Skip to main content
Erschienen in: Archives of Virology 8/2011

01.08.2011 | Original Article

DNA genome of spontaneously occurring deletion mutants of herpes simplex virus type 1 lacking one copy of the inverted repeat sequences of the L component

verfasst von: Kenichi Umene, Yasuyuki Fukumaki

Erschienen in: Archives of Virology | Ausgabe 8/2011

Einloggen, um Zugang zu erhalten

Abstract

Three non-engineered, spontaneously occurring herpes simplex virus type 1 (HSV-1) mutants (GN52, GN82, and GN91) that have a deletion of approximately 10 kbp (including a part of the UL55 gene, the entire UL56 gene, and one copy of the inverted repeat sequences of the L component (RL)) and retain the a sequence were isolated. The yields of the mutants at 24 h post-adsorption in cultured cells were comparable to that of an HSV-1 isolate (GN28) without the deletion. Although the three mutants lost one copy of RL, the L component in replicative intermediates of the mutants inverted. DNA replicative intermediates of the three mutants were flanked by the L component, like those of GN28. The three mutants were generated through recombination involving regions around the authentic cleavage site in the a sequence, suggesting an important role of the a sequence in the diversification of herpesviruses.
Literatur
1.
Zurück zum Zitat Aguilera A, Rothstein R (2007) Molecular genetics of recombination. Springer, BerlinCrossRef Aguilera A, Rothstein R (2007) Molecular genetics of recombination. Springer, BerlinCrossRef
2.
Zurück zum Zitat Baines JD, Weller SK (2005) Cleavage and packaging of herpes simplex virus type 1 DNA. In: Catalano CE (ed) Viral genome packaging machines: genetics, structures, and mechanism. Landes Bioscience/Eurekah.com, Texas, pp 135–150 Baines JD, Weller SK (2005) Cleavage and packaging of herpes simplex virus type 1 DNA. In: Catalano CE (ed) Viral genome packaging machines: genetics, structures, and mechanism. Landes Bioscience/Eurekah.com, Texas, pp 135–150
3.
Zurück zum Zitat Bataille D, Epstein A (1994) Herpes simplex virus replicative concatemers contain L components in inverted orientation. Virology 203:384–388PubMedCrossRef Bataille D, Epstein A (1994) Herpes simplex virus replicative concatemers contain L components in inverted orientation. Virology 203:384–388PubMedCrossRef
4.
Zurück zum Zitat Bataille D, Epstein AL (1997) Equimolar generation of the four possible arrangements of adjacent L components in herpes simplex virus type 1 replicative intermediates. J Virol 71:7736–7743PubMed Bataille D, Epstein AL (1997) Equimolar generation of the four possible arrangements of adjacent L components in herpes simplex virus type 1 replicative intermediates. J Virol 71:7736–7743PubMed
5.
Zurück zum Zitat Bowden R, Sakaoka H, Donnelly P, Ward P (2004) High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. Infect Genet Evol 4:115–123PubMedCrossRef Bowden R, Sakaoka H, Donnelly P, Ward P (2004) High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. Infect Genet Evol 4:115–123PubMedCrossRef
6.
Zurück zum Zitat Bowden RJ, McGeoch DJ (2006) Evolution of herpes simplex viruses. In: Studahl M, Cinque P, Bergström T (eds) Herpes simplex viruses. Taylor & Francis Group, New York Bowden RJ, McGeoch DJ (2006) Evolution of herpes simplex viruses. In: Studahl M, Cinque P, Bergström T (eds) Herpes simplex viruses. Taylor & Francis Group, New York
7.
Zurück zum Zitat Brown SM, Harland J, Subak-Sharpe JH (1984) Isolation of restriction endonuclease site deletion mutants of herpes simplex virus. J Gen Virol 65:1053–1068PubMedCrossRef Brown SM, Harland J, Subak-Sharpe JH (1984) Isolation of restriction endonuclease site deletion mutants of herpes simplex virus. J Gen Virol 65:1053–1068PubMedCrossRef
8.
Zurück zum Zitat Chou J, Roizman B (1985) Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 41:803–811PubMedCrossRef Chou J, Roizman B (1985) Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 41:803–811PubMedCrossRef
9.
