Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 2/2021

11.01.2021 | Original Article

Development of GATE Monte Carlo Code for Simulation and Dosimetry of New I-125 Seeds in Eye Plaque Brachytherapy

verfasst von: Payvand Taherparvar, Zeinab Fardi

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Dose distributions are calculated by Monte Carlo (MC) simulations for two low-energy models 125I brachytherapy source—IrSeed-125 and IsoAid Advantage (model IAI-125A)—loaded in the 14-mm standardized plaque of the COMS during treatment of choroid melanoma.

Methods

In this study, at first, the radial dose function in water around 125I brachytherapy sources was calculated based on the recommendations of the Task Group No. 43 American Association of Physicists in Medicine (TG-43U1 APPM) using by GATE code. Then, brachytherapy dose distribution of a new model of the human eye was investigated for a 14-mm COMS eye plaque loaded with these sources with GATE Monte Carlo simulation.

Results

Results show that there are good agreements between simulation results of these sources and reporting measurements and simulations. Dosimetry results in the designed eye phantom for two types of iodine seeds show that the ratios of average dose of tumor to sclera, vitreous, and retina for IrSeed (IsoAid) source are 3.7 (3.7), 6.2 (6.1), and 6.3 (6.3), respectively, which represents the dose saving to healthy tissues. The maximum percentage differences between DVH curve of IsoAid and IrSeed seeds was about 8%.

