Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2021

30.10.2020 | Sudden Cardiac Death

Divergent Electrophysiological Effects of Loperamide and Naloxone in a Sensitive Whole-Heart Model

verfasst von: Julian Wolfes, Christian Ellermann, Sophie Burde, Patrick Leitz, Nils Bögeholz, Kevin Willy, Michael Fehr, Florian Reinke, Lars Eckardt, Gerrit Frommeyer

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Several case reports suggest QT prolongation leading to ventricular arrhythmias with fatal outcome after intoxication with the μ-opioid receptor agonist and anti-diarrheal agent loperamide. The number of cases of loperamide misuse are growing due to its potential stimulating effects. Loperamide intoxications can be treated by naloxone. However, previous reports described a further QT prolongation associated with naloxone administration. Therefore, the aim of this study was to investigate the effects of loperamide and naloxone on the cardiac electrophysiology in a sensitive whole-heart model. Twenty-six hearts of New Zealand White rabbits were retrogradely perfused in a modified Langendorff apparatus. Monophasic action potentials were recorded by endo- and epicardially positioned catheters. Hearts were stimulated at different cycle lengths, thereby obtaining action potential duration at 90% of repolarization (APD90) and QT intervals. Programmed ventricular stimulation was used to assess ventricular vulnerability. Fourteen hearts were perfused with ascending concentrations of loperamide (0.2 μM, 0.35 μM, and 0.5 μM) after obtaining baseline data. Another 12 hearts were treated with naloxone (0.1 μM, 0.5 μM, 2 μM). Loperamide led to a significant increase in QT interval, APD90, and ventricular tachycardia (VT) episodes. In contrast, naloxone led to a decrease in QT interval and APD90. Accordingly, the number of VT episodes was unaltered. To the best of our knowledge, this is the first experimental study that investigated the effects of loperamide and naloxone in a whole-heart model. Loperamide led to a significant increase in action potential duration and QT interval. Simultaneously, the number of ventricular tachycardias was significantly increased. In contrast, naloxone led to a shortening of the action potential duration without altering arrhythmia susceptibility.
Literatur
1.
Zurück zum Zitat Daniulaityte, R., Carlson, R., Falck, R., Cameron, D., Perera, S., Chen, L., et al. (2013). “I just wanted to tell you that loperamide WILL WORK”: A web-based study of extra-medical use of loperamide. Drug and Alcohol Dependence, 130(1–3), 241–244.CrossRef Daniulaityte, R., Carlson, R., Falck, R., Cameron, D., Perera, S., Chen, L., et al. (2013). “I just wanted to tell you that loperamide WILL WORK”: A web-based study of extra-medical use of loperamide. Drug and Alcohol Dependence, 130(1–3), 241–244.CrossRef
2.
Zurück zum Zitat Teigeler, T., Stahura, H., Alimohammad, R., Kalahasty, G., Koneru, J. N., Ellenbogen, M., et al. (2019). Electrocardiographic changes in loperamide toxicity: Case report and review of literature. Journal of Cardiovascular Electrophysiology, 30(11), 2618–2626.CrossRef Teigeler, T., Stahura, H., Alimohammad, R., Kalahasty, G., Koneru, J. N., Ellenbogen, M., et al. (2019). Electrocardiographic changes in loperamide toxicity: Case report and review of literature. Journal of Cardiovascular Electrophysiology, 30(11), 2618–2626.CrossRef
3.
Zurück zum Zitat Enakpene, E. O., Riaz, I. B., Shirazi, F. M., Raz, Y., & Indik, J. H. (2015). The long QT teaser: Loperamide abuse. American Journal of Medicine, 128(10), 1083–1086.CrossRef Enakpene, E. O., Riaz, I. B., Shirazi, F. M., Raz, Y., & Indik, J. H. (2015). The long QT teaser: Loperamide abuse. American Journal of Medicine, 128(10), 1083–1086.CrossRef
4.
