Activity via F-Actin Depolymerization

verfasst von: Qiufang Chen, Jun Zhou, Bingyu Zhang, Zhe Chen, Qing Luo, Guanbin Song

Erschienen in: Inflammation | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Modern molecular techniques have highlighted the presence of inflammation throughout the spectrum of tendinopathy. Previous studies have suggested that excessive inflammation in the tendon is a major factor leading to poor clinical treatment. Furthermore, the NLRP3 inflammasome, as a new term, is closely associated with the pathogenesis of many diseases. In the present study, we examined whether the NLRP3 inflammasome contributes to the development of tendinitis and whether cyclic stretching plays a prominent role in inflammation in the tendon. In the present study, we showed that hydrogen peroxide (H2O2) remarkably enhances the expression and release of IL-1β, TNF-α, and IL-6. The maturation of IL-1β, induced by H2O2, depends on the activation of the NLRP3 inflammasome. Cyclic stretching enhances the maturation of IL-1β via promoting H2O2-induced NLRP3 inflammasome activation in tenocytes. Furthermore, we also found that the depolymerization of filamentous actin (F-actin) was required for cyclic stretching-enhanced NLRP3 inflammasome activation. The present study suggests that NLRP3 inflammasome plays an important regulatory role in the pathogenesis of tendinitis. Disruption of the cytoskeleton by cyclic stretching exerts a proinflammatory effect via further activating the NLRP3/IL-1β pathway and hence contributes to tendinitis. These results may provide theoretical support for a new treatment strategy for preventing excessive inflammation in the tendon.
Literatur
1.
Zurück zum Zitat Riley, G. 2005. Chronic tendon pathology: Molecular basis and therapeutic implications. Expert Reviews in Molecular Medicine 7: 1–25.CrossRefPubMed Riley, G. 2005. Chronic tendon pathology: Molecular basis and therapeutic implications. Expert Reviews in Molecular Medicine 7: 1–25.CrossRefPubMed
2.
Zurück zum Zitat Stanley, N.A.A.R.L., and D.J.R. Evans. 2013. Tendinopathy—from basic science to treatment. International Journal of Experimental Pathology 94: A1–A21. Stanley, N.A.A.R.L., and D.J.R. Evans. 2013. Tendinopathy—from basic science to treatment. International Journal of Experimental Pathology 94: A1–A21.
3.
Zurück zum Zitat McGonagle, D., H. Marzo-Ortega, M. Benjamin, and P. Emery. 2013. Report on the Second International Enthesitis Workshop. Arthritis and Rheumatism 48: 896–905.CrossRef McGonagle, D., H. Marzo-Ortega, M. Benjamin, and P. Emery. 2013. Report on the Second International Enthesitis Workshop. Arthritis and Rheumatism 48: 896–905.CrossRef
4.
Zurück zum Zitat Sugg, K.B., J. Lubardic, J.P. Gumucio, and C.L. Mendias. 2014. Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. Journal of Orthopaedic Research 32: 944–951.CrossRefPubMedPubMedCentral Sugg, K.B., J. Lubardic, J.P. Gumucio, and C.L. Mendias. 2014. Changes in macrophage phenotype and induction of epithelial-to-mesenchymal transition genes following acute Achilles tenotomy and repair. Journal of Orthopaedic Research 32: 944–951.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Lories, R.J., and I.B. McInnes. 2012. Primed for inflammation: Enthesis-resident T cells. Nature Medicine 18: 1018–1019.CrossRefPubMed Lories, R.J., and I.B. McInnes. 2012. Primed for inflammation: Enthesis-resident T cells. Nature Medicine 18: 1018–1019.CrossRefPubMed
6.
