Skip to main content
Erschienen in: Drugs 3/2010

01.02.2010 | Leading Article

Cystic Fibrosis Transmembrane Conductance Regulator Modulators for Personalized Drug Treatment of Cystic Fibrosis

Progress to Date

verfasst von: Professor Frédéric Becq

Erschienen in: Drugs | Ausgabe 3/2010

Einloggen, um Zugang zu erhalten

Abstract

This article considers the issue of personalized drug discovery for the orphan disease cystic fibrosis (CF) to deliver a candidate for therapeutic development. CF is a very complicated disease due to numerous anomalies of the gene leading to progressive severity and morbidity. Despite extensive research efforts, 20 years after the cloning of the CF gene, CF patients are still waiting for a curative treatment as prescribed medications still target the secondary manifestations of the disease rather than the gene or the CF transmembrane conductance regulator (CFTR) protein. New therapeutics aimed at improving mutant CFTR functions, also known as ‘protein repair therapy’ are nevertheless hoped and predicted to replace some of the currently used therapy, while improving the quality of life as well as life expectancy of CF patients. Although there is substantial variability in the cost of treating CF between countries, a protein repair therapy should also alleviate the financial burden of medical costs for CF patients and their families. Finding new drugs or rediscovering old ones for CF is critically dependent on the delivery of molecular and structural information on the CFTR protein, on its mutated version and on the network of CFTR-interacting proteins. The expertise needed to turn compounds into marketable drugs for CF will depend on our ability to provide biological information obtained from pertinent models of the disease and on our success in transferring safe molecules to clinical trials. Predicting a drug-induced response is also an attractive challenge that could be rapidly applied to patients.
Literatur
1.
Zurück zum Zitat Bobadilla JL, Macek Jr M, Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum Mutat 2002; 19: 575–606PubMedCrossRef Bobadilla JL, Macek Jr M, Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum Mutat 2002; 19: 575–606PubMedCrossRef
2.
Zurück zum Zitat Rommens JM, Iannuzzi MC, Kerem BS, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1059–65PubMedCrossRef Rommens JM, Iannuzzi MC, Kerem BS, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1059–65PubMedCrossRef
3.
Zurück zum Zitat Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245: 1073–80PubMedCrossRef Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245: 1073–80PubMedCrossRef
4.
Zurück zum Zitat Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–73PubMedCrossRef Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–73PubMedCrossRef
5.
Zurück zum Zitat Hanrahan JW, Gentzsch M, Riordan JR. The cystic fibrosis transmembrane conductance regulator (ABCC7). In: Holland IB, Cole S, Kuchler K, et al., editors. ABC proteins: from bacteria to man. New York: Academic Press, 2003: 589–618CrossRef Hanrahan JW, Gentzsch M, Riordan JR. The cystic fibrosis transmembrane conductance regulator (ABCC7). In: Holland IB, Cole S, Kuchler K, et al., editors. ABC proteins: from bacteria to man. New York: Academic Press, 2003: 589–618CrossRef
6.
Zurück zum Zitat Tabcharani JA, Chang XB, Riordan JR, et al. Phosphorylation-regulated Clchannel in CHO cells stably expressing the cystic fibrosis gene. Nature 1991; 352: 628–31PubMedCrossRef Tabcharani JA, Chang XB, Riordan JR, et al. Phosphorylation-regulated Clchannel in CHO cells stably expressing the cystic fibrosis gene. Nature 1991; 352: 628–31PubMedCrossRef
7.
Zurück zum Zitat Gadsby DC, Nairn AC. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 1999; 79: 77–107 Gadsby DC, Nairn AC. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev 1999; 79: 77–107
8.
9.
Zurück zum Zitat Boucher RC. Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 2007; 13: 231–40PubMedCrossRef Boucher RC. Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 2007; 13: 231–40PubMedCrossRef
10.
Zurück zum Zitat Ribeiro CM. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia. Drugs R D 2006; 7: 17–31PubMedCrossRef Ribeiro CM. The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia. Drugs R D 2006; 7: 17–31PubMedCrossRef
11.
Zurück zum Zitat Jacquot J, Tabary O, Le Rouzic P, et al. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 2008; 40: 1703–15PubMedCrossRef Jacquot J, Tabary O, Le Rouzic P, et al. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 2008; 40: 1703–15PubMedCrossRef
12.
Zurück zum Zitat Simmonds NJ, Cullinan P, Hodson ME. Growing old with cystic fibrosis: the characteristics of long-term survivors of cystic fibrosis. Res Med 2009; 103: 629–35CrossRef Simmonds NJ, Cullinan P, Hodson ME. Growing old with cystic fibrosis: the characteristics of long-term survivors of cystic fibrosis. Res Med 2009; 103: 629–35CrossRef
13.
Zurück zum Zitat Rosenblatt RL. Lung transplantation in cystic fibrosis. Resp Care 2009; 54: 777–87CrossRef Rosenblatt RL. Lung transplantation in cystic fibrosis. Resp Care 2009; 54: 777–87CrossRef
14.
Zurück zum Zitat Castellani C, Cuppens H, Macek Jr M, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 2008; 7: 179–96PubMedCrossRef Castellani C, Cuppens H, Macek Jr M, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 2008; 7: 179–96PubMedCrossRef
15.
