Skip to main content
Erschienen in: European Spine Journal 4/2020

Open Access 25.02.2020 | Original Article

Does the external remote controller’s reading correspond to the actual lengthening in magnetic-controlled growing rods?

verfasst von: Kar Hao Teoh, Abdul Nazeer Moideen, Kausik Mukherjee, Sridhar Kamath, Stuart H. James, Alwyn Jones, John Howes, Paul R. Davies, Sashin Ahuja

Erschienen in: European Spine Journal | Ausgabe 4/2020

Abstract

Purpose

Magnetic-controlled growing rods (MCGRs) are now routinely used in many centres to treat early-onset scoliosis (EOS). MCGR lengthening is done non-invasively by the external remote controller (ERC). Our experience suggests that there may be a discrepancy between the reported rod lengthening on the ERC and the actual rod lengthening. The aim of this study was to investigate this discrepancy.

Methods

This was a prospective series. Eleven patients who were already undergoing treatment for EOS using MCGRs were included in this study.

Results

One hundred and ninety-two sets of ultrasound readings were obtained (96 episodes of rod lengthening on dual-rod constructs) and compared to their ERC readings. Only 15/192 (7.8%) readings were accurate; 27 readings (14.9%) were false positive; and 8 readings (4.2%) were an underestimation while 142 readings (74.0%) were an overestimation by the ERC. Average over-reporting by the ERC was 5.31 times of the actual/ultrasound reading. When comparing interval radiographs with lengthening obtained on ultrasound, there was a discrepancy with an average overestimation of 1.35 times with ultrasound in our series. There was a significant difference between ERC and USS (p = 0.01) and ERC and XR (p = 0.001). However, there was no significant difference between USS and XR (p > 0.99).

Conclusion

The reading on the ERC does not equate to the actual rod lengthening. The authors would recommend that clinicians using the MCGR for the treatment of early-onset scoliosis include pre- and post-extension imaging (radiographs or ultrasound) to confirm extension lengths at each outpatient extension. In centres with ultrasound facilities, we would suggest that patients should have ultrasound to monitor each lengthening after distraction but also 6-month radiographs.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00586-020-06335-5) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Early-onset scoliosis (EOS) is an abnormal curvature of the spine diagnosed before the age of ten. The best treatment for EOS is unknown, with options ranging from bracing to surgery. Following failure of non-operative treatment, surgical treatment is usually the only option as these curves are generally progressive. Growth sparing spinal surgery is usually preferred as it allows correction of the curve while maintaining growth of the spinal column until the child is close to skeletal maturity when a final spinal fusion operation can be performed.
In June 2014, the National Institute for Health and Care Excellence (NICE) in the UK approved the use of magnetic-controlled growing rods (MCGRs) in EOS on the basis of efficacy and cost-effectiveness [1]. Prior to the introduction of magnetic-controlled growing rods (MCGRs), one of the main options for growth sparing spinal surgery was conventional growing rods. Conventional growing rods normally require 6-month operations to lengthen the rods under general anaesthesia throughout childhood and is associated with high complication rates, e.g. wound infections [2, 3].
However, in MCGR, non-invasive spinal lengthening is performed in the outpatient clinic without sedation or anaesthesia. The magnet within the actuator in MCGR is connected to a lead screw that can be rotated non-invasively by a magnetic field with a handheld device known as external remote controller (ERC), which also contains a permanent magnet. The amount of lengthening achieved is displayed on the ERC device in millimetres. The amount of lengthening can also be assessed radiologically using serial radiographs, fluoroscopy or ultrasound.
Radiograph is the gold standard for assessing the amount of lengthening obtained following a non-invasive spinal lengthening. As there is a radiation risk associated with radiographs, they are not always used after each distraction in some centres. This is particularly so for centres who perform more frequent distractions. At the moment, the optimal frequency of distractions and the amount of lengthening done at each outpatient appointment remain uncertain and this practice is evolving in many centres. There is an increasing trend towards the use of ultrasound as a method of assessing the amount of lengthening because there is no risk of radiation exposure. Ultrasound has previously been validated by two studies as a reliable method of measuring distractions with gold standard radiographs as controls [4, 5]. In our centre, distractions are carried out at 8–10 weekly intervals. Since 2014, we started using ultrasound in our centre in conjunction with our unit’s radiologists. We also took yearly interval radiographs as a routine in our centre. The experience within our unit suggests that there may be a discrepancy between the reported rod lengthening on the ERC and the actual rod lengthening when using the MCGR system. The aim of this study was to determine whether a genuine discrepancy exists between the reported rod lengthening on the ERC and the actual rod lengthening on both ultrasound and interval radiographs.