Zurück zum Zitat Cuchet D, Potel C, Thomas J, Epstein AL (2007) HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 7:975–995PubMedCrossRef Cuchet D, Potel C, Thomas J, Epstein AL (2007) HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 7:975–995PubMedCrossRef
10.
Zurück zum Zitat Davison AJ, Marsden HS, Wilkie NM (1981) One functional copy of the long terminal repeat gene specifying the immediate-early polypeptide IE 110 suffices for a productive infection of human foetal lung cells by herpes simplex virus. J Gen Virol 55:179–191PubMedCrossRef Davison AJ, Marsden HS, Wilkie NM (1981) One functional copy of the long terminal repeat gene specifying the immediate-early polypeptide IE 110 suffices for a productive infection of human foetal lung cells by herpes simplex virus. J Gen Virol 55:179–191PubMedCrossRef
11.
Zurück zum Zitat Davison AJ, Wilkie NM (1981) Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J Gen Virol 55:315–331PubMedCrossRef Davison AJ, Wilkie NM (1981) Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J Gen Virol 55:315–331PubMedCrossRef
12.
Zurück zum Zitat Davison AJ, Wilkie NM (1983) Inversion of the two segments of the herpes simplex virus genome in intertypic recombinants. J Gen Virol 64:1–18PubMedCrossRef Davison AJ, Wilkie NM (1983) Inversion of the two segments of the herpes simplex virus genome in intertypic recombinants. J Gen Virol 64:1–18PubMedCrossRef
13.
Zurück zum Zitat Davison AJ, McGeoch DJ (1986) Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. J Gen Virol 67:597–611PubMedCrossRef Davison AJ, McGeoch DJ (1986) Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. J Gen Virol 67:597–611PubMedCrossRef
14.
Zurück zum Zitat Davison AJ, McGeoch DJ (1995) Herpesviridae. In: Gibbs A, Calisher CH, García-Arenal F (eds) Molecular basis of virus evolution. Cambridge University Press, Cambridge, pp 290–309CrossRef Davison AJ, McGeoch DJ (1995) Herpesviridae. In: Gibbs A, Calisher CH, García-Arenal F (eds) Molecular basis of virus evolution. Cambridge University Press, Cambridge, pp 290–309CrossRef
15.
Zurück zum Zitat Davison AJ, Eberle R, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2005) Herpesviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, pp 193–212 Davison AJ, Eberle R, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2005) Herpesviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, pp 193–212
16.
Zurück zum Zitat Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177PubMedCrossRef Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177PubMedCrossRef
17.
Zurück zum Zitat Harland J, Brown SM (1992) A HSV-1 variant (1720) generates four equimolar isomers despite a 9200-bp deletion from TRL and sequences between 9200 np and 97,000 np in inverted orientation being covalently bound to sequences 94,000–126,372 np. Virus Genes 6:291–299PubMedCrossRef Harland J, Brown SM (1992) A HSV-1 variant (1720) generates four equimolar isomers despite a 9200-bp deletion from TRL and sequences between 9200 np and 97,000 np in inverted orientation being covalently bound to sequences 94,000–126,372 np. Virus Genes 6:291–299PubMedCrossRef
18.
Zurück zum Zitat Inoue R, Moghaddam KA, Ranasinghe M, Saeki Y, Chiocca EA, Wade-Martins R (2004) Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. Gene Ther 11:1195–1204PubMedCrossRef Inoue R, Moghaddam KA, Ranasinghe M, Saeki Y, Chiocca EA, Wade-Martins R (2004) Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. Gene Ther 11:1195–1204PubMedCrossRef
19.
Zurück zum Zitat Kwong AD, Frenkel N (1984) Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences. J Virol 51:595–603PubMed Kwong AD, Frenkel N (1984) Herpes simplex virus amplicon: effect of size on replication of constructed defective genomes containing eucaryotic DNA sequences. J Virol 51:595–603PubMed
20.
Zurück zum Zitat Leach DRF (1996) Genetic recombination. Blackwell Science, Oxford Leach DRF (1996) Genetic recombination. Blackwell Science, Oxford
21.