Zurück zum Zitat De Araujo FG, Novaes FC, Dos Santos NPC, et al. Prevalence of DF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the north of Brazil. Braz J Med Biol Res 2005; 38: 11–5PubMed De Araujo FG, Novaes FC, Dos Santos NPC, et al. Prevalence of DF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the north of Brazil. Braz J Med Biol Res 2005; 38: 11–5PubMed
16.
Zurück zum Zitat Kabra SK, Kabra M, Lodha R, et al. Cystic fibrosis in India. Pediatr Pulmonol 2007; 42: 1087–94PubMedCrossRef Kabra SK, Kabra M, Lodha R, et al. Cystic fibrosis in India. Pediatr Pulmonol 2007; 42: 1087–94PubMedCrossRef
17.
Zurück zum Zitat Scotet V, Gollet D, Duguépéroux I, et al. Spatial and temporal distribution of the cystic fibrosis and of its mutations in Brittany, France: a retrospective study from 1960. Hum Genet 2002; 111: 247–54PubMedCrossRef Scotet V, Gollet D, Duguépéroux I, et al. Spatial and temporal distribution of the cystic fibrosis and of its mutations in Brittany, France: a retrospective study from 1960. Hum Genet 2002; 111: 247–54PubMedCrossRef
18.
Zurück zum Zitat Duguépéroux I, De Braekeleer M. Genotype-phenotype relationship for five CFTR mutations frequently identified in western France. J Cyst Fibros 2004; 4: 259–63CrossRef Duguépéroux I, De Braekeleer M. Genotype-phenotype relationship for five CFTR mutations frequently identified in western France. J Cyst Fibros 2004; 4: 259–63CrossRef
20.
Zurück zum Zitat Yamashiro Y, Shimizu T, Oguchi S, et al. The estimated incidence of cystic fibrosis in Japan. J Pediatr Gastroenterol Nutr 1997; 24: 544–7PubMedCrossRef Yamashiro Y, Shimizu T, Oguchi S, et al. The estimated incidence of cystic fibrosis in Japan. J Pediatr Gastroenterol Nutr 1997; 24: 544–7PubMedCrossRef
21.
Zurück zum Zitat Morrow BM, Argent AC, Zar HJ, et al. Improvements in lung function of a pediatric cystic fibrosis population in a developing country. J Pediatr (Rio J) 2008; 84: 403–9CrossRef Morrow BM, Argent AC, Zar HJ, et al. Improvements in lung function of a pediatric cystic fibrosis population in a developing country. J Pediatr (Rio J) 2008; 84: 403–9CrossRef
22.
Zurück zum Zitat Ratbi I, Génin E, Legendre M, et al. Cystic fibrosis carrier frequency and estimated prevalence of the disease in Morocco. J Cyst Fibros 2008; 7: 440–3PubMedCrossRef Ratbi I, Génin E, Legendre M, et al. Cystic fibrosis carrier frequency and estimated prevalence of the disease in Morocco. J Cyst Fibros 2008; 7: 440–3PubMedCrossRef
24.
Zurück zum Zitat Li N, Pei P, Bu D-F, et al. A novel CFTR mutation found in a Chinese patient with cystic fibrosis. Chin Med J 2006; 119: 103–9PubMed Li N, Pei P, Bu D-F, et al. A novel CFTR mutation found in a Chinese patient with cystic fibrosis. Chin Med J 2006; 119: 103–9PubMed
25.
Zurück zum Zitat Loumi O, Ferec C, Mercier B, et al. CFTR mutations in the Algerian population. J Cyst Fibros 2008; 7: 54–9PubMedCrossRef Loumi O, Ferec C, Mercier B, et al. CFTR mutations in the Algerian population. J Cyst Fibros 2008; 7: 54–9PubMedCrossRef
26.
Zurück zum Zitat Messaoud T, Verlingue C, Denamur E, et al. Distribution of CFTR mutations in cystic fibrosis patients of Tunisian origin: identification of two novel mutations. Eur J Hum Genet 1996; 4: 20–4PubMed Messaoud T, Verlingue C, Denamur E, et al. Distribution of CFTR mutations in cystic fibrosis patients of Tunisian origin: identification of two novel mutations. Eur J Hum Genet 1996; 4: 20–4PubMed
27.
Zurück zum Zitat Becq F. On the discovery and development of CFTR chloride channel activators. Curr Pharm Des 2006; 12: 471–84PubMedCrossRef Becq F. On the discovery and development of CFTR chloride channel activators. Curr Pharm Des 2006; 12: 471–84PubMedCrossRef
28.
Zurück zum Zitat Drumm ML, Wilkinson DJ, Smit LS, et al. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 1991; 254: 1797–9PubMedCrossRef Drumm ML, Wilkinson DJ, Smit LS, et al. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. Science 1991; 254: 1797–9PubMedCrossRef
29.
Zurück zum Zitat Grubb B, Lazarowski E, Knowles M, et al. Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. Am J Respir Cell Mol Biol 1993; 8: 454–60PubMed Grubb B, Lazarowski E, Knowles M, et al. Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia. Am J Respir Cell Mol Biol 1993; 8: 454–60PubMed
30.
Zurück zum Zitat Verkman AS. Drug discovery in academia. Am J Physiol 2004; 286: 465–74CrossRef Verkman AS. Drug discovery in academia. Am J Physiol 2004; 286: 465–74CrossRef
31.
