Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2016

01.01.2016 | Original Article

Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer

verfasst von: Andreas Delker, Wolfgang Peter Fendler, Clemens Kratochwil, Anika Brunegraf, Astrid Gosewisch, Franz Josef Gildehaus, Stefan Tritschler, Christian Georg Stief, Klaus Kopka, Uwe Haberkorn, Peter Bartenstein, Guido Böning

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Dosimetry is critical to achieve the optimal therapeutic effect of radioligand therapy (RLT) with limited side effects. Our aim was to perform image-based absorbed dose calculation for the new PSMA ligand 177Lu-DKFZ-PSMA-617 in support of its use for the treatment of metastatic prostate cancer.

Methods

Whole-body planar images and SPECT/CT images of the abdomen were acquired in five patients (mean age 68 years) for during two treatment cycles at approximately 1, 24, 48 and 72 h after administration of 3.6 GBq (range 3.4 to 3.9 GBq) 177Lu-DKFZ-PSMA-617. Quantitative 3D SPECT OSEM reconstruction was performed with corrections for photon scatter, photon attenuation and detector blurring. A camera-specific calibration factor derived from phantom measurements was used for quantitation. Absorbed doses were calculated for various organs from the images using a combination of linear approximation, exponential fit, and target-specific S values, in accordance with the MIRD scheme. Absorbed doses to bone marrow were estimated from planar and SPECT images and with consideration of the blood sampling method according to the EANM guidelines.

Results

The average (± SD) absorbed doses per cycle were 2.2 ± 0.6 Gy for the kidneys (0.6 Gy/GBq), 5.1 ± 1.8 Gy for the salivary glands (1.4 Gy/GBq), 0.4 ± 0.2 Gy for the liver (0.1 Gy/GBq), 0.4 ± 0.1 Gy for the spleen (0.1 Gy/GBq), and 44 ± 19 mGy for the bone marrow (0.012 Gy/GBq). The organ absorbed doses did not differ significantly between cycles. The critical absorbed dose reported for the kidneys (23 Gy) was not reached in any patient. At 24 h there was increased uptake in the colon with 50 – 70 % overlap to the kidneys on planar images. Absorbed doses for tumour lesions ranged between 1.2 and 47.5 Gy (13.1 Gy/GBq) per cycle.