Conclusions

Our simulation results show that although new model of the 125I brachytherapy source having a slightly larger dimension than IAI-125A, it can be used for eye melanoma treatment because the COMS eye plaque loaded with IrSeed-125 could produce similar results to the IsoAid seeds, which is applicable for clinical plaque brachytherapy for uveal melanoma.
Literatur
1.
Zurück zum Zitat Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology. 2003;110:956–61.CrossRef Singh AD, Topham A. Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology. 2003;110:956–61.CrossRef
2.
Zurück zum Zitat Shields CL, Shields JA. Ocular melanoma: relatively rare but requiring respect. Clin Dermatol. 2009;27:122–33.CrossRef Shields CL, Shields JA. Ocular melanoma: relatively rare but requiring respect. Clin Dermatol. 2009;27:122–33.CrossRef
3.
Zurück zum Zitat Damato B. Developments in the management of uveal melanoma. Clin Exp Ophthalmol. 2004;32:639–47.CrossRef Damato B. Developments in the management of uveal melanoma. Clin Exp Ophthalmol. 2004;32:639–47.CrossRef
4.
Zurück zum Zitat Rajabi R, Taherparvar P. Monte Carlo dosimetry for a new 32P brachytherapy source using FLUKA code. J Contemp Brachyther. 2019;11:76–90. Rajabi R, Taherparvar P. Monte Carlo dosimetry for a new 32P brachytherapy source using FLUKA code. J Contemp Brachyther. 2019;11:76–90.
5.
Zurück zum Zitat Meigooni AS, Yoe-Sein MM, Al-Otoom AY, Sowards KT. Determination of the dosimetric characteristics of InterSource125 iodine brachytherapy source. Appl Radiat Isot. 2002;56:589–99.CrossRef Meigooni AS, Yoe-Sein MM, Al-Otoom AY, Sowards KT. Determination of the dosimetric characteristics of InterSource125 iodine brachytherapy source. Appl Radiat Isot. 2002;56:589–99.CrossRef
6.
Zurück zum Zitat Rivard MJ. Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 brachytherapy sources. Med Phys. 2009;36:486–91.CrossRef Rivard MJ. Monte Carlo radiation dose simulations and dosimetric comparison of the model 6711 and 9011 brachytherapy sources. Med Phys. 2009;36:486–91.CrossRef
7.
Zurück zum Zitat Rodríguez EA, Alcón EP, Rodriguez ML, Gutt F, de Almeida E. Dosimetric parameters estimation using PENELOPE Monte-Carlo simulation code: model 6711 a 125I brachytherapy seed. Appl Radiat Isot. 2005;63:41–8.CrossRef Rodríguez EA, Alcón EP, Rodriguez ML, Gutt F, de Almeida E. Dosimetric parameters estimation using PENELOPE Monte-Carlo simulation code: model 6711 a 125I brachytherapy seed. Appl Radiat Isot. 2005;63:41–8.CrossRef
8.
Zurück zum Zitat Meigooni A. Recent developments in brachytherapy source dosimetry. Iran J Radiat Res. 2004;2:97–105. Meigooni A. Recent developments in brachytherapy source dosimetry. Iran J Radiat Res. 2004;2:97–105.
9.
Zurück zum Zitat Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnology, science and applications. 2010;3:159–70. Zhang L, Chen H, Wang L, Liu T, Yeh J, Lu G, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnology, science and applications. 2010;3:159–70.
10.
Zurück zum Zitat Mostafa L, Rachid K, Ahmed SM. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform. Physica Medica. 2016;32:1007–18.CrossRef Mostafa L, Rachid K, Ahmed SM. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform. Physica Medica. 2016;32:1007–18.CrossRef
11.
Zurück zum Zitat Chiu-Tsao ST, Astrahan MA, Finger PT, Followill DS, Meigooni AS, Melhus CS, et al. Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys. 2012;39:6161–84.CrossRef Chiu-Tsao ST, Astrahan MA, Finger PT, Followill DS, Meigooni AS, Melhus CS, et al. Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. Med Phys. 2012;39:6161–84.CrossRef
12.
Zurück zum Zitat Nag S, Quivey JM, Earle JD, Followill D, Fontanesi J, Finger PT, et al. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. International Journal of Radiation Oncology* Biology* Physics. 2003;56:544–55. Nag S, Quivey JM, Earle JD, Followill D, Fontanesi J, Finger PT, et al. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. International Journal of Radiation Oncology* Biology* Physics. 2003;56:544–55.
13.
Zurück zum Zitat Krintz A, Hanson WF, Ibbott GS, Followill DS. Verification of plaque simulator dose distribution using radiochromic film. Med Phys. 2002;29:1220–1. Krintz A, Hanson WF, Ibbott GS, Followill DS. Verification of plaque simulator dose distribution using radiochromic film. Med Phys. 2002;29:1220–1.