Zurück zum Zitat Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov 2009; 8: 153–71PubMedCrossRef Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov 2009; 8: 153–71PubMedCrossRef
32.
Zurück zum Zitat Becq F. Pharmacological interventions for the correction of ion transport defect in cystic fibrosis. Expert Opin Ther Patents 2004; 14: 1465–83CrossRef Becq F. Pharmacological interventions for the correction of ion transport defect in cystic fibrosis. Expert Opin Ther Patents 2004; 14: 1465–83CrossRef
33.
Zurück zum Zitat Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993; 73: 1251–4PubMedCrossRef Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993; 73: 1251–4PubMedCrossRef
34.
Zurück zum Zitat Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63: 827–34PubMedCrossRef Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990; 63: 827–34PubMedCrossRef
35.
Zurück zum Zitat Dalemans W, Barbry P, Champigny G, et al. Altered chloride ion channel kinetics associated with the DF508 cystic fibrosis mutation. Nature 1991; 354: 526–8PubMedCrossRef Dalemans W, Barbry P, Champigny G, et al. Altered chloride ion channel kinetics associated with the DF508 cystic fibrosis mutation. Nature 1991; 354: 526–8PubMedCrossRef
36.
Zurück zum Zitat Cutting GR, Kasch LM, Rosenstein BJ, et al. A cluster of cystic fibrosis mutations in the first nucleotide binding fold domain of the cystic fibrosis conductance regulator protein. Nature 1990; 346: 366–9PubMedCrossRef Cutting GR, Kasch LM, Rosenstein BJ, et al. A cluster of cystic fibrosis mutations in the first nucleotide binding fold domain of the cystic fibrosis conductance regulator protein. Nature 1990; 346: 366–9PubMedCrossRef
37.
Zurück zum Zitat Becq F, Jensen TJ, Chang X-B, et al. Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci U S A 1994; 91: 9160–4PubMedCrossRef Becq F, Jensen TJ, Chang X-B, et al. Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci U S A 1994; 91: 9160–4PubMedCrossRef
38.
Zurück zum Zitat Sheppard DN, Rich DP, Ostedgaard LS, et al. Mutations in CFTR associated with mild-disease-form Cl− channels with altered pore properties. Nature 1993; 362: 160–4PubMedCrossRef Sheppard DN, Rich DP, Ostedgaard LS, et al. Mutations in CFTR associated with mild-disease-form Cl channels with altered pore properties. Nature 1993; 362: 160–4PubMedCrossRef
39.
Zurück zum Zitat Haardt M, Benharouga M, Lechardeur D, et al. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. J Biol Chem 1999; 31: 21873–7CrossRef Haardt M, Benharouga M, Lechardeur D, et al. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. J Biol Chem 1999; 31: 21873–7CrossRef
42.
Zurück zum Zitat Doring G, Elborn JS, Johannesson M, et al. Clinical trials in cystic fibrosis. J Cyst Fibros 2007; 6: 85–99PubMedCrossRef Doring G, Elborn JS, Johannesson M, et al. Clinical trials in cystic fibrosis. J Cyst Fibros 2007; 6: 85–99PubMedCrossRef
43.
Zurück zum Zitat Goss CH, Mayer-Hamblett N, Williams J, et al. The Cystic Fibrosis Foundation Therapeutics Development Network: a national effort by the Cystic Fibrosis Foundation to build a clinical trials network. Child Health Care 2008; 37: 5–20CrossRef Goss CH, Mayer-Hamblett N, Williams J, et al. The Cystic Fibrosis Foundation Therapeutics Development Network: a national effort by the Cystic Fibrosis Foundation to build a clinical trials network. Child Health Care 2008; 37: 5–20CrossRef
44.
Zurück zum Zitat Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280–4PubMedCrossRef Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997; 3: 1280–4PubMedCrossRef
45.
Zurück zum Zitat Wilchanski M, Yahav Y, Yaacov Y, et al. Gentamicininduced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003; 349: 1433–41CrossRef Wilchanski M, Yahav Y, Yaacov Y, et al. Gentamicininduced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003; 349: 1433–41CrossRef
47.
Zurück zum Zitat Aurino S, Nigro V. Readthrough strategies for stop codons in Duchenne muscular dystrophy. Acta Myol 2006; 25: 5–12PubMed Aurino S, Nigro V. Readthrough strategies for stop codons in Duchenne muscular dystrophy. Acta Myol 2006; 25: 5–12PubMed
48.
Zurück zum Zitat Kerem E, Hirawat S, Armoni S, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008; 372: 719–27PubMedCrossRef Kerem E, Hirawat S, Armoni S, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008; 372: 719–27PubMedCrossRef
49.
Zurück zum Zitat Sermet-Gaudelus I, De Boeck K, Casimir G, et al. Children with nonsense-mutation-mediated cystic fibrosis respond to investigational treatment with PTC 124 [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 313 Sermet-Gaudelus I, De Boeck K, Casimir G, et al. Children with nonsense-mutation-mediated cystic fibrosis respond to investigational treatment with PTC 124 [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 313
50.
Zurück zum Zitat Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 1995; 83: 122–7CrossRef Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 1995; 83: 122–7CrossRef
51.