Zurück zum Zitat Manning, C.N., N. Havlioglu, E. Knutsen, S.E. Sakiyama-Elbert, M.J. Silva, S. Thomopoulos, and R.H. Gelberman. 2014. The early inflammatory response after flexor tendon healing: A gene expression and histological analysis. Journal of Orthopaedic Research 32: 645–652.CrossRefPubMedPubMedCentral Manning, C.N., N. Havlioglu, E. Knutsen, S.E. Sakiyama-Elbert, M.J. Silva, S. Thomopoulos, and R.H. Gelberman. 2014. The early inflammatory response after flexor tendon healing: A gene expression and histological analysis. Journal of Orthopaedic Research 32: 645–652.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Berglund, M., D.A. Hart, and M. Wiig. 2007. The inflammatory response and hyaluronan synthases in the rabbit flexor tendon and tendon sheath following injury. The Journal of Hand Surgery, European Volume 32: 581–587.CrossRefPubMed Berglund, M., D.A. Hart, and M. Wiig. 2007. The inflammatory response and hyaluronan synthases in the rabbit flexor tendon and tendon sheath following injury. The Journal of Hand Surgery, European Volume 32: 581–587.CrossRefPubMed
8.
Zurück zum Zitat Millar, N.L., G.A. Murrell, and I.B. McInnes. 2017. Inflammatory mechanisms in tendinopathy - towards translation. Nature Reviews Rheumatology 13: 110–122.CrossRefPubMed Millar, N.L., G.A. Murrell, and I.B. McInnes. 2017. Inflammatory mechanisms in tendinopathy - towards translation. Nature Reviews Rheumatology 13: 110–122.CrossRefPubMed
9.
Zurück zum Zitat Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184: 3964–3977.CrossRef Lucas, T., A. Waisman, R. Ranjan, J. Roes, T. Krieg, W. Muller, A. Roers, and S.A. Eming. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184: 3964–3977.CrossRef
10.
Zurück zum Zitat Lin, T.W., L. Cardenas, D.L. Glaser, and L.J. Soslowsky. 2006. Tendon healing in interleukin-4 and interleukin-6 knockout mice. Journal of Biomechanics 39: 61–69.CrossRefPubMed Lin, T.W., L. Cardenas, D.L. Glaser, and L.J. Soslowsky. 2006. Tendon healing in interleukin-4 and interleukin-6 knockout mice. Journal of Biomechanics 39: 61–69.CrossRefPubMed
11.
Zurück zum Zitat Hays, P.L., S. Kawamura, X.H. Deng, E. Dagher, K. Mithoefer, L. Ying, and S.A. Rodeo. 2008. The role of macrophages in early healing of a tendon graft in a bone tunnel. The Journal of Bone and Joint Surgery - American Volume 90: 565–579.CrossRefPubMed Hays, P.L., S. Kawamura, X.H. Deng, E. Dagher, K. Mithoefer, L. Ying, and S.A. Rodeo. 2008. The role of macrophages in early healing of a tendon graft in a bone tunnel. The Journal of Bone and Joint Surgery - American Volume 90: 565–579.CrossRefPubMed
12.
Zurück zum Zitat Dagher, E., P.L. Hays, S. Kawamura, J. Godin, X.H. Deng, and S.A. Rodeo. 2009. Immobilization modulates macrophage accumulation in tendon-bone healing. Clinical Orthopaedics and Related Research 467: 281–287.CrossRefPubMed Dagher, E., P.L. Hays, S. Kawamura, J. Godin, X.H. Deng, and S.A. Rodeo. 2009. Immobilization modulates macrophage accumulation in tendon-bone healing. Clinical Orthopaedics and Related Research 467: 281–287.CrossRefPubMed
13.
Zurück zum Zitat Kawamura, S., L. Ying, H. Kim, C. Dynybil, and S. Rodeo. 2005. Macrophages accumulate in the early phase of tendon–bone healing. Journal of Orthopaedic Research 23: 1425–1432.CrossRefPubMed Kawamura, S., L. Ying, H. Kim, C. Dynybil, and S. Rodeo. 2005. Macrophages accumulate in the early phase of tendon–bone healing. Journal of Orthopaedic Research 23: 1425–1432.CrossRefPubMed
14.