Conclusion

The salivary glands and kidneys showed high, but not critical, absorbed doses after RLT with 177Lu-DKFZ-PSMA-617. We suggest that 177Lu-DKFZ-PSMA-617 is suitable for radiotherapy, offering tumour-to-kidney ratios comparable to those with RLT agents currently available for the treatment of neuroendocrine tumours. Our dosimetry results suggest that 177Lu-DKFZ-PSMA-617 treatment with higher activities and more cycles is possible without the risk of damaging the kidneys.
Literatur
1.
Zurück zum Zitat Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.CrossRefPubMed Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128.CrossRefPubMed
2.
Zurück zum Zitat Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefPubMed Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.CrossRefPubMed
3.
Zurück zum Zitat Pond GR, Sonpavde G, de Wit R, Eisenberger MA, Tannock IF, Armstrong AJ. The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur Urol. 2014;65:3–6.CrossRefPubMed Pond GR, Sonpavde G, de Wit R, Eisenberger MA, Tannock IF, Armstrong AJ. The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur Urol. 2014;65:3–6.CrossRefPubMed
4.
Zurück zum Zitat Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–39.CrossRefPubMed Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–39.CrossRefPubMed
5.
Zurück zum Zitat Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92.PubMedCentralCrossRefPubMed Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.PubMedCentralCrossRefPubMed Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522–31.CrossRefPubMed Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522–31.CrossRefPubMed
8.
Zurück zum Zitat Benesova M, Schafer M, Bauder-Wust U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.CrossRefPubMed Benesova M, Schafer M, Bauder-Wust U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med. 2015;56:914–20.CrossRefPubMed
9.
Zurück zum Zitat Delker A, Ilhan H, Zach C, Brosch J, Gildehaus F-J, Lehner S, et al. The influence of early measurements onto the estimated kidney dose in 177Lu-DOTATATE peptide receptor radiotherapy of neuroendocrine tumors. Mol Imaging Biol. 2015. doi:10.1007/s11307-015-0839-3.PubMed Delker A, Ilhan H, Zach C, Brosch J, Gildehaus F-J, Lehner S, et al. The influence of early measurements onto the estimated kidney dose in 177Lu-DOTATATE peptide receptor radiotherapy of neuroendocrine tumors. Mol Imaging Biol. 2015. doi:10.​1007/​s11307-015-0839-3.PubMed
10.
Zurück zum Zitat Kohli V, King MA, Glick SJ, Pan TS. Comparison of frequency-distance relationship and gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol. 1998;43:1025–37.CrossRefPubMed Kohli V, King MA, Glick SJ, Pan TS. Comparison of frequency-distance relationship and gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol. 1998;43:1025–37.CrossRefPubMed
11.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.CrossRefPubMed Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.CrossRefPubMed
12.
Zurück zum Zitat Wallis JW, Miller TR. An optimal rotator for iterative reconstruction. IEEE Trans Med Imaging. 1997;16:118–23.CrossRefPubMed Wallis JW, Miller TR. An optimal rotator for iterative reconstruction. IEEE Trans Med Imaging. 1997;16:118–23.CrossRefPubMed
13.
Zurück zum Zitat Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 1990;9:84–93.CrossRefPubMed Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 1990;9:84–93.CrossRefPubMed
14.
Zurück zum Zitat Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol. 1997;42:1619–32.CrossRefPubMed Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol. 1997;42:1619–32.CrossRefPubMed
15.
Zurück zum Zitat Bai CY, Shao L, Da Silva AJ, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. 2003;50:1510–5.CrossRef Bai CY, Shao L, Da Silva AJ, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. 2003;50:1510–5.CrossRef
16.
Zurück zum Zitat Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.CrossRefPubMed Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.CrossRefPubMed
18.
Zurück zum Zitat Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.CrossRefPubMed Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.CrossRefPubMed
19.
Zurück zum Zitat Williams LE, Liu A, Yamauchi DM, Lopatin G, Raubitschek AA, Wong JY. The two types of correction of absorbed dose estimates for internal emitters. Cancer. 2002;94:1231–4.CrossRefPubMed Williams LE, Liu A, Yamauchi DM, Lopatin G, Raubitschek AA, Wong JY. The two types of correction of absorbed dose estimates for internal emitters. Cancer. 2002;94:1231–4.CrossRefPubMed
20.
Zurück zum Zitat Hindorf C, Glatting G, Chiesa C, Linden O, Flux G; EANM Dosimetry Committee. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37:1238–50.CrossRefPubMed Hindorf C, Glatting G, Chiesa C, Linden O, Flux G; EANM Dosimetry Committee. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37:1238–50.CrossRefPubMed
21.
Zurück zum Zitat Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34:689–94.PubMed Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34:689–94.PubMed
22.
Zurück zum Zitat Traino AC, Ferrari M, Cremonesi M, Stabin MG. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol. 2007;52:5231–48.CrossRefPubMed Traino AC, Ferrari M, Cremonesi M, Stabin MG. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol. 2007;52:5231–48.CrossRefPubMed
23.
Zurück zum Zitat Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53:1310–25.PubMedCentralCrossRefPubMed Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012;53:1310–25.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Sanders J, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of 177Lu with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2015;17:585–93.CrossRefPubMed Sanders J, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of 177Lu with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2015;17:585–93.CrossRefPubMed
25.
Zurück zum Zitat Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart H, Hadaschik B, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.CrossRefPubMed Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart H, Hadaschik B, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95.CrossRefPubMed
26.
