Skip to main content
Erschienen in: Lasers in Medical Science 1/2024

01.12.2024 | Original Article

Deep learning automatically assesses 2-µm laser-induced skin damage OCT images

verfasst von: Changke Wang, Qiong Ma, Yu Wei, Qi Liu, Yuqing Wang, Chenliang Xu, Caihui Li, Qingyu Cai, Haiyang Sun, Xiaoan Tang, Hongxiang Kang

Erschienen in: Lasers in Medical Science | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

The present study proposed a noninvasive, automated, in vivo assessment method based on optical coherence tomography (OCT) and deep learning techniques to qualitatively and quantitatively analyze the biological effects of 2-µm laser-induced skin damage at different irradiation doses. Different doses of 2-µm laser irradiation established a mouse skin damage model, after which the skin-damaged tissues were imaged non-invasively in vivo using OCT. The acquired images were preprocessed to construct the dataset required for deep learning. The deep learning models used were U-Net, DeepLabV3+, PSP-Net, and HR-Net, and the trained models were used to segment the damage images and further quantify the damage volume of mouse skin under different irradiation doses. The comparison of the qualitative and quantitative results of the four network models showed that HR-Net had the best performance, the highest agreement between the segmentation results and real values, and the smallest error in the quantitative assessment of the damage volume. Based on HR-Net to segment the damage image and quantify the damage volume, the irradiation doses 5.41, 9.55, 13.05, 20.85, 32.71, 52.92, 76.71, and 97.24 J/cm² corresponded to a damage volume of 4.58, 12.56, 16.74, 20.88, 24.52, 30.75, 34.13, and 37.32 mm³. The damage volume increased in a radiation dose-dependent manner.
Literatur
1.
Zurück zum Zitat Arash PM, Milad GM, Farnoosh S, Yeganeh K, Sogand S, Maryam A et al (2023) A systematic review and meta-analysis of efficacy, safety, and satisfaction rates of laser combination treatments vs laser monotherapy in skin rejuvenation resurfacing. Lasers Med Sci 38(1):228–530CrossRef Arash PM, Milad GM, Farnoosh S, Yeganeh K, Sogand S, Maryam A et al (2023) A systematic review and meta-analysis of efficacy, safety, and satisfaction rates of laser combination treatments vs laser monotherapy in skin rejuvenation resurfacing. Lasers Med Sci 38(1):228–530CrossRef
2.
Zurück zum Zitat Chen WR, Bartels KE, Liu H, Nordquist RE (2006) Laser-photothermal effect on skin tissue – damage and recovery. J X-Ray Sci Technol 14(3):207–215 Chen WR, Bartels KE, Liu H, Nordquist RE (2006) Laser-photothermal effect on skin tissue – damage and recovery. J X-Ray Sci Technol 14(3):207–215
3.
Zurück zum Zitat Michael PD, Nicholas JG, Clifton DC, Semih SK, Benjamin AR, Robert JT (2021) Computational modeling and damage threshold prediction of continuous-wave and multiple-pulse porcine skin laser exposures at 1070nm. J Laser Appl 33(2):022023CrossRef Michael PD, Nicholas JG, Clifton DC, Semih SK, Benjamin AR, Robert JT (2021) Computational modeling and damage threshold prediction of continuous-wave and multiple-pulse porcine skin laser exposures at 1070nm. J Laser Appl 33(2):022023CrossRef
4.
Zurück zum Zitat Jabczynski JK, Zendzian W, Kwiatkowski J, Jelínková H, Šulc J (2010) Actively Q-switched, diode pumped thulium laser. Laser Phys Lett 4(12):863–867CrossRef Jabczynski JK, Zendzian W, Kwiatkowski J, Jelínková H, Šulc J (2010) Actively Q-switched, diode pumped thulium laser. Laser Phys Lett 4(12):863–867CrossRef
5.
Zurück zum Zitat Batay LE, Khodasevich IA, Khodasevich MA, Gorbunova NB, Manina EY (2016) Signs of the biological effect of ~ 2 µm low-intensity laser radiation in raman and absorption spectra of blood. J Appl Spectrosc 83(4):1–7CrossRef Batay LE, Khodasevich IA, Khodasevich MA, Gorbunova NB, Manina EY (2016) Signs of the biological effect of ~ 2 µm low-intensity laser radiation in raman and absorption spectra of blood. J Appl Spectrosc 83(4):1–7CrossRef