Methods

Study design and patients

This was a prospective series comparing rod length measurements using ultrasound and the reported lengthening obtained on the external remote controller (ERC). The study was conducted between February 2014 and April 2018. Over this time period, patients also had radiographs on a yearly basis to ensure that the construct was intact. Eleven patients who were already undergoing treatment for EOS using MCGRs were included in this study. The average age of the patients was 8.9 years (range: 4.5 years to 14 years). All eleven patients had dual-rod constructs. There were eight males and three females. Seven were primary procedures, while four were revisions from conventional growing rod system. Table 1 shows the demographic of our study cohort.
Table 1
Patient demographics of our study cohort
Patient
Age at operation (years)
Sex
Curve
Primary or revision
Diagnosis
Previous surgery
1
5
F
Right
Primary
Idiopathic
 
2
8
M
Right
Primary
Idiopathic
 
3
4
M
Right
Primary
Idiopathic
 
4
9
F
Right
Revision
Idiopathic
Expedium to Magec 2015
5
5
M
Left
Primary
Neuromuscular
 
6
11
M
Left
Revision
Idiopathic
Expedium to Magec 2014
7
9
M
Right
Revision
Idiopathic
Expedium to Magec 2011
8
6
F
Right
Primary
Idiopathic
 
9
6
M
Right
Primary
Idiopathic
 
10
5
M
Left
Primary
Congential
 
11
10
M
Left
Revision
Syndromic
ISOLA to Magec 2011

Surgical procedure and our follow-up protocol

The MCGR system used was the MAGEC, MAGnetic Expansion Control (Ellipse Technologies Inc, Irvine, California, USA). This comprises one or two sterile titanium implantable growth rods with a magnet in the actuator that drives the lengthening process magnetically. The diameter of the rods used depended on the child’s body weight, and the choice of a single- or a dual-rod construct was down to surgeon’s preference.
Under general anaesthesia, patients were positioned prone, with intravenous antibiotics given on induction. The revision procedures were performed through a standard open posterior midline approach with insertion of pedicle screws or lamina hooks proximally and distally to the curve. However, the primary procedures were performed with two separate incisions, one proximal and one distal to the curve for the anchors. The length of the MAGEC rod was cut to fit the patient and contoured. The MAGEC rod was then connected to the proximal and distal anchorages. For the primary procedures, the rods were rail-road and inserted through the submuscular layer. The diameter of the MAGEC rods used in our series was all 5.5 mm.
After surgery, patients were followed up in clinic at 6 weeks initially. Non-invasive distraction of the MAGEC rods was started between 3 and 6 months from the initial implantation. In our centre, distractions are carried out at 8–10 weekly intervals. During each visit, patients were positioned prone. Using a handheld magnet wand, the magnet in the actuator was located, and this site was marked. A handheld magnetic ERC was placed over this marking to lengthen the rod, thus distracting the spine. The distraction/lengthening was measured as per the display on the ERC and recorded in millimetres. This equates to the intended distraction (ID).

Measurement of lengthening using ultrasound

Ultrasound imaging was performed on the magnetic rods both pre- and post-lengthening by two consultant radiologists with patients in the prone position using a Toshiba Aplio 500 ultrasound machine utilizing an 12-10 MHz linear ultrasound transducer and standard coupling gel. Measurements were made from the point at which the extendible part of the rod enters the actuator housing to the first tapering point of the rod as this was consistently identifiable (Figs. 1, 2). Three separate ultrasound measurements were performed, and the final reading was logged as the average of the three readings as per the best view on ultrasound to assess the distraction of the magnet. This was recorded in millimetres. As a practice, if ultrasound measurements did not show any lengthening, a radiograph was obtained to make sure the rod and the anchoring metalwork were intact.