Zurück zum Zitat Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA. Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol. 2008;21:1421–7.CrossRefPubMed Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA. Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol. 2008;21:1421–7.CrossRefPubMed
27.
Zurück zum Zitat Maraj B, Aldersley M, Markham A. Prostate-specific membrane antigen expression in the duodenum: implications in coeliac disease and immunotherapy for prostate cancer. Lancet. 1998;351:1559–60.CrossRefPubMed Maraj B, Aldersley M, Markham A. Prostate-specific membrane antigen expression in the duodenum: implications in coeliac disease and immunotherapy for prostate cancer. Lancet. 1998;351:1559–60.CrossRefPubMed
28.
Zurück zum Zitat Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.PubMed Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.PubMed
29.
Zurück zum Zitat Gensheimer MF, Liao JJ, Garden AS, Laramore GE, Parvathaneni U. Submandibular gland-sparing radiation therapy for locally advanced oropharyngeal squamous cell carcinoma: patterns of failure and xerostomia outcomes. Radiat Oncol. 2014;9:255.PubMedCentralCrossRefPubMed Gensheimer MF, Liao JJ, Garden AS, Laramore GE, Parvathaneni U. Submandibular gland-sparing radiation therapy for locally advanced oropharyngeal squamous cell carcinoma: patterns of failure and xerostomia outcomes. Radiat Oncol. 2014;9:255.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Hey J, Setz J, Gerlach R, Janich M, Hildebrandt G, Vordermark D, et al. Parotid gland-recovery after radiotherapy in the head and neck region – 36 months follow-up of a prospective clinical study. Radiat Oncol. 2011;6:125.PubMedCentralCrossRefPubMed Hey J, Setz J, Gerlach R, Janich M, Hildebrandt G, Vordermark D, et al. Parotid gland-recovery after radiotherapy in the head and neck region – 36 months follow-up of a prospective clinical study. Radiat Oncol. 2011;6:125.PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.CrossRefPubMed Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591–601.CrossRefPubMed
32.
Zurück zum Zitat Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, et al. Pharmacokinetics and biodistribution of 111In-and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu? J Nucl Med. 2005;46:634–41.PubMed Vallabhajosula S, Kuji I, Hamacher KA, Konishi S, Kostakoglu L, Kothari PA, et al. Pharmacokinetics and biodistribution of 111In-and 177Lu-labeled J591 antibody specific for prostate-specific membrane antigen: prediction of 90Y-J591 radiation dosimetry based on 111In or 177Lu? J Nucl Med. 2005;46:634–41.PubMed
33.
Zurück zum Zitat Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0, Tyr3] octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.PubMedCentralCrossRefPubMed Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0, Tyr3] octreotate. Eur J Nucl Med Mol Imaging. 2009;36:1138–46.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Larson SM, Raubitschek A, Reynolds JC, Neumann RD, Hellstrom K-E, Hellstrom I, et al. Comparison of bone marrow dosimetry and toxic effect of high dose 131I-labeled monoclonal antibodies administered to man. Int J Radiat Appl Instrumen B. 1989;16:153–8.CrossRef Larson SM, Raubitschek A, Reynolds JC, Neumann RD, Hellstrom K-E, Hellstrom I, et al. Comparison of bone marrow dosimetry and toxic effect of high dose 131I-labeled monoclonal antibodies administered to man. Int J Radiat Appl Instrumen B. 1989;16:153–8.CrossRef
35.
Zurück zum Zitat Siegel J, Wessels B, Watson E, Stabin M, Vriesendorp H, Bradley E, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconjug Radiopharm. 1990;3:213–34. Siegel J, Wessels B, Watson E, Stabin M, Vriesendorp H, Bradley E, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibody Immunoconjug Radiopharm. 1990;3:213–34.
36.
Zurück zum Zitat Bodei L, Cremonesi M, Grana CM, Chinol M, Baio SM, Severi S, et al. Yttrium-labelled peptides for therapy of NET. Eur J Nucl Med Mol Imaging. 2012;39:93–102.CrossRef Bodei L, Cremonesi M, Grana CM, Chinol M, Baio SM, Severi S, et al. Yttrium-labelled peptides for therapy of NET. Eur J Nucl Med Mol Imaging. 2012;39:93–102.CrossRef
37.
Zurück zum Zitat Kam B, Teunissen J, Krenning E, De Herder W, Khan S, van Vliet E, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.PubMedCentralCrossRef Kam B, Teunissen J, Krenning E, De Herder W, Khan S, van Vliet E, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.PubMedCentralCrossRef
38.
Zurück zum Zitat Sandström M, Garske-Román U, Granberg D, Johansson S, Widström C, Eriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54:33–41.CrossRefPubMed Sandström M, Garske-Román U, Granberg D, Johansson S, Widström C, Eriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54:33–41.CrossRefPubMed
39.
Zurück zum Zitat Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55:1248–52.CrossRefPubMed Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J Nucl Med. 2014;55:1248–52.CrossRefPubMed
40.
Zurück zum Zitat Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider J, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.CrossRefPubMed Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider J, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.CrossRefPubMed
41.
Zurück zum Zitat Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Horsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.PubMedCentralCrossRefPubMed Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Horsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Garske U, Sandström M, Johansson S, Sundin A, Granberg D, Eriksson B, et al. Minor changes in effective half-life during fractionated 177Lu-octreotate therapy. Acta Oncol. 2012;51:86–96.CrossRefPubMed Garske U, Sandström M, Johansson S, Sundin A, Granberg D, Eriksson B, et al. Minor changes in effective half-life during fractionated 177Lu-octreotate therapy. Acta Oncol. 2012;51:86–96.CrossRefPubMed
Metadaten
Titel
Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer
verfasst von
Andreas Delker
Wolfgang Peter Fendler
Clemens Kratochwil
Anika Brunegraf
Astrid Gosewisch
Franz Josef Gildehaus
Stefan Tritschler
Christian Georg Stief
Klaus Kopka
Uwe Haberkorn
Peter Bartenstein
Guido Böning
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2016
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-015-3174-7

Weitere Artikel der Ausgabe 1/2016

European Journal of Nuclear Medicine and Molecular Imaging 1/2016 Zur Ausgabe