Skip to main content
Erschienen in: Annals of Nuclear Medicine 2/2012

01.02.2012 | Original article

Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1

verfasst von: Ayahisa Watanabe, Ken-ichi Nishijima, Songji Zhao, Yoshikazu Tanaka, Takeshi Itoh, Hiroshi Takemoto, Nagara Tamaki, Yuji Kuge

Erschienen in: Annals of Nuclear Medicine | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Objective

Glycosylation is generally applicable as a strategy for increasing the activity of bioactive proteins. In this study, we examined the effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1 (GLP-1) as a bioactive peptide for type 2 diabetes.

Methods

Noninvasive imaging studies were performed using a gamma camera after the intravenous administration of 123I-GLP-1 or 123I-α2, 6-sialyl N-acetyllactosamine (glycosylated) GLP-1 in rats. In ex vivo biodistribution studies using 125I-GLP-1 or 125I-glycosylated GLP-1, organ samples were measured for radioactivity. Plasma samples were added to 15% trichloroacetic acid (TCA) to obtain TCA-insoluble and TCA-soluble fractions. The radioactivity in the TCA-insoluble and TCA-soluble fractions was measured.

Results

In the noninvasive imaging studies, a relatively high accumulation level of 123I-GLP-1 was found in the liver, which is the major organ to eliminate exogenous GLP-1. The area under the time-activity curve (AUC) of 123I-glycosylated GLP-1 in the liver was significantly lower (89%) than that of 123I-GLP-1. These results were consistent with those of ex vivo biodistribution studies using 125I-labeled peptides. The AUC of 125I-glycosylated GLP-1 in the TCA-insoluble fraction was significantly higher (1.7-fold) than that of GLP-1.