Measurement of lengthening using radiographs

Whole spine posterioanterior (PA) radiographs were taken with the patient in the erect position. Images were uploaded to a picture archiving and communication system (PACS). Rod length measurements were performed by a single spinal surgeon using the inbuilt PACS measuring tool. Calibration of the images was performed by measuring the diameter of the actuator portion of the MAGEC rod and multiplying it by the actual diameter which is 9.02 mm as per the surgical technique from the manufacturer. The distraction length was measured by measuring the consistent radiographic feature in the rod which appears as a ‘window’ in the centre portion of the actuator. This is multiplied by the calibration to obtain the true distraction length.

Data collection and statistical analysis

The lengthening achieved on ultrasound scan was compared to the reading recorded on the ERC. The lengthening achieved on ultrasound scan was divided by the ERC reading and expressed as a percentage. A percentage of > 105% indicates an underestimation of the actual rod lengthening by the ERC, while a percentage of < 95% indicates an overestimation by the ERC. Accounting for a 5% standard error, an accurate reading was taken as 100 ± 5%. The lengthening obtained between the interval radiographs was measured and compared to the cumulative ERC readings and cumulative ultrasound readings over the same time period for each patient. If there was metalwork failure, we took the last available normal radiograph to ensure it was a fair comparison.
Data were analysed using SPSS Statistics software 20.0 (IBM, Armonk, NY, USA). Analysis of variance was used to compare between groups.

Results

In total, 96 non-invasive rod lengthenings were undertaken on 11 patients with dual-rod constructs over this time period. This provided 192 sets of readings.

ERC versus ultrasound

Only 15/192 (7.8%) readings were accurate. Twenty-seven readings (14.0%) showed no lengthening on ultrasound but the ERC showed lengthening (false positive). In eight readings (4.2%), there was an underestimation of the actual rod lengthening by the ERC. In 142 readings (74.0%), there was an overestimation of the actual rod lengthening by the ERC, with a mean actual lengthening of 36% from the reported lengthening. Average over-reporting by ERC was 5.31 times of the actual/ultrasound reading (range 1–40). There was significant statistical difference between ERC versus USS (p = 0.01). There was no significant statistical difference between distraction obtained between left and right rods (p = 0.67, Wilcoxon signed-rank test). There were also no statistical differences found between primary and revision cases, age of onset, BMI, side of curve, idiopathic versus non-idiopathic and pre-surgical magnitude (p > 0.05).

ERC Versus Ultrasound Versus Radiographs

The cumulative ERC, ultrasound and radiographic lengthening were calculated over the time period of the interval radiographs. Three patients were excluded here as they did not have a full year of data. In our study, the ERC consistently overestimates the lengthening on both USS and radiographs (Fig. 3). Using radiographs as the gold standard, there is still a discrepancy with ultrasound with an average overestimation of 1.35 times (range: 0.92 – 3.1) in our series. There were significant differences between the readings for ERC, ultrasound and radiographs at the yearly interval (p < 0.001).