Zurück zum Zitat Vaughn, P., Solik, M. M., Bagga, S., & Padanilam, B. J. (2016). Electrocardiographic abnormalities, malignant ventricular arrhythmias, and cardiomyopathy associated with loperamide abuse. Journal of Cardiovascular Electrophysiology, 27(10), 1230–1233.CrossRef Vaughn, P., Solik, M. M., Bagga, S., & Padanilam, B. J. (2016). Electrocardiographic abnormalities, malignant ventricular arrhythmias, and cardiomyopathy associated with loperamide abuse. Journal of Cardiovascular Electrophysiology, 27(10), 1230–1233.CrossRef
5.
Zurück zum Zitat Sahu, K. K., El Meligy, A., Mishra, A. K., & Goyal, S. (2020). A tale of twists: Loperamide-induced torsades de pointes and ventricular tachycardia storm. BMJ Case Reports, 13(2), e232823.CrossRef Sahu, K. K., El Meligy, A., Mishra, A. K., & Goyal, S. (2020). A tale of twists: Loperamide-induced torsades de pointes and ventricular tachycardia storm. BMJ Case Reports, 13(2), e232823.CrossRef
6.
Zurück zum Zitat Kang, J., Compton, D. R., Vaz, R. J., & Rampe, D. (2016). Proarrhythmic mechanisms of the common anti-diarrheal medication loperamide: Revelations from the opioid abuse epidemic. Naunyn Schmiedebergs Arch Pharmacol., 389(10), 1133–1137.CrossRef Kang, J., Compton, D. R., Vaz, R. J., & Rampe, D. (2016). Proarrhythmic mechanisms of the common anti-diarrheal medication loperamide: Revelations from the opioid abuse epidemic. Naunyn Schmiedebergs Arch Pharmacol., 389(10), 1133–1137.CrossRef
7.
Zurück zum Zitat Harmer, A. R., Valentin, J. P., & Pollard, C. E. (2011). On the relationship between block of the cardiac Na(+) channel and drug-induced prolongation of the QRS complex. British Journal of Pharmacology, 164(2), 260–273.CrossRef Harmer, A. R., Valentin, J. P., & Pollard, C. E. (2011). On the relationship between block of the cardiac Na(+) channel and drug-induced prolongation of the QRS complex. British Journal of Pharmacology, 164(2), 260–273.CrossRef
8.
Zurück zum Zitat Church, J., Fletcher, E. J., Abdel-Hamid, K., & MacDonald, J. F. (1994). Loperamide blocks high-voltage-activated calcium channels and N-methyl-d-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Molecular Pharmacology, 45(4), 747–757.PubMed Church, J., Fletcher, E. J., Abdel-Hamid, K., & MacDonald, J. F. (1994). Loperamide blocks high-voltage-activated calcium channels and N-methyl-d-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurons. Molecular Pharmacology, 45(4), 747–757.PubMed
9.
Zurück zum Zitat Hagiwara, K., Nakagawasai, O., Murata, A., Yamadera, F., Miyoshi, I., Tan-No, K., et al. (2003). Analgesic action of loperamide, an opioid agonist, and its blocking action on voltage-dependent Ca2+ channels. Neuroscience Research, 46(4), 493–497.CrossRef Hagiwara, K., Nakagawasai, O., Murata, A., Yamadera, F., Miyoshi, I., Tan-No, K., et al. (2003). Analgesic action of loperamide, an opioid agonist, and its blocking action on voltage-dependent Ca2+ channels. Neuroscience Research, 46(4), 493–497.CrossRef
10.
Zurück zum Zitat Pugsley, M. K., Hayes, E. S., Wang, W. Q., & Walker, M. J. (2015). Ventricular arrhythmia incidence in the rat is reduced by naloxone. Pharmacological Research, 97, 64–69.CrossRef Pugsley, M. K., Hayes, E. S., Wang, W. Q., & Walker, M. J. (2015). Ventricular arrhythmia incidence in the rat is reduced by naloxone. Pharmacological Research, 97, 64–69.CrossRef
11.