Zurück zum Zitat Silva, M.J., M.D. Brodt, M.I. Boyer, T.S. Morris, H. Dinopoulos, D. Amiel, and R.H. Gelberman. 1999. Effects of increased in vivo excursion on digital range of motion and tendon strength following flexor tendon repair. Journal of Orthopaedic Research 17: 777–783.CrossRefPubMed Silva, M.J., M.D. Brodt, M.I. Boyer, T.S. Morris, H. Dinopoulos, D. Amiel, and R.H. Gelberman. 1999. Effects of increased in vivo excursion on digital range of motion and tendon strength following flexor tendon repair. Journal of Orthopaedic Research 17: 777–783.CrossRefPubMed
15.
Zurück zum Zitat Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481: 278–286.CrossRefPubMed Strowig, T., J. Henao-Mejia, E. Elinav, and R. Flavell. 2012. Inflammasomes in health and disease. Nature 481: 278–286.CrossRefPubMed
16.
Zurück zum Zitat Wen, H., J.P. Ting, and L.A. O'Neill. 2012. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nature Immunology 13: 352–357.CrossRefPubMedPubMedCentral Wen, H., J.P. Ting, and L.A. O'Neill. 2012. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nature Immunology 13: 352–357.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat van de Veerdonk, F.L., M.G. Netea, C.A. Dinarello, and L.A. Joosten. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends in Immunology 32: 110–116.CrossRefPubMed van de Veerdonk, F.L., M.G. Netea, C.A. Dinarello, and L.A. Joosten. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends in Immunology 32: 110–116.CrossRefPubMed
21.
Zurück zum Zitat Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of Cellular and Molecular Medicine 19: 2715–2727.CrossRefPubMedPubMedCentral Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of Cellular and Molecular Medicine 19: 2715–2727.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Ratsimandresy, R.A., A. Dorfleutner, and C. Stehlik. 2013. An update on PYRIN domain-containing pattern recognition receptors: From immunity to pathology. Frontiers in Immunology 4: 440.CrossRefPubMedPubMedCentral Ratsimandresy, R.A., A. Dorfleutner, and C. Stehlik. 2013. An update on PYRIN domain-containing pattern recognition receptors: From immunity to pathology. Frontiers in Immunology 4: 440.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.CrossRefPubMed Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.CrossRefPubMed
24.
Zurück zum Zitat Yu, H.B., and B.B. Finlay. 2008. The caspase-1 inflammasome: A pilot of innate immune responses. Cell Host & Microbe 4: 198–208.CrossRef Yu, H.B., and B.B. Finlay. 2008. The caspase-1 inflammasome: A pilot of innate immune responses. Cell Host & Microbe 4: 198–208.CrossRef
25.
26.
Zurück zum Zitat Kim, J.Y., Y.G. Lee, M.Y. Kim, S.E. Byeon, M.H. Rhee, J. Park, D.R. Katz, B.M. Chain, and J.Y. Cho. 2010. Src-mediated regulation of inflammatory responses by actin polymerization. Biochemical Pharmacology 79: 431–443.CrossRefPubMed Kim, J.Y., Y.G. Lee, M.Y. Kim, S.E. Byeon, M.H. Rhee, J. Park, D.R. Katz, B.M. Chain, and J.Y. Cho. 2010. Src-mediated regulation of inflammatory responses by actin polymerization. Biochemical Pharmacology 79: 431–443.CrossRefPubMed
27.