Discussion

Our study indicates that only 8% of the ERC readings were accurate, while 74% of the ERC reading overestimated the actual rod lengthening. Previous studies have focused on assessing the reliability of using ultrasound rather than radiographs for assessing distraction in MCGR [4, 5]. A recent study has shown somewhat similar findings to ours [6]. They concluded that ultrasound can provide confirmatory information of non-invasive lengthening of MCGR but they tend to underestimate the achieved length as measured by radiographs only in primary cases. In their study, they found that revision cases demonstrate better concordance between ultrasound and radiographs. This was not observed in our study and could be due to a higher number of revision cases in their study. In our series, we found that ultrasound tends to overestimate the achieved length as measured by radiographs. The reason for this could be due to the difference in frequency of the radiograph taken in our series (3 months vs. yearly). As our unit adopted an ultrasound approach to confirming distraction based on other validation studies [4, 5], therefore we did not take radiographs every distraction like their study.
A prospective case series of magnetic-controlled growing rods in 2012 by Cheung et al. [7] reported an actual lengthening of the growing rods of 78.9% of the predicted lengthening (or 1.28 times more of the actual lengthening) when comparing pre- and post-lengthening on plain radiograph. The case series, which consisted of only two patients with three rods but with a total of 45 extensions, reported a good relationship between the predicted and actual distraction lengths and no difficulty with monthly distractions. In contrast, our study demonstrates 27 occasions (14%) when no distraction was achieved despite the ERC reporting a positive lengthening. The discrepancy between our results and the results of Cheung et al. is likely to be due to a difference in the number of patients and growing rods in the two studies. A large retrospective, consecutive, multicentre case series of 30 MCGR patients with a mean follow-up of 18 months reported that there was a 45.5% discrepancy between their intended total distraction and their total measured distraction on radiographs [8].
A recent study reported similar findings when they compared the ERC readings with fluoroscopy. In their study of 21 patients, true distraction (TD) was determined by measuring the expansion gap on dedicated fluoroscopic images of the actuator and this was compared to the intended distraction (ID) reported on the ERC. The true-to-intended distraction ratio was calculated as 0.33, and the difference between the ID and true TD varied from 2 to 44 mm [9]. In the follow-up study, Ahmad et al. have also shown a difference between true distraction (T) and intended distraction (I) in their series of 35 patients followed over 57 months treated with MCGRs. Patients were distracted at 3-month intervals and had fluoroscopic images taken immediately after the distraction. There was also a significant decrease in T/I ratio which was a gradual linear decline over time [10].
The traditional method of measuring the lengthening of MCGRs is using plain radiographs [6]. The use of ultrasound imaging is associated with no exposure to ionizing radiation for patients with MCGR. A previous study demonstrated that for every set of pre-lengthening and post-lengthening radiographs, MCGR patients are exposed to a mean effective radiation dose of 0.26 mSv and an additional mean attributable lifetime cancer risk of approximately 1 in 39,686 [5]. Radiation exposure in children is associated with radiation-induced cancer and as few as 25 whole spine radiographs have been reported to increase the risk of breast cancer by 70% in females [11]. Two previous studies have shown that distraction of the MCGR noted on radiographs can be reproduced on ultrasound with high inter-rater reliability and intra-rater reliability. Yoon et al. [5] reported an intra-rater reliability of 0.983 (95% confidence interval 0.956,1.000) and an inter-rater reliability of 0.987 (95% confidence interval 0.966, 1.000) between ultrasound and radiograph for rod length. Stokes et al. [4] reported that when a rod showed distraction on X-rays of 2 mm, the mean measurement on ultrasound was 1.7 mm (SD: 0.24 mm) while in scenarios where no distraction of the rod was noted on plain radiographs, the ultrasound measurements showed no significant difference. A paper by Cheung et al. [12] which looked at the learning curve in monitoring MCGR distractions with ultrasound found that correlation between radiograph and ultrasound measurements is reasonable to begin with but improves with time. In our series, all our measurements were made by two consultant musculoskeletal radiologists who are highly experienced, and we do not feel this would have played a factor in our results.
Schiedel et al. [13] reported similar problems with magnetic-controlled growing rods used as an intramedullary device in children for limb lengthening. In addition to reporting that 2/26 nails failed to extend with the use of an ERC, they also report a discrepancy between planned extension lengths and achieved length. The largest difference being 8 mm of achieved lengthening compared with 23 mm of planned extension, and they found ERC usage was problematic mostly in patients with femoral lengthening.
Although we adopted ultrasound to measure lengthening like many centres, we also continued with radiographs but done at yearly intervals. The reason for this is twofold: to ensure that metalwork is intact and to measure interval lengthening. One weakness of this study was we might not have detected an issue with lengthening at a particular distraction as we only did the radiographs yearly. However, if no lengthening is obtained on ultrasound, it was our department protocol to radiograph the child to ensure the metalwork is intact.
The National Institute for Health and Clinical Excellence (NICE) is a non-departmental public body of the Department of Health in the UK which makes evidence-based recommendations developed by independent committees, including professionals and lay members and consulted on by stakeholders. These appraisals are based primarily on evaluations of efficacy and cost-effectiveness. Section 3.27 of the NICE guidance for the use of MAGEC™ growing rods states that ‘the committee considered the potential impact of additional imaging associated with more frequent distractions. The committee was advised that X-rays were not always used after each distraction and that ultrasound may be an option for more frequent distractions’ [1]. Although there is now enough evidence in the literature to use ultrasound as the imaging of choice, we would like to draw caution to this. The ERC is wholly inaccurate, and the readings should be disregarded as reported in many studies. Our results suggest that radiographs still remain the gold standard. We would suggest that patients should have ultrasound to monitor each lengthening after distraction but also 6-month radiographs. This would be no different in patients who have been treated conservatively in brace or being extended 6 months for conventional growing rods.