Zurück zum Zitat Tschirhart, J. N., Li, W., Guo, J., & Zhang, S. (2019). Blockade of the Human Ether A-Go-Go-Related Gene (hERG) potassium channel by fentanyl. Molecular Pharmacology, 95(4), 386–397.CrossRef Tschirhart, J. N., Li, W., Guo, J., & Zhang, S. (2019). Blockade of the Human Ether A-Go-Go-Related Gene (hERG) potassium channel by fentanyl. Molecular Pharmacology, 95(4), 386–397.CrossRef
12.
Zurück zum Zitat Oldroyd, K. G., Hicks, M. N., & Cobbe, S. M. (1993). Influence of hyperkalaemia and ischaemia on non-receptor-mediated cardiac electrophysiological effects of naloxone. Cardiovascular Research, 27(2), 296–303.CrossRef Oldroyd, K. G., Hicks, M. N., & Cobbe, S. M. (1993). Influence of hyperkalaemia and ischaemia on non-receptor-mediated cardiac electrophysiological effects of naloxone. Cardiovascular Research, 27(2), 296–303.CrossRef
13.
Zurück zum Zitat Drolet, B., Simard, C., & Roden, D. M. (2004). Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents. Circulation, 109(1), 26–29.CrossRef Drolet, B., Simard, C., & Roden, D. M. (2004). Unusual effects of a QT-prolonging drug, arsenic trioxide, on cardiac potassium currents. Circulation, 109(1), 26–29.CrossRef
14.
Zurück zum Zitat Frommeyer, G., Ellermann, C., Dechering, D. G., Kochhauser, S., Bogeholz, N., Guner, F., et al. (2016). Ranolazine and vernakalant prevent ventricular arrhythmias in an experimental whole-heart model of short QT syndrome. Journal of Cardiovascular Electrophysiology, 27(10), 1214–1219.CrossRef Frommeyer, G., Ellermann, C., Dechering, D. G., Kochhauser, S., Bogeholz, N., Guner, F., et al. (2016). Ranolazine and vernakalant prevent ventricular arrhythmias in an experimental whole-heart model of short QT syndrome. Journal of Cardiovascular Electrophysiology, 27(10), 1214–1219.CrossRef
15.
Zurück zum Zitat Okusanya, A., & Li, X. (2018). Loperamide abuse and dependence: Clinical features and treatment considerations. Journal of Addiction Medicine, 12(6), 496–498.CrossRef Okusanya, A., & Li, X. (2018). Loperamide abuse and dependence: Clinical features and treatment considerations. Journal of Addiction Medicine, 12(6), 496–498.CrossRef
16.
Zurück zum Zitat Eggleston, W., Clark, K. H., & Marraffa, J. M. (2017). Loperamide abuse associated with cardiac dysrhythmia and death. Annals of Emergency Medicine, 69(1), 83–86.CrossRef Eggleston, W., Clark, K. H., & Marraffa, J. M. (2017). Loperamide abuse associated with cardiac dysrhythmia and death. Annals of Emergency Medicine, 69(1), 83–86.CrossRef
17.
Zurück zum Zitat Wightman, R. S., Hoffman, R. S., Howland, M. A., Rice, B., Biary, R., & Lugassy, D. (2016). Not your regular high: Cardiac dysrhythmias caused by loperamide. Clinical Toxicology (Philadelphia, PA), 54(5), 454–458.CrossRef Wightman, R. S., Hoffman, R. S., Howland, M. A., Rice, B., Biary, R., & Lugassy, D. (2016). Not your regular high: Cardiac dysrhythmias caused by loperamide. Clinical Toxicology (Philadelphia, PA), 54(5), 454–458.CrossRef
18.