Zurück zum Zitat Kim, M.L., J.J. Chae, Y.H. Park, D. de Nardo, R.A. Stirzaker, H.J. Ko, H. Tye, L. Cengia, L. DiRago, D. Metcalf, A.W. Roberts, D.L. Kastner, A.M. Lew, D. Lyras, B.T. Kile, B.A. Croker, and S.L. Masters. 2015. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta. The Journal of Experimental Medicine 212: 927–938.CrossRefPubMedPubMedCentral Kim, M.L., J.J. Chae, Y.H. Park, D. de Nardo, R.A. Stirzaker, H.J. Ko, H. Tye, L. Cengia, L. DiRago, D. Metcalf, A.W. Roberts, D.L. Kastner, A.M. Lew, D. Lyras, B.T. Kile, B.A. Croker, and S.L. Masters. 2015. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta. The Journal of Experimental Medicine 212: 927–938.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Waite, A.L., P. Schaner, C. Hu, N. Richards, B. Balci-Peynircioglu, A. Hong, M. Fox, and D.L. Gumucio. 2009. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Experimental Biology and Medicine 234: 40–52.CrossRefPubMed Waite, A.L., P. Schaner, C. Hu, N. Richards, B. Balci-Peynircioglu, A. Hong, M. Fox, and D.L. Gumucio. 2009. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Experimental Biology and Medicine 234: 40–52.CrossRefPubMed
29.
Zurück zum Zitat Misawa, T., M. Takahama, T. Kozaki, H. Lee, J. Zou, T. Saitoh, and S. Akira. 2013. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nature Immunology 14: 454–460.CrossRefPubMed Misawa, T., M. Takahama, T. Kozaki, H. Lee, J. Zou, T. Saitoh, and S. Akira. 2013. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nature Immunology 14: 454–460.CrossRefPubMed
30.
Zurück zum Zitat Man, E.A., Tourlomousis P. SM, S. Achouri, et al. 2014. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. PNAS 111: 17588–17593.CrossRefPubMedPubMedCentral Man, E.A., Tourlomousis P. SM, S. Achouri, et al. 2014. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection. PNAS 111: 17588–17593.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Taskiran, E.Z., A. Cetinkaya, B. Balci-Peynircioglu, Y.Z. Akkaya, and E. Yilmaz. 2012. The effect of colchicine on pyrin and pyrin interacting proteins. Journal of Cellular Biochemistry 113: 3536–3546.CrossRefPubMed Taskiran, E.Z., A. Cetinkaya, B. Balci-Peynircioglu, Y.Z. Akkaya, and E. Yilmaz. 2012. The effect of colchicine on pyrin and pyrin interacting proteins. Journal of Cellular Biochemistry 113: 3536–3546.CrossRefPubMed
34.
Zurück zum Zitat Burger, D., C. Fickentscher, P. de Moerloose, and K.J. Brandt. 2016. F-actin dampens NLRP3 inflammasome activity via Flightless-I and LRRFIP2. Scientific Reports 6: 29834.CrossRefPubMedPubMedCentral Burger, D., C. Fickentscher, P. de Moerloose, and K.J. Brandt. 2016. F-actin dampens NLRP3 inflammasome activity via Flightless-I and LRRFIP2. Scientific Reports 6: 29834.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Chen, W., Y. Deng, J. Zhang, and K. Tang. 2015. Uniaxial repetitive mechanical overloading induces influx of extracellular calcium and cytoskeleton disruption in human tenocytes. Cell and Tissue Research 359: 577–587.CrossRefPubMed Chen, W., Y. Deng, J. Zhang, and K. Tang. 2015. Uniaxial repetitive mechanical overloading induces influx of extracellular calcium and cytoskeleton disruption in human tenocytes. Cell and Tissue Research 359: 577–587.CrossRefPubMed
36.
Zurück zum Zitat Zhang, B., Q. Luo, Z. Chen, J. Sun, B. Xu, Y. Ju, and G. Song. 2015. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Research 14: 155–164.CrossRefPubMed Zhang, B., Q. Luo, Z. Chen, J. Sun, B. Xu, Y. Ju, and G. Song. 2015. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Research 14: 155–164.CrossRefPubMed
37.
Zurück zum Zitat Jin, J., Q. Yu, C. Han, X. Hu, S. Xu, Q. Wang, J. Wang, N. Li, and X. Cao. 2013. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nature Communications 4: 2075.CrossRefPubMed Jin, J., Q. Yu, C. Han, X. Hu, S. Xu, Q. Wang, J. Wang, N. Li, and X. Cao. 2013. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nature Communications 4: 2075.CrossRefPubMed
38.