Conclusion

This study suggests that the external remote controller is highly inaccurate at reporting the actual extension achieved. The ERC consistently over-reports the length of extension of the growing rod. The authors would therefore recommend that clinicians using the MCGR for the treatment of early-onset scoliosis include pre- and post-extension imaging (radiographs or ultrasound) to confirm extension lengths at each outpatient extension. To reduce radiation exposure, we would suggest a compromise and patients should have ultrasound to monitor each lengthening after distraction but also 6-month radiographs.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest with related to this work.

Disclosures

KHT, ANM, KM, SK: Nothing to disclose. SHJ: Other: K2M (Educational contract), NuVasive (Educational contract), outside the submitted work. AJ: Other: NuVasive (Teaching contract), outside the submitted work. JH: Other: Alphatec (Educational contract), outside the submitted work. PRD: Other: K2M (Educational meetings), Globus (Educational meetings), outside the submitted work. SA: Other: Depuy Synthes UK Ltd (Fund a fellowship for the unit), NuVasive UK Ltd (Fund a fellowship for the unit); Personal Fees: Globus Medical (Consulting fee for conven- ing a course in 2013 and 2015), Medtronic (Consulting fee in 2015), outside the submitted work.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat National Institute for Health and Care Excellence (June 2014) The MAGEC System for spinal lengthening in children with scoliosis. Medical Technological Guidance MTG18. NICE, London National Institute for Health and Care Excellence (June 2014) The MAGEC System for spinal lengthening in children with scoliosis. Medical Technological Guidance MTG18. NICE, London
2.
Zurück zum Zitat Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, Ahuja S (2016) Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine J 16(4):S40–S44CrossRef Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, Ahuja S (2016) Do magnetic growing rods have lower complication rates compared with conventional growing rods? Spine J 16(4):S40–S44CrossRef
3.
Zurück zum Zitat Bess S, Akbarnia BA, Thompson GH et al (2010) Complications of growing-rod treatmentfor early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am 92-A:2533–2543CrossRef Bess S, Akbarnia BA, Thompson GH et al (2010) Complications of growing-rod treatmentfor early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am 92-A:2533–2543CrossRef
4.
Zurück zum Zitat Stokes OM, O’Donovan EJ, Samartzis D, Luk KDK, Cheung KM-C (2014) Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J 14:2397–2404CrossRef Stokes OM, O’Donovan EJ, Samartzis D, Luk KDK, Cheung KM-C (2014) Reducing radiation exposure in early-onset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J 14:2397–2404CrossRef
5.
Zurück zum Zitat Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H (2015) The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 24(7):1422–1426CrossRef Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H (2015) The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 24(7):1422–1426CrossRef
6.
Zurück zum Zitat Cobanoglu M, Shah SA, Gabos P et al (2019) Comparison of intended lengthening of magnetically controlled growing rods: ultrasound versus X-ray. J Pediatr Orthop 39(2):e141–e146CrossRef Cobanoglu M, Shah SA, Gabos P et al (2019) Comparison of intended lengthening of magnetically controlled growing rods: ultrasound versus X-ray. J Pediatr Orthop 39(2):e141–e146CrossRef