Zurück zum Zitat Heda GD, Tanwani M, Marino CR. The delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 2001; 280: 166–74 Heda GD, Tanwani M, Marino CR. The delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 2001; 280: 166–74
52.
Zurück zum Zitat Rubenstein RC, Egan ME, Zeitlin PL. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing DF508-CFTR. J Clin Invest 1997; 100: 2457–65PubMedCrossRef Rubenstein RC, Egan ME, Zeitlin PL. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing DF508-CFTR. J Clin Invest 1997; 100: 2457–65PubMedCrossRef
53.
Zurück zum Zitat Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DF508-CFTR. Am J Physiol 2000; 278: 259–67 Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DF508-CFTR. Am J Physiol 2000; 278: 259–67
54.
Zurück zum Zitat Choo-Kang LR, Zeitlin PL. Induction of HSP70 promotes deltaF508 CFTR trafficking. Am J Physiol 2001; 281: L58–68 Choo-Kang LR, Zeitlin PL. Induction of HSP70 promotes deltaF508 CFTR trafficking. Am J Physiol 2001; 281: L58–68
55.
Zurück zum Zitat Egan ME, Glockner-Pagel J, Ambrose CA, et al. Calciumpump inhibitors induce functional surface expression of DF508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 2002; 8: 485–92PubMedCrossRef Egan ME, Glockner-Pagel J, Ambrose CA, et al. Calciumpump inhibitors induce functional surface expression of DF508-CFTR protein in cystic fibrosis epithelial cells. Nat Med 2002; 8: 485–92PubMedCrossRef
56.
Zurück zum Zitat Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004; 304: 600–2PubMedCrossRef Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004; 304: 600–2PubMedCrossRef
57.
Zurück zum Zitat Norez C, Antigny F, Becq F, et al. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic 2006; 7: 562–73PubMedCrossRef Norez C, Antigny F, Becq F, et al. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic 2006; 7: 562–73PubMedCrossRef
58.
Zurück zum Zitat Dormer RL, Harris CM, Clark Z, et al. Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax 2005; 60: 55–9PubMedCrossRef Dormer RL, Harris CM, Clark Z, et al. Sildenafil (Viagra) corrects DeltaF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax 2005; 60: 55–9PubMedCrossRef
59.
Zurück zum Zitat Lubamba B, Lecourt H, Lebacq J, et al. Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. Am J Respir Crit Care Med 2008; 177: 506–15PubMedCrossRef Lubamba B, Lecourt H, Lebacq J, et al. Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. Am J Respir Crit Care Med 2008; 177: 506–15PubMedCrossRef
60.
Zurück zum Zitat Poschet JF, Timmins GS, Taylor-Cousar JL, et al. Pharmacological modulation of cGMP levels by phosphodiesterase 5 inhibitors as a therapeutic strategy for treatment of respiratory pathology in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293: 712–9CrossRef Poschet JF, Timmins GS, Taylor-Cousar JL, et al. Pharmacological modulation of cGMP levels by phosphodiesterase 5 inhibitors as a therapeutic strategy for treatment of respiratory pathology in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293: 712–9CrossRef
61.
Zurück zum Zitat Robert R, Carlile GW, Pavel C, et al. Structural analogue of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharm 2008; 73: 478–89 Robert R, Carlile GW, Pavel C, et al. Structural analogue of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharm 2008; 73: 478–89
62.
Zurück zum Zitat Becq F, Zegarra-Moran O. Specific pharmacological therapy in cystic fibrosis. Workpackage 5: novel therapies [online]. Available from URL: http://www.eurocarecf.eu/ [Accessed 2009 May 25] Becq F, Zegarra-Moran O. Specific pharmacological therapy in cystic fibrosis. Workpackage 5: novel therapies [online]. Available from URL: http://​www.​eurocarecf.​eu/​ [Accessed 2009 May 25]
63.
Zurück zum Zitat Van Goor F, Straley KS, Cao D, et al. Rescue of DF508 CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 2006; 290: 1117–30CrossRef Van Goor F, Straley KS, Cao D, et al. Rescue of DF508 CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 2006; 290: 1117–30CrossRef
65.
Zurück zum Zitat Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective DF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005; 115: 2564–71PubMedCrossRef Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective DF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005; 115: 2564–71PubMedCrossRef
68.
Zurück zum Zitat Dwek RA, Butters TD, Platt FM, et al. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov 2002; 1: 65–75PubMedCrossRef Dwek RA, Butters TD, Platt FM, et al. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov 2002; 1: 65–75PubMedCrossRef
69.
Zurück zum Zitat Ficicioglu C. Review of miglustat for clinical management in Gaucher disease type I. Ther Clin Risk Manag 2008; 4: 425–31PubMed Ficicioglu C. Review of miglustat for clinical management in Gaucher disease type I. Ther Clin Risk Manag 2008; 4: 425–31PubMed
70.
Zurück zum Zitat Norez C, Noel S, Wilke M, et al. Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the α-glucosidase inhibitor miglustat. FEBS Lett 2006; 580: 2081–6PubMedCrossRef Norez C, Noel S, Wilke M, et al. Rescue of functional delF508-CFTR channels in cystic fibrosis epithelial cells by the α-glucosidase inhibitor miglustat. FEBS Lett 2006; 580: 2081–6PubMedCrossRef
71.