Zurück zum Zitat McDonald, R., Lorch, U., Woodward, J., Bosse, B., Dooner, H., Mundin, G., et al. (2018). Pharmacokinetics of concentrated naloxone nasal spray for opioid overdose reversal: Phase I healthy volunteer study. Addiction, 113(3), 484–493.CrossRef McDonald, R., Lorch, U., Woodward, J., Bosse, B., Dooner, H., Mundin, G., et al. (2018). Pharmacokinetics of concentrated naloxone nasal spray for opioid overdose reversal: Phase I healthy volunteer study. Addiction, 113(3), 484–493.CrossRef
19.
Zurück zum Zitat Ellermann, C., Wolfes, J., Puckhaber, D., Bogeholz, N., Leitz, P., Lange, P. S., et al. (2019). Digitalis promotes ventricular arrhythmias in flecainide- and ranolazine-pretreated hearts. Cardiovascular Toxicology, 19(3), 237–243.CrossRef Ellermann, C., Wolfes, J., Puckhaber, D., Bogeholz, N., Leitz, P., Lange, P. S., et al. (2019). Digitalis promotes ventricular arrhythmias in flecainide- and ranolazine-pretreated hearts. Cardiovascular Toxicology, 19(3), 237–243.CrossRef
20.
Zurück zum Zitat Osadchii, O. E. (2017). Effects of Na+ channel blockers on the restitution of refractory period, conduction time, and excitation wavelength in perfused guinea-pig heart. PLoS ONE, 12(2), e0172683.CrossRef Osadchii, O. E. (2017). Effects of Na+ channel blockers on the restitution of refractory period, conduction time, and excitation wavelength in perfused guinea-pig heart. PLoS ONE, 12(2), e0172683.CrossRef
21.
Zurück zum Zitat Frommeyer, G., Garthmann, J., Ellermann, C., Dechering, D. G., Kochhauser, S., Reinke, F., et al. (2018). Broad antiarrhythmic effect of mexiletine in different arrhythmia models. Europace, 20(8), 1375–1381.CrossRef Frommeyer, G., Garthmann, J., Ellermann, C., Dechering, D. G., Kochhauser, S., Reinke, F., et al. (2018). Broad antiarrhythmic effect of mexiletine in different arrhythmia models. Europace, 20(8), 1375–1381.CrossRef
22.
Zurück zum Zitat Valentin, J. P., Hoffmann, P., De Clerck, F., Hammond, T. G., & Hondeghem, L. (2004). Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. Journal of Pharmacological and Toxicological Methods, 49(3), 171–181.CrossRef Valentin, J. P., Hoffmann, P., De Clerck, F., Hammond, T. G., & Hondeghem, L. (2004). Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. Journal of Pharmacological and Toxicological Methods, 49(3), 171–181.CrossRef
23.
Zurück zum Zitat Marraffa, J. M., Holland, M. G., Sullivan, R. W., Morgan, B. W., Oakes, J. A., Wiegand, T. J., et al. (2014). Cardiac conduction disturbance after loperamide abuse. Clinical Toxicology (Philadelphia, PA), 52(9), 952–957.CrossRef Marraffa, J. M., Holland, M. G., Sullivan, R. W., Morgan, B. W., Oakes, J. A., Wiegand, T. J., et al. (2014). Cardiac conduction disturbance after loperamide abuse. Clinical Toxicology (Philadelphia, PA), 52(9), 952–957.CrossRef
Metadaten
Titel
Divergent Electrophysiological Effects of Loperamide and Naloxone in a Sensitive Whole-Heart Model
verfasst von
Julian Wolfes
Christian Ellermann
Sophie Burde
Patrick Leitz
Nils Bögeholz
Kevin Willy
Michael Fehr
Florian Reinke
Lars Eckardt
Gerrit Frommeyer
Publikationsdatum
30.10.2020
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2021
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09616-z

Weitere Artikel der Ausgabe 3/2021

Cardiovascular Toxicology 3/2021 Zur Ausgabe