Zurück zum Zitat Locker L, Frenkel N (1979) BamHI, KpnI, and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. J Virol 32:429–441PubMed Locker L, Frenkel N (1979) BamHI, KpnI, and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. J Virol 32:429–441PubMed
22.
Zurück zum Zitat Longnecker R, Roizman B (1986) Generation of an inverting herpes simplex virus 1 mutant lacking the L-S junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein E and the α47 gene. J Virol 58:583–591PubMed Longnecker R, Roizman B (1986) Generation of an inverting herpes simplex virus 1 mutant lacking the L-S junction a sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein E and the α47 gene. J Virol 58:583–591PubMed
23.
Zurück zum Zitat MacLean AR, Brown SM (1987) A herpes simplex virus type 1 variant which fails to synthesize immediate early polypeptide VmwIE63. J Gen Virol 68:1339–1350PubMedCrossRef MacLean AR, Brown SM (1987) A herpes simplex virus type 1 variant which fails to synthesize immediate early polypeptide VmwIE63. J Gen Virol 68:1339–1350PubMedCrossRef
24.
Zurück zum Zitat MacLean AR, Brown SM (1987) Deletion and duplication variants around the long repeats of herpes simplex virus type 1 strain 17. J Gen Virol 68:3019–3031PubMedCrossRef MacLean AR, Brown SM (1987) Deletion and duplication variants around the long repeats of herpes simplex virus type 1 strain 17. J Gen Virol 68:3019–3031PubMedCrossRef
25.
Zurück zum Zitat MacLean AR, Ul-Fareed M, Robertson L, Harland J, Brown SM (1991) Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 72:631–639PubMedCrossRef MacLean AR, Ul-Fareed M, Robertson L, Harland J, Brown SM (1991) Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 72:631–639PubMedCrossRef
26.
Zurück zum Zitat Martin DW, Weber PC (1996) The a sequence is dispensable for isomerization of the herpes simplex virus type 1 genome. J Virol 70:8801–8812PubMed Martin DW, Weber PC (1996) The a sequence is dispensable for isomerization of the herpes simplex virus type 1 genome. J Virol 70:8801–8812PubMed
27.
Zurück zum Zitat McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574PubMedCrossRef McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P (1988) The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574PubMedCrossRef
28.
Zurück zum Zitat McGeoch DJ, Davison AJ, Dolan A, Gatherer D, Sevilla-Reyers EE (2008) Molecular evolution of the herpesvirales. In: Domingo E, Parrish CR, Holland JJ (eds) Origin and evolution of viruses. Academic Press, London, pp 447–475CrossRef McGeoch DJ, Davison AJ, Dolan A, Gatherer D, Sevilla-Reyers EE (2008) Molecular evolution of the herpesvirales. In: Domingo E, Parrish CR, Holland JJ (eds) Origin and evolution of viruses. Academic Press, London, pp 447–475CrossRef
29.
Zurück zum Zitat Meignier B, Longnecker R, Roizman B (1988) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 158:602–614PubMedCrossRef Meignier B, Longnecker R, Roizman B (1988) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 158:602–614PubMedCrossRef
30.
Zurück zum Zitat Mocarski ES, Roizman B (1981) Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proc Natl Acad Sci USA 78:7047–7051PubMedCrossRef Mocarski ES, Roizman B (1981) Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proc Natl Acad Sci USA 78:7047–7051PubMedCrossRef
31.
Zurück zum Zitat Mocarski ES, Roizman B (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97PubMedCrossRef Mocarski ES, Roizman B (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97PubMedCrossRef
32.
Zurück zum Zitat Mocarski ES, Deiss LP, Frenkel N (1985) Nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. J Virol 55:140–146PubMed Mocarski ES, Deiss LP, Frenkel N (1985) Nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. J Virol 55:140–146PubMed
33.
Zurück zum Zitat Norberg P, Bergström T, Rekabdar E, Lindh M, Liljeqvist JA (2004) Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombination viruses. J Virol 78:10755–10764PubMedCrossRef Norberg P, Bergström T, Rekabdar E, Lindh M, Liljeqvist JA (2004) Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombination viruses. J Virol 78:10755–10764PubMedCrossRef
34.