Zurück zum Zitat Noel S, Wilke M, Bot A, et al. Parallel improvement of sodium and chloride transport defects by miglustat in cystic fibrosis epithelial cells. J Pharmacol Exp Ther 2008; 325: 1016–23PubMedCrossRef Noel S, Wilke M, Bot A, et al. Parallel improvement of sodium and chloride transport defects by miglustat in cystic fibrosis epithelial cells. J Pharmacol Exp Ther 2008; 325: 1016–23PubMedCrossRef
72.
Zurück zum Zitat Norez C, Antigny F, Noel S, et al. A cystic fibrosis respiratory epithelial cell chronically treated by miglustat acquires a non-cystic fibrosis-like phenotype. Am J Respir Cell Mol Biol 2009; 41: 217–25PubMedCrossRef Norez C, Antigny F, Noel S, et al. A cystic fibrosis respiratory epithelial cell chronically treated by miglustat acquires a non-cystic fibrosis-like phenotype. Am J Respir Cell Mol Biol 2009; 41: 217–25PubMedCrossRef
73.
Zurück zum Zitat Lubamba B, Lebacq J, Lebecque P, et al. Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice. Am J Respir Crit Care Med 2009; 179(11): 1022–8PubMedCrossRef Lubamba B, Lebacq J, Lebecque P, et al. Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice. Am J Respir Crit Care Med 2009; 179(11): 1022–8PubMedCrossRef
74.
Zurück zum Zitat Antigny F, Norez C, Becq F, et al. Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell Calcium 2008; 43: 175–83PubMedCrossRef Antigny F, Norez C, Becq F, et al. Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR. Cell Calcium 2008; 43: 175–83PubMedCrossRef
75.
Zurück zum Zitat Dechecchi MC, Nicolis E, Norez C, et al. Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 2008; 7: 555–65PubMedCrossRef Dechecchi MC, Nicolis E, Norez C, et al. Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 2008; 7: 555–65PubMedCrossRef
76.
Zurück zum Zitat Pedemonte N, Sondo E, Caputo A, et al. Dual activity of aminoarylthiazoles on trafficking and gating defects caused by CF mutations [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 311 Pedemonte N, Sondo E, Caputo A, et al. Dual activity of aminoarylthiazoles on trafficking and gating defects caused by CF mutations [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 311
77.
Zurück zum Zitat Norez C, Bilan F, Kitzis A, et al. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622. J Pharmacol Exp Ther 2008; 325: 89–99PubMedCrossRef Norez C, Bilan F, Kitzis A, et al. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622. J Pharmacol Exp Ther 2008; 325: 89–99PubMedCrossRef
78.
Zurück zum Zitat Becq F, Mettey Y, Gray MA, et al. Development of substituted benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem 1999; 274: 27415–25PubMedCrossRef Becq F, Mettey Y, Gray MA, et al. Development of substituted benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem 1999; 274: 27415–25PubMedCrossRef
79.
Zurück zum Zitat Marivingt-Mounir C, Norez C, Derand R, et al. Synthesis, SAR, crystal structure, and biological evaluation of benzoquinoliziniums as activators of wild-type and mutant cystic fibrosis transmembrane conductance regulator channels. J Med Chem 2004; 47: 962–72PubMedCrossRef Marivingt-Mounir C, Norez C, Derand R, et al. Synthesis, SAR, crystal structure, and biological evaluation of benzoquinoliziniums as activators of wild-type and mutant cystic fibrosis transmembrane conductance regulator channels. J Med Chem 2004; 47: 962–72PubMedCrossRef
80.
Zurück zum Zitat Dormer RL, Dérand R, McNeilly C, et al. Correction of delF508-CFTR activity with benzoquinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. J Cell Sci 2001; 114: 4073–81PubMed Dormer RL, Dérand R, McNeilly C, et al. Correction of delF508-CFTR activity with benzoquinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. J Cell Sci 2001; 114: 4073–81PubMed
81.
Zurück zum Zitat Dérand R, Bulteau-Pignoux L, Mettey Y, et al. Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation. Am J Physiol Cell Physiol 2001; 281: 1657–66 Dérand R, Bulteau-Pignoux L, Mettey Y, et al. Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation. Am J Physiol Cell Physiol 2001; 281: 1657–66
82.
Zurück zum Zitat Stratford FLL, Pereira MMC, Becq F, et al. Benzo(c)quinolizinium drugs inhibit degradation of DF508-CFTR cytoplasmic domain. Biochem Bioph Res Com 2003; 300: 524–30CrossRef Stratford FLL, Pereira MMC, Becq F, et al. Benzo(c)quinolizinium drugs inhibit degradation of DF508-CFTR cytoplasmic domain. Biochem Bioph Res Com 2003; 300: 524–30CrossRef
83.
Zurück zum Zitat Young A, Gentzsch M, Abban CY, et al. Dynasore inhibits removal of wild-type and DeltaF508 CFTR from the plasma membrane. Biochem J 2009 Jul 15; 421(3): 377–85PubMedCrossRef Young A, Gentzsch M, Abban CY, et al. Dynasore inhibits removal of wild-type and DeltaF508 CFTR from the plasma membrane. Biochem J 2009 Jul 15; 421(3): 377–85PubMedCrossRef
84.