14.
Zurück zum Zitat Thomson RM, Rogers DW. Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy with various seed models. Brachytherapy. 2009;8:130–1.CrossRef Thomson RM, Rogers DW. Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy with various seed models. Brachytherapy. 2009;8:130–1.CrossRef
15.
Zurück zum Zitat John D, Earle M, Fine SL, Hawkins BS, Straatsma M, Ocular C. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. Arch Ophthalmol. 2001;119:969–82.CrossRef John D, Earle M, Fine SL, Hawkins BS, Straatsma M, Ocular C. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. Arch Ophthalmol. 2001;119:969–82.CrossRef
16.
Zurück zum Zitat Rivard MJ, Chiu-Tsao ST, Finger PT, Meigooni AS, Melhus CS, Mourtada F, et al. Comparison of dose calculation methods for brachytherapy of intraocular tumors. Med Phys. 2011;38:306–16.CrossRef Rivard MJ, Chiu-Tsao ST, Finger PT, Meigooni AS, Melhus CS, Mourtada F, et al. Comparison of dose calculation methods for brachytherapy of intraocular tumors. Med Phys. 2011;38:306–16.CrossRef
17.
Zurück zum Zitat Ebrahimi-Khankook A, Vejdani-Noghreiyan A. Dosimetric comparison between realistic ocular model and other models for COMS plaque brachytherapy with 103 Pd, 131 Cs, and 125 I radioisotopes. Radiat Environ Biophys. 2018;57:265–75.CrossRef Ebrahimi-Khankook A, Vejdani-Noghreiyan A. Dosimetric comparison between realistic ocular model and other models for COMS plaque brachytherapy with 103 Pd, 131 Cs, and 125 I radioisotopes. Radiat Environ Biophys. 2018;57:265–75.CrossRef
18.
Zurück zum Zitat Knutsen S, Hafslund R, Monge OR, Valen H, Muren LP, Rekstad BL, et al. Dosimetric verification of a dedicated 3D treatment planning system for episcleral plaque therapy. International Journal of Radiation Oncology* Biology* Physics. 2001;51:1159–66. Knutsen S, Hafslund R, Monge OR, Valen H, Muren LP, Rekstad BL, et al. Dosimetric verification of a dedicated 3D treatment planning system for episcleral plaque therapy. International Journal of Radiation Oncology* Biology* Physics. 2001;51:1159–66.
19.
Zurück zum Zitat Yoriyaz H, Sanchez A, Dos Santos A. A new human eye model for ophthalmic brachytherapy dosimetry. Radiat Prot Dosim. 2005;115:316–9.CrossRef Yoriyaz H, Sanchez A, Dos Santos A. A new human eye model for ophthalmic brachytherapy dosimetry. Radiat Prot Dosim. 2005;115:316–9.CrossRef
20.
Zurück zum Zitat Thomson R, Taylor R, Rogers D. Monte Carlo dosimetry for 125I and 103Pd eye plaque. Med Phys.2008;35:5530–43. Thomson R, Taylor R, Rogers D. Monte Carlo dosimetry for 125I and 103Pd eye plaque. Med Phys.2008;35:5530–43.
21.
Zurück zum Zitat Thomson RM, Furutani KM, Pulido JS, Stafford SL, Rogers D. Modified COMS plaques for 125I and 103Pd iris melanoma brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2010;78:1261–9. Thomson RM, Furutani KM, Pulido JS, Stafford SL, Rogers D. Modified COMS plaques for 125I and 103Pd iris melanoma brachytherapy. International Journal of Radiation Oncology* Biology* Physics. 2010;78:1261–9.
22.
Zurück zum Zitat Zhang H, Martin D, Chiu-Tsao S-T, Meigooni A, Thomadsen BR. A comprehensive dosimetric comparison between 131Cs and 125I brachytherapy sources for COMS eye plaque implant. Brachytherapy. 2010;9:362–72.CrossRef Zhang H, Martin D, Chiu-Tsao S-T, Meigooni A, Thomadsen BR. A comprehensive dosimetric comparison between 131Cs and 125I brachytherapy sources for COMS eye plaque implant. Brachytherapy. 2010;9:362–72.CrossRef
23.
Zurück zum Zitat Lesperance M, Martinov M, Thomson R. Monte Carlo dosimetry for 103Pd, 125I, and 131Cs ocular brachytherapy with various plaque models using an eye phantom. Med Phys. 2014;41:031706.CrossRef Lesperance M, Martinov M, Thomson R. Monte Carlo dosimetry for 103Pd, 125I, and 131Cs ocular brachytherapy with various plaque models using an eye phantom. Med Phys. 2014;41:031706.CrossRef
24.
Zurück zum Zitat Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Saiful Huq M, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31:633–74.CrossRef Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Saiful Huq M, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31:633–74.CrossRef