Zurück zum Zitat Norberg P (2010) Divergence and genotyping of human α-herpesviruses: an overview. Infect Genet Evol 10:14–25PubMedCrossRef Norberg P (2010) Divergence and genotyping of human α-herpesviruses: an overview. Infect Genet Evol 10:14–25PubMedCrossRef
35.
Zurück zum Zitat Poffenberger KL, Tabares E, Roizman B (1983) Characterization of a viable, noninverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of components L and S. Proc Natl Acad Sci USA 80:2690–2694PubMedCrossRef Poffenberger KL, Tabares E, Roizman B (1983) Characterization of a viable, noninverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of components L and S. Proc Natl Acad Sci USA 80:2690–2694PubMedCrossRef
36.
Zurück zum Zitat Poffenberger KL, Roizman B (1985) A noninverting genome of a viable herpes simplex virus 1: presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J Virol 53:587–595PubMed Poffenberger KL, Roizman B (1985) A noninverting genome of a viable herpes simplex virus 1: presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J Virol 53:587–595PubMed
37.
Zurück zum Zitat Prichard MN, Kaiwar R, Jackman WT, Quenelle DC, Collins DJ, Kern ER, Kemble GM, Spaete RR (2005) Evaluation of AD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs. Vaccine 23:5424–5431PubMedCrossRef Prichard MN, Kaiwar R, Jackman WT, Quenelle DC, Collins DJ, Kern ER, Kemble GM, Spaete RR (2005) Evaluation of AD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs. Vaccine 23:5424–5431PubMedCrossRef
38.
Zurück zum Zitat Roizman B (1979) The structure and isomerization of herpes simplex virus genomes. Cell 16:481–494PubMedCrossRef Roizman B (1979) The structure and isomerization of herpes simplex virus genomes. Cell 16:481–494PubMedCrossRef
39.
Zurück zum Zitat Roizman B, Desrosiers RC, Fleckenstein B, Lopez C, Minson AC, Studdert MJ (1992) The family Herpesviridae: an update. Arch Virol 123:425–429CrossRef Roizman B, Desrosiers RC, Fleckenstein B, Lopez C, Minson AC, Studdert MJ (1992) The family Herpesviridae: an update. Arch Virol 123:425–429CrossRef
40.
Zurück zum Zitat Samaniego LA, Neiderhiser L, DeLuca NA (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72:3307–3320PubMed Samaniego LA, Neiderhiser L, DeLuca NA (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72:3307–3320PubMed
41.
Zurück zum Zitat Sariski RT, Weber PC (1994) Requirement for double-strand breaks but not specific DNA sequences in herpes simplex virus type 1 genome isomerization events. J Virol 68:34–47 Sariski RT, Weber PC (1994) Requirement for double-strand breaks but not specific DNA sequences in herpes simplex virus type 1 genome isomerization events. J Virol 68:34–47
42.
Zurück zum Zitat Severini A, Scraba DG, Tyrrell DL (1996) Branched structures in the intracellular DNA of herpes simplex virus type 1. J Virol 70:3169–3175PubMed Severini A, Scraba DG, Tyrrell DL (1996) Branched structures in the intracellular DNA of herpes simplex virus type 1. J Virol 70:3169–3175PubMed
43.
Zurück zum Zitat Skare J, Summers WC (1977) Structure and function of herpesvirus genomes II. EcoRI, XbaI, and HindIII endonuclease cleavage sites on herpes simplex virus type 1 DNA. Virology 76:581–595PubMedCrossRef Skare J, Summers WC (1977) Structure and function of herpesvirus genomes II. EcoRI, XbaI, and HindIII endonuclease cleavage sites on herpes simplex virus type 1 DNA. Virology 76:581–595PubMedCrossRef
44.
Zurück zum Zitat Smiley JR, Fong BS, Leung W-C (1981) Construction of a double-joined herpes simplex viral DNA molecule: inverted repeats are required for segment inversion, and direct repeats promote deletions. Virology 113:345–362PubMedCrossRef Smiley JR, Fong BS, Leung W-C (1981) Construction of a double-joined herpes simplex viral DNA molecule: inverted repeats are required for segment inversion, and direct repeats promote deletions. Virology 113:345–362PubMedCrossRef
45.