6.
Zurück zum Zitat Tsvetkov VB (2021) Ex-vivo exposure on biological tissues in the 2-µm spectral range with an all-fiber continuous-wave holmium laser. Photonics 9(20):20 Tsvetkov VB (2021) Ex-vivo exposure on biological tissues in the 2-µm spectral range with an all-fiber continuous-wave holmium laser. Photonics 9(20):20
7.
Zurück zum Zitat Zhao C, Wang K, Men C, Xin Y, Xia H (2022) The efficacy and safety of transurethral 2-µm laser bladder lesion mucosal en bloc resection in the treatment of cystitis glandularis. Front Med 9:840378CrossRef Zhao C, Wang K, Men C, Xin Y, Xia H (2022) The efficacy and safety of transurethral 2-µm laser bladder lesion mucosal en bloc resection in the treatment of cystitis glandularis. Front Med 9:840378CrossRef
8.
Zurück zum Zitat Artemov SA, Belyaev AN, Bushukina OS, Khrushchalina SA, Kostin SV, Lyapin AA et al (2022) Morphological changes of veins and perivenous tissues during endovenous laser coagulation using 2-µm laser radiation and various types of optical fibers. J Vasc Surg Venous Lymphat Disord 10(3):749–757CrossRefPubMed Artemov SA, Belyaev AN, Bushukina OS, Khrushchalina SA, Kostin SV, Lyapin AA et al (2022) Morphological changes of veins and perivenous tissues during endovenous laser coagulation using 2-µm laser radiation and various types of optical fibers. J Vasc Surg Venous Lymphat Disord 10(3):749–757CrossRefPubMed
9.
Zurück zum Zitat Filip T, Jan A, Pavel P, Ondřej S, Ali AJ et al (2020) Active optical fibers and components for Fiber lasers emitting in the 2-µm spectral range. Materials 13(22):E5177CrossRef Filip T, Jan A, Pavel P, Ondřej S, Ali AJ et al (2020) Active optical fibers and components for Fiber lasers emitting in the 2-µm spectral range. Materials 13(22):E5177CrossRef
10.
Zurück zum Zitat Artemov SA, Belyaev AN, Bushukina OS, Khrushchalina SA, Kostin SV et al (2022) Morphological changes of veins and perivenous tissues during endovenous laser coagulation using 2-µm laser radiation and various types of optical fibers. JVS-VL 10(3):749–757PubMed Artemov SA, Belyaev AN, Bushukina OS, Khrushchalina SA, Kostin SV et al (2022) Morphological changes of veins and perivenous tissues during endovenous laser coagulation using 2-µm laser radiation and various types of optical fibers. JVS-VL 10(3):749–757PubMed
11.
Zurück zum Zitat Uwe P, Miriam Z, Jens MB, Thorsten B, Hans JC, Michael D et al (2022) S2k guideline: laser therapy of the skin. J Dtsch Dermatol Ges 20(9):1248–1267CrossRef Uwe P, Miriam Z, Jens MB, Thorsten B, Hans JC, Michael D et al (2022) S2k guideline: laser therapy of the skin. J Dtsch Dermatol Ges 20(9):1248–1267CrossRef
12.
Zurück zum Zitat Stella XC, Judy C, Jacqueline W, Jeffrey SD, Hye JC (2022) Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol Surg 48(4):441–448CrossRef Stella XC, Judy C, Jacqueline W, Jeffrey SD, Hye JC (2022) Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol Surg 48(4):441–448CrossRef
13.
Zurück zum Zitat Ma Q, Fan Y, Luo Z, Cui Y, Kang H (2020) Quantitative analysis of collagen and capillaries of 3.8-µm laser-induced cutaneous thermal injury and wound healing. Lasers Med Sci 36(7):1469–1477CrossRefPubMed Ma Q, Fan Y, Luo Z, Cui Y, Kang H (2020) Quantitative analysis of collagen and capillaries of 3.8-µm laser-induced cutaneous thermal injury and wound healing. Lasers Med Sci 36(7):1469–1477CrossRefPubMed
14.
Zurück zum Zitat Sang X, Li D, Chen B (2020) Improving imaging depth by dynamic laser speckle imaging and topical optical clearing for in vivo blood flow monitoring. Lasers Med Sci 36(2):387–399CrossRefPubMed Sang X, Li D, Chen B (2020) Improving imaging depth by dynamic laser speckle imaging and topical optical clearing for in vivo blood flow monitoring. Lasers Med Sci 36(2):387–399CrossRefPubMed