Zurück zum Zitat Katzel, E.B., M. Wolenski, A.E. Loiselle, P. Basile, L.M. Flick, H.N. Langstein, M.J. Hilton, H.A. Awad, W.C. Hammert, and R.J. O'Keefe. 2011. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. Journal of Orthopaedic Research 29: 684–693.CrossRefPubMed Katzel, E.B., M. Wolenski, A.E. Loiselle, P. Basile, L.M. Flick, H.N. Langstein, M.J. Hilton, H.A. Awad, W.C. Hammert, and R.J. O'Keefe. 2011. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. Journal of Orthopaedic Research 29: 684–693.CrossRefPubMed
39.
Zurück zum Zitat Cilli, F., M. Khan, F. Fu, and J.H.C. Wang. 2004. Prostaglandin E2 affects proliferation and collagen synthesis by human patellar tendon fibroblasts. Clinical Journal of Sport Medicine 14: 232–236.CrossRefPubMed Cilli, F., M. Khan, F. Fu, and J.H.C. Wang. 2004. Prostaglandin E2 affects proliferation and collagen synthesis by human patellar tendon fibroblasts. Clinical Journal of Sport Medicine 14: 232–236.CrossRefPubMed
40.
Zurück zum Zitat Candel, S., S. de Oliveira, A. Lopez-Munoz, et al. 2014. TNFa signaling through tnfr2 protects skin against oxidative stress-induced inflammation. PLoS Biology 12: e1001855.CrossRefPubMedPubMedCentral Candel, S., S. de Oliveira, A. Lopez-Munoz, et al. 2014. TNFa signaling through tnfr2 protects skin against oxidative stress-induced inflammation. PLoS Biology 12: e1001855.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Wang, Y.L., G.Y. Sun, Y. Zhang, J.J. He, S. Zheng, and J.N. Lin. 2016. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-kappaB signaling pathway. Molecular Medicine Reports 14: 3559–3564.CrossRefPubMedPubMedCentral Wang, Y.L., G.Y. Sun, Y. Zhang, J.J. He, S. Zheng, and J.N. Lin. 2016. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-kappaB signaling pathway. Molecular Medicine Reports 14: 3559–3564.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Kim, J.S., Y.H. Lee, Y.U. Chang, and H.K. Yi. 2016. PPARgamma regulates inflammatory reaction by inhibiting the MAPK/NF-kappaB pathway in C2C12 skeletal muscle cells. Journal of Physiology and Biochemistry 73: 49–57.CrossRefPubMed Kim, J.S., Y.H. Lee, Y.U. Chang, and H.K. Yi. 2016. PPARgamma regulates inflammatory reaction by inhibiting the MAPK/NF-kappaB pathway in C2C12 skeletal muscle cells. Journal of Physiology and Biochemistry 73: 49–57.CrossRefPubMed
43.
Zurück zum Zitat Young, I.C., S.T. Chuang, C.H. Hsu, Y.J. Sun, and F.H. Lin. 2016. C-phycocyanin alleviates osteoarthritic injury in chondrocytes stimulated with H2O2 and compressive stress. International Journal of Biological Macromolecules 93: 852–859.CrossRefPubMed Young, I.C., S.T. Chuang, C.H. Hsu, Y.J. Sun, and F.H. Lin. 2016. C-phycocyanin alleviates osteoarthritic injury in chondrocytes stimulated with H2O2 and compressive stress. International Journal of Biological Macromolecules 93: 852–859.CrossRefPubMed
44.
Zurück zum Zitat Latz, E., T.S. Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews Immunology 13: 397–411.CrossRefPubMed Latz, E., T.S. Xiao, and A. Stutz. 2013. Activation and regulation of the inflammasomes. Nature Reviews Immunology 13: 397–411.CrossRefPubMed
45.
