Skip to main content
main-content

01.12.2014 | Research | Ausgabe 1/2014 Open Access

Journal of Inflammation 1/2014

Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes

Zeitschrift:
Journal of Inflammation > Ausgabe 1/2014
Autoren:
Amy Tankersley, Mark Barton Frank, Melissa Bebak, Robert Brennan
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-9255-11-17) contains supplementary material, which is available to authorized users.

Competing interests

We, the authors declare that we have no competing interests.

Authors’ contributions

AT participated in the design of experiments, carried out experiments for cell viability, cytokine and nitric oxide detection, and Transcriptional profiling, participated in the statistical analysis of the data, and drafted the manuscript. MBF participated in the design of the transcriptional profiling experiments, directed microarray analysis, and help draft the manuscript. MB performed microarray analysis. RB conceived the study and participated in its design and coordination, participated in the data analysis, and helped draft the manuscript. All authors read and approved the final manuscript.

Abstract

Background

Chronic wounds such as diabetic foot ulcers, pressure ulcers, and venous leg ulcers contribute to a considerable amount of mortality in the U.S. annually. The inability of these wounds to heal has now been associated with the presence of microbial biofilms. The aim of this study was to determine if products secreted by S. aureus biofilms play an active role in chronic wounds by promoting inflammation, which is a hallmark of chronic wounds.

Methods

In vitro experiments were conducted to examine changes in gene expression profiles and inflammatory response of human epithelial keratinocytes (HEKa) exposed to products secreted by S. aureus grown in biofilms or products secreted by S. aureus grown planktonically.

Results

After only two hours of exposure, gene expression microarray data showed marked differences in inflammatory, apoptotic, and nitric oxide responses between HEKa cells exposed to S. aureus biofilm conditioned media (BCM) and HEKa cells exposed to S. aureus planktonic conditioned media (PCM). As early as 4 hours post exposure, ELISA results showed significant increases in IL-6, IL-8, TNFα, and CXCL2 production by HEKa cells exposed to BCM compared to HEKa cells exposed to PCM or controls. Nitric oxide assay data also showed significant increases in nitric oxide production by HEKa cells treated with BCM compared to HEKa cells treated with PCM, or controls.

Conclusions

Taken together, these results support and extend previous findings that indicate products secreted by S. aureus biofilms directly contribute to the chronic inflammation associated with chronic wounds.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2014

Journal of Inflammation 1/2014 Zur Ausgabe

Neu im Fachgebiet Innere Medizin

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Innere Medizin und bleiben Sie gut informiert – ganz bequem per eMail.

© Springer Medizin 

Bildnachweise