Zurück zum Zitat Loo MA, Jensen TJ, Cui L, et al. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 1998; 17: 6879–87PubMedCrossRef Loo MA, Jensen TJ, Cui L, et al. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 1998; 17: 6879–87PubMedCrossRef
85.
Zurück zum Zitat Vij N, Fang S, Zeitlin PL. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 2006; 281: 17369–78PubMedCrossRef Vij N, Fang S, Zeitlin PL. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 2006; 281: 17369–78PubMedCrossRef
87.
Zurück zum Zitat Jiang C, Fang SL, Xiao YF, et al. Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin. Am J Physiol 1998; 275: C171–8PubMed Jiang C, Fang SL, Xiao YF, et al. Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin. Am J Physiol 1998; 275: C171–8PubMed
88.
Zurück zum Zitat Norez C, Pasetto M, Dechecchi MC, et al. Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl− channel functions. Am J Physiol Lung Cell Mol Physiol 2008; 295: L336–47PubMedCrossRef Norez C, Pasetto M, Dechecchi MC, et al. Chemical conjugation of DeltaF508-CFTR corrector deoxyspergualin to transporter human serum albumin enhances its ability to rescue Cl channel functions. Am J Physiol Lung Cell Mol Physiol 2008; 295: L336–47PubMedCrossRef
89.
Zurück zum Zitat Pedemonte N, Sonawane ND, Taddei A, et al. Phenylglycine and sulfonamide correctors of defective DF508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol Pharmacol 2005; 67: 1797–807PubMedCrossRef Pedemonte N, Sonawane ND, Taddei A, et al. Phenylglycine and sulfonamide correctors of defective DF508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol Pharmacol 2005; 67: 1797–807PubMedCrossRef
90.
Zurück zum Zitat Sammelson RE, Ma T, Galietta LJV, et al. 3-(2-benzyphenyl) isoxazoles and isoxazolines: synthesis and evaluation as CFTR activators. Bio Med Chem Lett 2003; 13: 2509–12CrossRef Sammelson RE, Ma T, Galietta LJV, et al. 3-(2-benzyphenyl) isoxazoles and isoxazolines: synthesis and evaluation as CFTR activators. Bio Med Chem Lett 2003; 13: 2509–12CrossRef
91.
Zurück zum Zitat Ma T, Vetrivel L, Yang H, et al. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 2002; 277: 37235–41PubMedCrossRef Ma T, Vetrivel L, Yang H, et al. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 2002; 277: 37235–41PubMedCrossRef
92.
Zurück zum Zitat Accurso FJ, Rowe SM, Durie PR, et al. Interim results of Phase 2A study of VX770 to evaluate safety, pharmacokinetics, and biomarkers of CFTR activity in cystic fibrosis subjects with G551D [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 295 Accurso FJ, Rowe SM, Durie PR, et al. Interim results of Phase 2A study of VX770 to evaluate safety, pharmacokinetics, and biomarkers of CFTR activity in cystic fibrosis subjects with G551D [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 295
93.
Zurück zum Zitat Noël S, Faveau C, Norez C, et al. Discovery of pyrrolo[2,3-b]pyrazines derivatives as submicromolar affinity activators of wild-type, G551D and F508del CFTR chloride channels. J Pharmacol Exp Ther 2006; 319: 349–59PubMedCrossRef Noël S, Faveau C, Norez C, et al. Discovery of pyrrolo[2,3-b]pyrazines derivatives as submicromolar affinity activators of wild-type, G551D and F508del CFTR chloride channels. J Pharmacol Exp Ther 2006; 319: 349–59PubMedCrossRef
94.
Zurück zum Zitat Hofmann T, Senier I, Bittner P, et al. Aerosolized amiloride: dose effect on nasal bioelectric properties, pharmacokinetics, and effect on sputum expectoration in patients with cystic fibrosis. J Aerosol Med 1997; 10: 147–58PubMedCrossRef Hofmann T, Senier I, Bittner P, et al. Aerosolized amiloride: dose effect on nasal bioelectric properties, pharmacokinetics, and effect on sputum expectoration in patients with cystic fibrosis. J Aerosol Med 1997; 10: 147–58PubMedCrossRef
95.
Zurück zum Zitat Hofmann T, Stutts MJ, Ziersch A, et al. Effects of topically delivered benzamil and amiloride on nasal potential difference in cystic fibrosis. Am J Respir Crit Care Med 1998; 157: 1844–9PubMed Hofmann T, Stutts MJ, Ziersch A, et al. Effects of topically delivered benzamil and amiloride on nasal potential difference in cystic fibrosis. Am J Respir Crit Care Med 1998; 157: 1844–9PubMed
96.
Zurück zum Zitat Graham A, Hasani A, Alton EW, et al. No added benefit from nebulized amiloride in patients with cystic fibrosis. Eur Respir J 1993; 6: 1243–8PubMed Graham A, Hasani A, Alton EW, et al. No added benefit from nebulized amiloride in patients with cystic fibrosis. Eur Respir J 1993; 6: 1243–8PubMed
97.