7.
Zurück zum Zitat Cheung KM-C, Cheung JP-Y, Samartzis D, Mak K-C, Wong Y-W, Cheung W-Y, Akbarnia BA, Luk KD-K (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379:1967–1974CrossRef Cheung KM-C, Cheung JP-Y, Samartzis D, Mak K-C, Wong Y-W, Cheung W-Y, Akbarnia BA, Luk KD-K (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379:1967–1974CrossRef
8.
Zurück zum Zitat Lebon J, Batailler C, Wargny M et al (2017) Magnetically controlled growing rod in early onset scoliosis: a 30-case multicenter study. Eur Spine J 26:1567–1576CrossRef Lebon J, Batailler C, Wargny M et al (2017) Magnetically controlled growing rod in early onset scoliosis: a 30-case multicenter study. Eur Spine J 26:1567–1576CrossRef
9.
Zurück zum Zitat Rolton D, Thakar C, Wilson-MacDonald J, Nnadi C (2016) Radiological and clinical assessment of the distraction achieved with remotely expandable growing rods in early onset scoliosis. Eur Spine J 25(10):3371–3376CrossRef Rolton D, Thakar C, Wilson-MacDonald J, Nnadi C (2016) Radiological and clinical assessment of the distraction achieved with remotely expandable growing rods in early onset scoliosis. Eur Spine J 25(10):3371–3376CrossRef
10.
Zurück zum Zitat Ahmad A, Subramanian T, Panteliadis P, Wilson-Macdonald J, Rothenfluh DA, Nnadi C (2017) Quantifying the ‘law of diminishing returns’ in magnetically controlled growing rods. Bone Joint J 99-B:1658–1664CrossRef Ahmad A, Subramanian T, Panteliadis P, Wilson-Macdonald J, Rothenfluh DA, Nnadi C (2017) Quantifying the ‘law of diminishing returns’ in magnetically controlled growing rods. Bone Joint J 99-B:1658–1664CrossRef
11.
Zurück zum Zitat Doody MM, Lonstein JE, Stovall M et al (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine 25:2052–2063CrossRef Doody MM, Lonstein JE, Stovall M et al (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine 25:2052–2063CrossRef
12.
Zurück zum Zitat Cheung JP, Yiu KK, Bow C, Cheung PW, Samartzis D, Cheung KM (2017) Learning curve in monitoring magnetically controlled growing rod distractions with ultrasound. Spine (Phila Pa 1976) 42(17):1289–1294CrossRef Cheung JP, Yiu KK, Bow C, Cheung PW, Samartzis D, Cheung KM (2017) Learning curve in monitoring magnetically controlled growing rod distractions with ultrasound. Spine (Phila Pa 1976) 42(17):1289–1294CrossRef
13.
Zurück zum Zitat Schiedel FM, Voqt B, Tretow HL, Schuhknecht B, Gosheger G, Horter MJ, Rodl R (2014) How precise if the PRECICE compared to the ISKD in intramedullary limb lengthening? Reliabilty and safety in 26 procedures. ActaOrhop 85(3):293–298 Schiedel FM, Voqt B, Tretow HL, Schuhknecht B, Gosheger G, Horter MJ, Rodl R (2014) How precise if the PRECICE compared to the ISKD in intramedullary limb lengthening? Reliabilty and safety in 26 procedures. ActaOrhop 85(3):293–298
Metadaten
Titel
Does the external remote controller’s reading correspond to the actual lengthening in magnetic-controlled growing rods?
verfasst von
Kar Hao Teoh
Abdul Nazeer Moideen
Kausik Mukherjee
Sridhar Kamath
Stuart H. James
Alwyn Jones
John Howes
Paul R. Davies
Sashin Ahuja
Publikationsdatum
25.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Spine Journal / Ausgabe 4/2020
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-020-06335-5

Weitere Artikel der Ausgabe 4/2020

European Spine Journal 4/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.