Zurück zum Zitat Smiley JR, Duncan J, Howes M (1990) Sequence requirements for DNA rearrangements induced by the terminal repeat of herpes simplex virus type 1 KOS DNA. J Virol 64:5036–5050PubMed Smiley JR, Duncan J, Howes M (1990) Sequence requirements for DNA rearrangements induced by the terminal repeat of herpes simplex virus type 1 KOS DNA. J Virol 64:5036–5050PubMed
46.
Zurück zum Zitat Smiley JR, Lavery C, Howes M (1992) The herpes simplex virus type 1 (HSV-1) a sequence serves as a cleavage/packaging signal but does not drive recombinational genome isomerization when it is inserted into the HSV-2 genome. J Virol 66:7505–7510PubMed Smiley JR, Lavery C, Howes M (1992) The herpes simplex virus type 1 (HSV-1) a sequence serves as a cleavage/packaging signal but does not drive recombinational genome isomerization when it is inserted into the HSV-2 genome. J Virol 66:7505–7510PubMed
47.
Zurück zum Zitat Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35PubMedCrossRef Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35PubMedCrossRef
48.
Zurück zum Zitat Szpara ML, Parsons L, Enquist LW (2010) Sequence variability in clinical and laboratory isolates of herpes simplex virus type 1 reveals new mutations. J Virol 84:5303–5313PubMedCrossRef Szpara ML, Parsons L, Enquist LW (2010) Sequence variability in clinical and laboratory isolates of herpes simplex virus type 1 reveals new mutations. J Virol 84:5303–5313PubMedCrossRef
49.
Zurück zum Zitat Taha MY, Clements GB, Brown SM (1989) The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. J Gen Virol 70:3073–3078PubMedCrossRef Taha MY, Clements GB, Brown SM (1989) The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. J Gen Virol 70:3073–3078PubMedCrossRef
50.
Zurück zum Zitat Tong L, Stow ND (2010) Analysis of herpes simplex virus type 1 DNA packaging signal mutations in the context of the viral genome. J Virol 84:321–329PubMedCrossRef Tong L, Stow ND (2010) Analysis of herpes simplex virus type 1 DNA packaging signal mutations in the context of the viral genome. J Virol 84:321–329PubMedCrossRef
51.
Zurück zum Zitat Umene K (1986) Conversion of a fraction of the unique sequence to part of the inverted repeats in the S component of the herpes simplex virus type 1 genome. J Gen Virol 67:1035–1048PubMedCrossRef Umene K (1986) Conversion of a fraction of the unique sequence to part of the inverted repeats in the S component of the herpes simplex virus type 1 genome. J Gen Virol 67:1035–1048PubMedCrossRef
52.
Zurück zum Zitat Umene K (1993) Herpes simplex virus type 1 variant a sequence generated by recombination and breakage of the a sequence in defined regions, including the one involved in recombination. J Virol 67:5685–5691PubMed Umene K (1993) Herpes simplex virus type 1 variant a sequence generated by recombination and breakage of the a sequence in defined regions, including the one involved in recombination. J Virol 67:5685–5691PubMed
53.
Zurück zum Zitat Umene K, Yoshida M (1993) Genomic characterization of two predominant genotypes of herpes simplex virus type 1. Arch Virol 131:29–46PubMedCrossRef Umene K, Yoshida M (1993) Genomic characterization of two predominant genotypes of herpes simplex virus type 1. Arch Virol 131:29–46PubMedCrossRef
54.
Zurück zum Zitat Umene K, Nishimoto T (1996) Inhibition of generation of authentic genomic termini of herpes simplex virus type 1 DNA in temperature-sensitive mutant BHK-21 cells with a mutated CCG1/TAF II 250 gene. J Virol 70:9008–9012PubMed Umene K, Nishimoto T (1996) Inhibition of generation of authentic genomic termini of herpes simplex virus type 1 DNA in temperature-sensitive mutant BHK-21 cells with a mutated CCG1/TAF II 250 gene. J Virol 70:9008–9012PubMed
55.