15.
Zurück zum Zitat Wido H, Wiendelt S, Gooitzen MD, Christiaan B (2019) Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt 24(8):080901 Wido H, Wiendelt S, Gooitzen MD, Christiaan B (2019) Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt 24(8):080901
16.
17.
Zurück zum Zitat Tadrous PJ (2021) Methods for imaging the structure and function of living tissues and cells: optical coherence tomography. J Pathol 191(2):115–119CrossRef Tadrous PJ (2021) Methods for imaging the structure and function of living tissues and cells: optical coherence tomography. J Pathol 191(2):115–119CrossRef
18.
Zurück zum Zitat Pan L, Chen X (2021) Retinal OCT image registration: methods and applications. IEEE Rev Biomed Eng 16(99):307–318 Pan L, Chen X (2021) Retinal OCT image registration: methods and applications. IEEE Rev Biomed Eng 16(99):307–318
19.
Zurück zum Zitat Fan Y, Ma Q, Wang J, Wang W, Kang H (2021) Evaluation of a 3.8-µm laser-induced skin injury and their repair with in vivo OCT imaging and noninvasive monitoring. Lasers Med Sci 37(2):1299–1309CrossRefPubMed Fan Y, Ma Q, Wang J, Wang W, Kang H (2021) Evaluation of a 3.8-µm laser-induced skin injury and their repair with in vivo OCT imaging and noninvasive monitoring. Lasers Med Sci 37(2):1299–1309CrossRefPubMed
20.
Zurück zum Zitat Gong P, Shaghayegh E, Karl AH, Alexandra M, Suzanne R, Fiona MW (2016) In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography. Biomed Opt Express 7(12):4886–4898CrossRefPubMedPubMedCentral Gong P, Shaghayegh E, Karl AH, Alexandra M, Suzanne R, Fiona MW (2016) In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography. Biomed Opt Express 7(12):4886–4898CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Rammah Y, Gaurav G, Nabhan Y, Manju K (2022) A holistic overview of deep learning approach in medical imaging. Multimed Syst 28(3):881–914CrossRef Rammah Y, Gaurav G, Nabhan Y, Manju K (2022) A holistic overview of deep learning approach in medical imaging. Multimed Syst 28(3):881–914CrossRef
22.
Zurück zum Zitat Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK (2023) Medical image segmentation using deep learning: a survey. IET Image Process 53(18):20891–20916 Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK (2023) Medical image segmentation using deep learning: a survey. IET Image Process 53(18):20891–20916
23.
Zurück zum Zitat Yang H, Wang Z, Liu X, Li C, Xin J, Wang Z (2022) Deep learning in medical image super resolution: a review. IET Image Process 16(5):1243–1267CrossRef Yang H, Wang Z, Liu X, Li C, Xin J, Wang Z (2022) Deep learning in medical image super resolution: a review. IET Image Process 16(5):1243–1267CrossRef
24.
Zurück zum Zitat Fischman S, Pérez AJ, Tognetti L, Di NA, Suppa M, Cinotti E (2022) Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning. Sci Rep 12(1):481CrossRefPubMedPubMedCentral Fischman S, Pérez AJ, Tognetti L, Di NA, Suppa M, Cinotti E (2022) Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning. Sci Rep 12(1):481CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Luo Y, Wang X, Yu X, Jin R, Liu L (2021) Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification. J Biophotonics 14(6):e202100015CrossRefPubMed Luo Y, Wang X, Yu X, Jin R, Liu L (2021) Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification. J Biophotonics 14(6):e202100015CrossRefPubMed
26.
Zurück zum Zitat Martin P, Hannes S, Kornelia S, Bhavapriya JS, Christine H, Leopold S (2021) Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images. Ann N Y Acad Sci 1497(1):15–26CrossRef Martin P, Hannes S, Kornelia S, Bhavapriya JS, Christine H, Leopold S (2021) Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images. Ann N Y Acad Sci 1497(1):15–26CrossRef
27.