Zurück zum Zitat Pons G, Marchand MC, D’Athis P, et al. French multicenter randomised double-blind placebo-controlled trial on nebulized amiloride in cystic fibrosis patients. Pediatr Pulmonol 2000; 30: 25–31PubMedCrossRef Pons G, Marchand MC, D’Athis P, et al. French multicenter randomised double-blind placebo-controlled trial on nebulized amiloride in cystic fibrosis patients. Pediatr Pulmonol 2000; 30: 25–31PubMedCrossRef
98.
Zurück zum Zitat Rodgers HC, Knox AJ. The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis. Eur J Respir 1999; 14: 693–6CrossRef Rodgers HC, Knox AJ. The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis. Eur J Respir 1999; 14: 693–6CrossRef
100.
Zurück zum Zitat Hirsh AJ, Zhang J, Zamurs A, et al. Pharmacological properties of N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N′-4-[4-(2,3-dihydroxypropoxy) phenyl]butyl-guanidine methanesulfonate (552-02), a novel epithelial sodium channel blocker with potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther 2008; 325: 77–88PubMedCrossRef Hirsh AJ, Zhang J, Zamurs A, et al. Pharmacological properties of N-(3,5-diamino-6-chloropyrazine-2-carbonyl)-N′-4-[4-(2,3-dihydroxypropoxy) phenyl]butyl-guanidine methanesulfonate (552-02), a novel epithelial sodium channel blocker with potential clinical efficacy for cystic fibrosis lung disease. J Pharmacol Exp Ther 2008; 325: 77–88PubMedCrossRef
101.
Zurück zum Zitat Planès C, Caughey GH. Regulation of the epithelial Na+ channel by peptidases. Curr Top Dev Biol 2007; 78: 23–46PubMedCrossRef Planès C, Caughey GH. Regulation of the epithelial Na+ channel by peptidases. Curr Top Dev Biol 2007; 78: 23–46PubMedCrossRef
102.
Zurück zum Zitat Bridges RJ, Newton BB, Pilewski JM, et al. Na+ transport in normal and CF human bronchial epithelial cells is inhibited by BAY 39–9437. Am J Physiol 2001; 281: 16–23 Bridges RJ, Newton BB, Pilewski JM, et al. Na+ transport in normal and CF human bronchial epithelial cells is inhibited by BAY 39–9437. Am J Physiol 2001; 281: 16–23
104.
Zurück zum Zitat Rowe SM, Reeves G, Young H, et al. Correction of sodium transport with nasal administration of the prostasin inhibitor QUA145 in CF subjects [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 295 Rowe SM, Reeves G, Young H, et al. Correction of sodium transport with nasal administration of the prostasin inhibitor QUA145 in CF subjects [abstract]. Pediatr Pulmonol 2008; Suppl. 31: 295
105.
Zurück zum Zitat Rubenstein RC, Zeitlin PL. A pilot clinical trial of oral sodium 4-phenylbutyrate (biphenyl) in DF508-homozygous cystic fibrosis patients. Am J Respir Crit Care Med 1998; 157: 484–90PubMed Rubenstein RC, Zeitlin PL. A pilot clinical trial of oral sodium 4-phenylbutyrate (biphenyl) in DF508-homozygous cystic fibrosis patients. Am J Respir Crit Care Med 1998; 157: 484–90PubMed
106.
Zurück zum Zitat Hwang TH, Schwiebert EM, Guggino WB. Apical and basolateral ATP stimulates tracheal epithelial chloride secretion via multiple purinergic receptors. Am J Physiol 1996; 270: C1611–23PubMed Hwang TH, Schwiebert EM, Guggino WB. Apical and basolateral ATP stimulates tracheal epithelial chloride secretion via multiple purinergic receptors. Am J Physiol 1996; 270: C1611–23PubMed
107.
Zurück zum Zitat Kellerman D, Mospan AR, Engens J, et al. Denofosol: a review of studies with inhaled P2Y2 agonists that led to phase 3. Pulm Pharm Ther 2008; 21: 600–7CrossRef Kellerman D, Mospan AR, Engens J, et al. Denofosol: a review of studies with inhaled P2Y2 agonists that led to phase 3. Pulm Pharm Ther 2008; 21: 600–7CrossRef
110.
Zurück zum Zitat Rudolf MT, Dinkel C, Traynor-Kaplan AE, et al. Antagonists of myo-Inositol 3,4,5,6-tetrakisphophate allow repeated epithelial chloride secretion. Bioorg Med Chem 2003; 11: 3315–29PubMedCrossRef Rudolf MT, Dinkel C, Traynor-Kaplan AE, et al. Antagonists of myo-Inositol 3,4,5,6-tetrakisphophate allow repeated epithelial chloride secretion. Bioorg Med Chem 2003; 11: 3315–29PubMedCrossRef
111.
Zurück zum Zitat Moody M, Pennington C, Schultz C, et al. Inositol polyphosphate derivatives inhibits Na+ transport and improves fluid dynamics in cystic fibrosis airway epithelia. Am J Physiol 2005; 289: C512–20CrossRef Moody M, Pennington C, Schultz C, et al. Inositol polyphosphate derivatives inhibits Na+ transport and improves fluid dynamics in cystic fibrosis airway epithelia. Am J Physiol 2005; 289: C512–20CrossRef
112.