Zurück zum Zitat Umene K (1998) Herpesvirus: genetic variability and recombination. Touka Shobo, Fukuoka Umene K (1998) Herpesvirus: genetic variability and recombination. Touka Shobo, Fukuoka
56.
Zurück zum Zitat Umene K (1999) Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 9:171–182PubMedCrossRef Umene K (1999) Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 9:171–182PubMedCrossRef
57.
Zurück zum Zitat Umene K, Sakaoka H (1999) Evolution of herpes simplex virus type 1 under herpesviral evolutionary processes. Arch Virol 144:637–656PubMedCrossRef Umene K, Sakaoka H (1999) Evolution of herpes simplex virus type 1 under herpesviral evolutionary processes. Arch Virol 144:637–656PubMedCrossRef
58.
Zurück zum Zitat Umene K (2001) Cleavage in and around the DR1 element of the a sequence of herpes simplex virus type 1 relevant to the excision of DNA fragments with length corresponding to one and two units of the a sequence. J Virol 75:5870–5878PubMedCrossRef Umene K (2001) Cleavage in and around the DR1 element of the a sequence of herpes simplex virus type 1 relevant to the excision of DNA fragments with length corresponding to one and two units of the a sequence. J Virol 75:5870–5878PubMedCrossRef
59.
Zurück zum Zitat Umene K, Oohashi S, Yoshida M, Fukumaki Y (2008) Diversity of the a sequence of herpes simplex virus type 1 developed during evolution. J Gen Virol 89:841–852PubMedCrossRef Umene K, Oohashi S, Yoshida M, Fukumaki Y (2008) Diversity of the a sequence of herpes simplex virus type 1 developed during evolution. J Gen Virol 89:841–852PubMedCrossRef
60.
Zurück zum Zitat Ushijima Y, Luo C, Goshima F, Yamauchi Y, Kimura H, Nishiyama Y (2007) Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect 9:142–149PubMedCrossRef Ushijima Y, Luo C, Goshima F, Yamauchi Y, Kimura H, Nishiyama Y (2007) Determination and analysis of the DNA sequence of highly attenuated herpes simplex virus type 1 mutant HF10, a potential oncolytic virus. Microbes Infect 9:142–149PubMedCrossRef
61.
Zurück zum Zitat Ushijima Y, Koshizuka T, Goshima F, Kimura H, Nishiyama Y (2008) Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol 82:5220–5233PubMedCrossRef Ushijima Y, Koshizuka T, Goshima F, Kimura H, Nishiyama Y (2008) Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol 82:5220–5233PubMedCrossRef
62.
Zurück zum Zitat Varmuza SL, Smiley JR (1985) Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at site distal to the recognition sequences. Cell 41:793–802PubMedCrossRef Varmuza SL, Smiley JR (1985) Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at site distal to the recognition sequences. Cell 41:793–802PubMedCrossRef
63.
Zurück zum Zitat Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 19:1067–1070PubMedCrossRef Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 19:1067–1070PubMedCrossRef
64.
Zurück zum Zitat Wade-Martins R, Saeki Y, Chiocca EA (2003) Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 7:604–612PubMedCrossRef Wade-Martins R, Saeki Y, Chiocca EA (2003) Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 7:604–612PubMedCrossRef
65.
Zurück zum Zitat Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC (1988) Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54:369–381PubMedCrossRef Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC (1988) Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54:369–381PubMedCrossRef
66.
Zurück zum Zitat Whitton JL, Clements JB (1984) The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. J Gen Virol 65:451–466PubMedCrossRef Whitton JL, Clements JB (1984) The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. J Gen Virol 65:451–466PubMedCrossRef
67.
Zurück zum Zitat Zhang X, Efstathiou S, Simmons A (1994) Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202:530–539PubMedCrossRef Zhang X, Efstathiou S, Simmons A (1994) Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202:530–539PubMedCrossRef
Metadaten
Titel
DNA genome of spontaneously occurring deletion mutants of herpes simplex virus type 1 lacking one copy of the inverted repeat sequences of the L component
verfasst von
Kenichi Umene
Yasuyuki Fukumaki
Publikationsdatum
01.08.2011
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 8/2011
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-011-0983-2

Weitere Artikel der Ausgabe 8/2011

Archives of Virology 8/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.