Zurück zum Zitat Timo K, Christine D, Malte C, Michael E, Gereon H, Nunciada S (2019) Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomed Opt Express 10(7):3484–3496CrossRef Timo K, Christine D, Malte C, Michael E, Gereon H, Nunciada S (2019) Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks. Biomed Opt Express 10(7):3484–3496CrossRef
28.
Zurück zum Zitat Breugnot J, Rouaud TP, Gilardeau S, Rondeau D, Bordes S, Aymard E et al (2022) Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images. Skin Res Technol 29(1):1–8 Breugnot J, Rouaud TP, Gilardeau S, Rondeau D, Bordes S, Aymard E et al (2022) Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images. Skin Res Technol 29(1):1–8
29.
Zurück zum Zitat Chou H, Huang S, Tjiu J, Chen H (2021) Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning. Comput Med Imaging Graph 87 Chou H, Huang S, Tjiu J, Chen H (2021) Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning. Comput Med Imaging Graph 87
30.
Zurück zum Zitat Chen I, Wang Y, Chang C, Wu Y, Lu C, Shen J (2021) Computer-aided detection (cade) system with optical coherent tomography for melanin morphology quantification in melasma patients. Diagnostics 11(8):1498CrossRefPubMedPubMedCentral Chen I, Wang Y, Chang C, Wu Y, Lu C, Shen J (2021) Computer-aided detection (cade) system with optical coherent tomography for melanin morphology quantification in melasma patients. Diagnostics 11(8):1498CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Ji Y, Yang S, Zhou K, Rocliffe HR, Pellicoro A, Cash JL (2022) Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography. J Biomed Opt 27(1):015002CrossRefPubMedPubMedCentral Ji Y, Yang S, Zhou K, Rocliffe HR, Pellicoro A, Cash JL (2022) Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography. J Biomed Opt 27(1):015002CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Gao T, Liu S, Gao E, Wang A, Tang X, Fan Y (2022) Automatic segmentation of laser-induced injury oct images based on a deep neural network model. Int J Mol Sci 23(19):11079CrossRefPubMedPubMedCentral Gao T, Liu S, Gao E, Wang A, Tang X, Fan Y (2022) Automatic segmentation of laser-induced injury oct images based on a deep neural network model. Int J Mol Sci 23(19):11079CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Bai Y, Li J, Shi L, Jiang Q, Yan B, Wang Z (2023) DME-DeepLabV3+: a lightweight model for diabetic macular edema extraction based on DeepLabV3 + architecture. Front Med 10:1150295CrossRef Bai Y, Li J, Shi L, Jiang Q, Yan B, Wang Z (2023) DME-DeepLabV3+: a lightweight model for diabetic macular edema extraction based on DeepLabV3 + architecture. Front Med 10:1150295CrossRef
35.
Zurück zum Zitat Wang S, Li Z, Liao L, Zhang C, Zhao J, Sang L et al (2023) DPAM-PSPNet: Ultrasonic image segmentation of thyroid nodule based on dual-path attention mechanism. Phys Med Biol 68(16):165002CrossRef Wang S, Li Z, Liao L, Zhang C, Zhao J, Sang L et al (2023) DPAM-PSPNet: Ultrasonic image segmentation of thyroid nodule based on dual-path attention mechanism. Phys Med Biol 68(16):165002CrossRef
36.
Zurück zum Zitat Zhu L, Zhu H, Yang S, Wang P, Huang H (2023) Pulmonary nodule detection based on hierarchical-Split HRNet and feature pyramid network with atrous convolution. Biomed Signal Process Control 85:105024CrossRef Zhu L, Zhu H, Yang S, Wang P, Huang H (2023) Pulmonary nodule detection based on hierarchical-Split HRNet and feature pyramid network with atrous convolution. Biomed Signal Process Control 85:105024CrossRef
Metadaten
Titel
Deep learning automatically assesses 2-µm laser-induced skin damage OCT images
verfasst von
Changke Wang
Qiong Ma
Yu Wei
Qi Liu
Yuqing Wang
Chenliang Xu
Caihui Li
Qingyu Cai
Haiyang Sun
Xiaoan Tang
Hongxiang Kang
Publikationsdatum
01.12.2024
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2024
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-024-04053-8

Weitere Artikel der Ausgabe 1/2024

Lasers in Medical Science 1/2024 Zur Ausgabe