25.
Zurück zum Zitat Scott JA. Photon, electron, proton and neutron interaction data for body tissues ICRU report 46. International Commission on Radiation Units and Measurements. J Nucl Med. 1993;34:171. Scott JA. Photon, electron, proton and neutron interaction data for body tissues ICRU report 46. International Commission on Radiation Units and Measurements. J Nucl Med. 1993;34:171.
26.
Zurück zum Zitat Cantor L, Rapuano C, Cioffi G. Fundamentals and Principles of Ophthalmology. 2016-2017 American Academy of Ophthalmology-Basic and Clinical Science Course, Section 2016;2:302–26. Cantor L, Rapuano C, Cioffi G. Fundamentals and Principles of Ophthalmology. 2016-2017 American Academy of Ophthalmology-Basic and Clinical Science Course, Section 2016;2:302–26.
27.
Zurück zum Zitat Meigooni AS, Hayes JL, Zhang H, Sowards K. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ brachytherapy source. Med Phys. 2002;29:2152–8.CrossRef Meigooni AS, Hayes JL, Zhang H, Sowards K. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE™ brachytherapy source. Med Phys. 2002;29:2152–8.CrossRef
28.
Zurück zum Zitat Taylor R, Rogers D. An EGSnrc Monte Carlo-calculated database of TG-43 parameters. Med Phys. 2008;35:4228–41.CrossRef Taylor R, Rogers D. An EGSnrc Monte Carlo-calculated database of TG-43 parameters. Med Phys. 2008;35:4228–41.CrossRef
29.
Zurück zum Zitat Lohrabian V, Sheibani S, Aghamiri MR, Ghozati B, Pourbeigi H, Baghani HR. Determination of dosimetric characteristics of irseed 125i brachytherapy source. Iran J Med Phys. 2013;10:109–17. Lohrabian V, Sheibani S, Aghamiri MR, Ghozati B, Pourbeigi H, Baghani HR. Determination of dosimetric characteristics of irseed 125i brachytherapy source. Iran J Med Phys. 2013;10:109–17.
31.
Zurück zum Zitat Rivard MJ, Granero D, Perez-Calatayud J, Ballester F. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air. Med Phys. 2010;37:869–76.CrossRef Rivard MJ, Granero D, Perez-Calatayud J, Ballester F. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air. Med Phys. 2010;37:869–76.CrossRef
32.
Zurück zum Zitat Taherparvar P, Sadremomtaz A. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australas Phys Eng Sci Med. 2018;41:31–9.CrossRef Taherparvar P, Sadremomtaz A. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australas Phys Eng Sci Med. 2018;41:31–9.CrossRef
33.
Zurück zum Zitat Thiam C, Breton V, Donnarieix D, Habib B, Maigne L. Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys Med Biol. 2008;53:3039–55. Thiam C, Breton V, Donnarieix D, Habib B, Maigne L. Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys Med Biol. 2008;53:3039–55.
34.
Zurück zum Zitat Aryal P, Molloy JA, Rivard MJ. A modern Monte Carlo investigation of the TG-43 dosimetry parameters for an 125I seed already having AAPM consensus data. Med Phys. 2014;41:021702.CrossRef Aryal P, Molloy JA, Rivard MJ. A modern Monte Carlo investigation of the TG-43 dosimetry parameters for an 125I seed already having AAPM consensus data. Med Phys. 2014;41:021702.CrossRef
35.
Zurück zum Zitat Baghani H, Lohrabian V, Aghamiri MR, Robatjazi M. Monte Carlo determination of dosimetric parameters of a new 125I brachytherapy source according to AAPM TG-43 (U1) protocol. Arch Iran Med. 2016;19:186–91. Baghani H, Lohrabian V, Aghamiri MR, Robatjazi M. Monte Carlo determination of dosimetric parameters of a new 125I brachytherapy source according to AAPM TG-43 (U1) protocol. Arch Iran Med. 2016;19:186–91.
36.
Zurück zum Zitat Solberg TD, DeMarco JJ, Hugo G, Wallace RE. Dosimetric parameters of three new solid core I-125 brachytherapy sources. J Appl Clin Med Phys. 2002;3:119–34.CrossRef Solberg TD, DeMarco JJ, Hugo G, Wallace RE. Dosimetric parameters of three new solid core I-125 brachytherapy sources. J Appl Clin Med Phys. 2002;3:119–34.CrossRef
Metadaten
Titel
Development of GATE Monte Carlo Code for Simulation and Dosimetry of New I-125 Seeds in Eye Plaque Brachytherapy
verfasst von
Payvand Taherparvar
Zeinab Fardi
Publikationsdatum
11.01.2021
Verlag
Springer Singapore
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 2/2021
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-020-00680-5

Weitere Artikel der Ausgabe 2/2021

Nuclear Medicine and Molecular Imaging 2/2021 Zur Ausgabe