Zurück zum Zitat Traynor-Kaplan AE, Moody M, Nur M, et al. INO-4995 therapeutic efficacy is enhanced with repeat dosing in cystic fibrosis knockout mice and human epithelia. Am J Respir Cell Mol Biol 2010; 42(1): 105–12PubMedCrossRef Traynor-Kaplan AE, Moody M, Nur M, et al. INO-4995 therapeutic efficacy is enhanced with repeat dosing in cystic fibrosis knockout mice and human epithelia. Am J Respir Cell Mol Biol 2010; 42(1): 105–12PubMedCrossRef
113.
Zurück zum Zitat Grasemann H, Stehling F, Brunar H, et al. Inhalation of Moli1901 in patients with cystic fibrosis. Chest 2007; 131: 1461–6PubMedCrossRef Grasemann H, Stehling F, Brunar H, et al. Inhalation of Moli1901 in patients with cystic fibrosis. Chest 2007; 131: 1461–6PubMedCrossRef
114.
Zurück zum Zitat Cloutier MM, Guernsey L, Sha’afi RI. Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 1993; 10: 107–18PubMedCrossRef Cloutier MM, Guernsey L, Sha’afi RI. Duramycin increases intracellular calcium in airway epithelium. Membr Biochem 1993; 10: 107–18PubMedCrossRef
115.
Zurück zum Zitat Zeitlin PL, Boyle MP, Guggino WB, et al. A phase I trial of intranasal Moli1901 for cystic fibrosis. Chest 2004; 125: 143–9PubMedCrossRef Zeitlin PL, Boyle MP, Guggino WB, et al. A phase I trial of intranasal Moli1901 for cystic fibrosis. Chest 2004; 125: 143–9PubMedCrossRef
117.
Zurück zum Zitat Norez C, Vandebrouck C, Antigny F, et al. Guanabenz, an alpha2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells. Eur J Pharmacol 2008; 592: 33–40PubMedCrossRef Norez C, Vandebrouck C, Antigny F, et al. Guanabenz, an alpha2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells. Eur J Pharmacol 2008; 592: 33–40PubMedCrossRef
118.
Zurück zum Zitat Holmes B, Brogden RN, Hell RC, et al. Guanabenz: a review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs 1983; 26: 212–29PubMedCrossRef Holmes B, Brogden RN, Hell RC, et al. Guanabenz: a review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs 1983; 26: 212–29PubMedCrossRef
119.
Zurück zum Zitat Perez A, Issler AC, Cotton CU, et al. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 2007; 292: 383–95CrossRef Perez A, Issler AC, Cotton CU, et al. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 2007; 292: 383–95CrossRef
120.
Zurück zum Zitat Dechecchi MC, Nicolis E, Bezzerri V, et al. MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells. Am J Respir Cell Mol Biol 2007; 36: 615–24PubMedCrossRef Dechecchi MC, Nicolis E, Bezzerri V, et al. MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells. Am J Respir Cell Mol Biol 2007; 36: 615–24PubMedCrossRef
121.
Zurück zum Zitat Talebian L, Coutermarsh B, Channon JY, et al. Corr4a and VRT325 do not reduce the inflammatory response to P. Aeruginosa in human cystic fibrosis airway epithelial cells. Cell Physiol Biochem 2009; 23: 199–204PubMedCrossRef Talebian L, Coutermarsh B, Channon JY, et al. Corr4a and VRT325 do not reduce the inflammatory response to P. Aeruginosa in human cystic fibrosis airway epithelial cells. Cell Physiol Biochem 2009; 23: 199–204PubMedCrossRef
122.
Zurück zum Zitat Eidelman O, Guay-Broder C, Van Galen PJM, et al. A1 adenosine-receptor antagonists activate chloride efflux from cystic fibrosis cells. Proc Natl Acad Sci U S A 1992; 89: 5562–6PubMedCrossRef Eidelman O, Guay-Broder C, Van Galen PJM, et al. A1 adenosine-receptor antagonists activate chloride efflux from cystic fibrosis cells. Proc Natl Acad Sci U S A 1992; 89: 5562–6PubMedCrossRef
123.
Zurück zum Zitat Srivastava M, Eidelman O, Zhang J, et al. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc Natl Acad Sci U S A 2004; 101: 7693–8PubMedCrossRef Srivastava M, Eidelman O, Zhang J, et al. Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proc Natl Acad Sci U S A 2004; 101: 7693–8PubMedCrossRef
124.
Zurück zum Zitat Bernard C. Introduction à l’étude de la médecine exprimentale. Paris: JB Baillière et Fils, 1865 Bernard C. Introduction à l’étude de la médecine exprimentale. Paris: JB Baillière et Fils, 1865
125.
Zurück zum Zitat Schultz SG. A century of (epithelial) transport physiology: from vitalism to molecular cloning. Am J Physiol 1998; 274: C12–23 Schultz SG. A century of (epithelial) transport physiology: from vitalism to molecular cloning. Am J Physiol 1998; 274: C12–23
Metadaten
Titel
Cystic Fibrosis Transmembrane Conductance Regulator Modulators for Personalized Drug Treatment of Cystic Fibrosis
Progress to Date
verfasst von
Professor Frédéric Becq
Publikationsdatum
01.02.2010
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 3/2010
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/11316160-000000000-00000

Weitere Artikel der Ausgabe 3/2010

Drugs 3/2010 Zur Ausgabe

Adis Drug Evaluation

Trabectedin