Zurück zum Zitat Fabio Martinon, K.B., and J. Tschopp. 2002. The inflammasome a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.CrossRefPubMed Fabio Martinon, K.B., and J. Tschopp. 2002. The inflammasome a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.CrossRefPubMed
47.
Zurück zum Zitat Martinon, F. 2010. Signaling by ROS drives inflammasome activation. European Journal of Immunology 40: 616–619.CrossRefPubMed Martinon, F. 2010. Signaling by ROS drives inflammasome activation. European Journal of Immunology 40: 616–619.CrossRefPubMed
48.
Zurück zum Zitat Hoffmann, E.K., S.F. Pedersen, and J.W. Mills. 2001. The cytoskeleton and cell volume regulation. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 130: 385–399.CrossRef Hoffmann, E.K., S.F. Pedersen, and J.W. Mills. 2001. The cytoskeleton and cell volume regulation. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 130: 385–399.CrossRef
49.
Zurück zum Zitat Jorgensen, N.K., S.F. Pedersen, H.B. Rasmussen, M. Grunnet, D.A. Klaerke, and S.P. Olesen. 2003. Cell swelling activates cloned Ca2+-activated K+ channels: A role for the F-actin cytoskeleton. Biochimica et Biophysica Acta (BBA) - Biomembranes 1615: 115–125.CrossRef Jorgensen, N.K., S.F. Pedersen, H.B. Rasmussen, M. Grunnet, D.A. Klaerke, and S.P. Olesen. 2003. Cell swelling activates cloned Ca2+-activated K+ channels: A role for the F-actin cytoskeleton. Biochimica et Biophysica Acta (BBA) - Biomembranes 1615: 115–125.CrossRef
50.
Zurück zum Zitat Compan, V., A. Baroja-Mazo, G. Lopez-Castejon, et al. 2012. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37: 487–500.CrossRefPubMed Compan, V., A. Baroja-Mazo, G. Lopez-Castejon, et al. 2012. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37: 487–500.CrossRefPubMed
51.
Zurück zum Zitat Nag, S., M. Larsson, R.C. Robinson, and L.D. Burtnick. 2013. Gelsolin: The tail of a molecular gymnast. Cytoskeleton 70: 360–384.CrossRefPubMed Nag, S., M. Larsson, R.C. Robinson, and L.D. Burtnick. 2013. Gelsolin: The tail of a molecular gymnast. Cytoskeleton 70: 360–384.CrossRefPubMed
52.
Zurück zum Zitat Liu, Y.H.L., and T. Y. 1998. Identification of the binding partners for Flightless I, a novel protein bridging the leucine-rich repeat and the gelsolin superfamilies. Journal of Biological Chemistry 273: 7920–7927.CrossRefPubMed Liu, Y.H.L., and T. Y. 1998. Identification of the binding partners for Flightless I, a novel protein bridging the leucine-rich repeat and the gelsolin superfamilies. Journal of Biological Chemistry 273: 7920–7927.CrossRefPubMed
53.
Zurück zum Zitat Horng, T. 2014. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends in Immunology 35: 253–261.CrossRefPubMedPubMedCentral Horng, T. 2014. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends in Immunology 35: 253–261.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schöneberg, M. Schaefer, U. Krügel, S. Smajilovic, H. Bräuner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications 3: 1329.CrossRefPubMed Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schöneberg, M. Schaefer, U. Krügel, S. Smajilovic, H. Bräuner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature Communications 3: 1329.CrossRefPubMed
Metadaten
Titel
Cyclic Stretching Exacerbates Tendinitis by Enhancing NLRP3 Inflammasome Activity via F-Actin Depolymerization
verfasst von
Qiufang Chen
Jun Zhou
Bingyu Zhang
Zhe Chen
Qing Luo
Guanbin Song
Publikationsdatum
27.06.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0816-5

Weitere Artikel der Ausgabe 5/2018

Inflammation 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.