Conclusions

This study demonstrated that glycosylation significantly decreased the distribution of radiolabeled GLP-1 into the liver and increased the concentration of radiolabeled GLP-1 in plasma. These results suggested that glycosylation is a useful strategy for decreasing the distribution into the liver of bioactive peptides as desirable pharmaceuticals.
Literatur
1.
Zurück zum Zitat Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes. 2004;53:2181–9.PubMedCrossRef Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes. 2004;53:2181–9.PubMedCrossRef
2.
Zurück zum Zitat Arulmozhi DK, Portha B. GLP-1 based therapy for type 2 diabetes. Eur J Pharm Sci. 2006;28:96–108.PubMedCrossRef Arulmozhi DK, Portha B. GLP-1 based therapy for type 2 diabetes. Eur J Pharm Sci. 2006;28:96–108.PubMedCrossRef
3.
Zurück zum Zitat Holst JJ, Ørskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes. 2004;53:S197–204.PubMedCrossRef Holst JJ, Ørskov C. The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes. 2004;53:S197–204.PubMedCrossRef
4.
Zurück zum Zitat Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008;14:161–8.PubMedCrossRef Holst JJ, Deacon CF, Vilsbøll T, Krarup T, Madsbad S. Glucagon-like peptide-1, glucose homeostasis and diabetes. Trends Mol Med. 2008;14:161–8.PubMedCrossRef
6.
Zurück zum Zitat Meier JJ, Nauck MA. Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21:91–117.PubMedCrossRef Meier JJ, Nauck MA. Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21:91–117.PubMedCrossRef
7.
Zurück zum Zitat Nauck MA, Meier JJ. Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regul Pept. 2005;128:135–48.PubMedCrossRef Nauck MA, Meier JJ. Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regul Pept. 2005;128:135–48.PubMedCrossRef
8.
Zurück zum Zitat Simonsen L, Holst JJ, Deacon CF. Exendin-4, but not glucagon-like peptide-1, is cleared exclusively by glomerular filtration in anaesthetised pigs. Diabetologia. 2006;49:706–12.PubMedCrossRef Simonsen L, Holst JJ, Deacon CF. Exendin-4, but not glucagon-like peptide-1, is cleared exclusively by glomerular filtration in anaesthetised pigs. Diabetologia. 2006;49:706–12.PubMedCrossRef
9.
Zurück zum Zitat Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol. 1996;271:E458–64.PubMed Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol. 1996;271:E458–64.PubMed
10.
Zurück zum Zitat Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 1995;80:952–7.PubMedCrossRef Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 1995;80:952–7.PubMedCrossRef
11.
Zurück zum Zitat Kieffer TJ, McIntosh CHS, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995;136:3585–96.PubMedCrossRef Kieffer TJ, McIntosh CHS, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995;136:3585–96.PubMedCrossRef
12.
Zurück zum Zitat Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214:829–35.PubMedCrossRef Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214:829–35.PubMedCrossRef
13.
Zurück zum Zitat Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Göke R, Göke B, Thole H, et al. Characterization of the processing by human neutral endopeptidase 24.11 of GLP-1 (7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept. 1995;58:149–56.PubMedCrossRef Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Göke R, Göke B, Thole H, et al. Characterization of the processing by human neutral endopeptidase 24.11 of GLP-1 (7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept. 1995;58:149–56.PubMedCrossRef
14.
Zurück zum Zitat Hupe-Sodmann K, Göke R, Göke B, Thole HH, Zimmermann B, Voigt K, et al. Endoproteolysis of glucagon-like peptide (GLP)-1 (7–36) amide by ectopeptidases in RINm5F cells. Peptides. 1997;18:625–32.PubMedCrossRef Hupe-Sodmann K, Göke R, Göke B, Thole HH, Zimmermann B, Voigt K, et al. Endoproteolysis of glucagon-like peptide (GLP)-1 (7–36) amide by ectopeptidases in RINm5F cells. Peptides. 1997;18:625–32.PubMedCrossRef
15.
Zurück zum Zitat Plamboeck A, Holst JJ, Carr RD, Deacon CF. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia. 2005;48:1882–90.PubMedCrossRef Plamboeck A, Holst JJ, Carr RD, Deacon CF. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia. 2005;48:1882–90.PubMedCrossRef
16.
Zurück zum Zitat O’Harte FP, Mooney MH, Lawlor A, Flatt PR. N-terminally modified glucagon-like peptide-1 (7–36) amide exhibits resistance to enzymatic degradation while maintaining its antihyperglycaemic activity in vivo. Biochim Biophys Acta. 2000;1474:13–22.PubMedCrossRef O’Harte FP, Mooney MH, Lawlor A, Flatt PR. N-terminally modified glucagon-like peptide-1 (7–36) amide exhibits resistance to enzymatic degradation while maintaining its antihyperglycaemic activity in vivo. Biochim Biophys Acta. 2000;1474:13–22.PubMedCrossRef
17.
Zurück zum Zitat Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia. 1998;41:271–8.PubMedCrossRef Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia. 1998;41:271–8.PubMedCrossRef
18.
Zurück zum Zitat Chae SY, Chun YG, Lee S, Jin CH, Lee ES, Lee KC, et al. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. J Pharm Sci. 2009;98:1556–67.PubMedCrossRef Chae SY, Chun YG, Lee S, Jin CH, Lee ES, Lee KC, et al. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. J Pharm Sci. 2009;98:1556–67.PubMedCrossRef
19.
Zurück zum Zitat Lee SH, Lee S, Youn YS, Na DH, Chae SY, Byun Y, et al. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconj Chem. 2005;16:377–82.CrossRef Lee SH, Lee S, Youn YS, Na DH, Chae SY, Byun Y, et al. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconj Chem. 2005;16:377–82.CrossRef
20.
Zurück zum Zitat Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268:19650–5.PubMed Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268:19650–5.PubMed
21.
Zurück zum Zitat Thum A, Hupe-Sodmann K, Göke R, Voigt K, Göke B, McGregor GP. Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and -4. Exp Clin Endocrinol Diabetes. 2002;110:113–8.PubMedCrossRef Thum A, Hupe-Sodmann K, Göke R, Voigt K, Göke B, McGregor GP. Endoproteolysis by isolated membrane peptidases reveal metabolic stability of glucagon-like peptide-1 analogs, exendins-3 and -4. Exp Clin Endocrinol Diabetes. 2002;110:113–8.PubMedCrossRef
22.
Zurück zum Zitat Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, et al. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes. 1999;48:1026–34.PubMedCrossRef Young AA, Gedulin BR, Bhavsar S, Bodkin N, Jodka C, Hansen B, et al. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic rhesus monkeys (Macaca mulatta). Diabetes. 1999;48:1026–34.PubMedCrossRef
23.
Zurück zum Zitat Sato M, Furuike T, Sadamoto R, Fujitani N, Nakahara T, Niikura K, et al. Glycoinsulins: dendritic sialyloligosaccharide-displaying insulins showing a prolonged blood-sugar-lowering activity. J Am Chem Soc. 2004;126:14013–22.PubMedCrossRef Sato M, Furuike T, Sadamoto R, Fujitani N, Nakahara T, Niikura K, et al. Glycoinsulins: dendritic sialyloligosaccharide-displaying insulins showing a prolonged blood-sugar-lowering activity. J Am Chem Soc. 2004;126:14013–22.PubMedCrossRef
24.
Zurück zum Zitat Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94:1626–35.PubMedCrossRef Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94:1626–35.PubMedCrossRef
25.
Zurück zum Zitat Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol. 2003;21:414–21.PubMedCrossRef Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol. 2003;21:414–21.PubMedCrossRef
26.
Zurück zum Zitat Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10:2392–5.PubMed Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10:2392–5.PubMed
27.
Zurück zum Zitat Ueda T, Tomita K, Notsu Y, Ito T, Fumoto M, Takakura T, et al. Chemoenzymatic synthesis of glycosylated glucagon-like peptide 1: effect of glycosylation on proteolytic resistance and in vivo blood glucose-lowering activity. J Am Chem Soc. 2009;131:6237–45.PubMedCrossRef Ueda T, Tomita K, Notsu Y, Ito T, Fumoto M, Takakura T, et al. Chemoenzymatic synthesis of glycosylated glucagon-like peptide 1: effect of glycosylation on proteolytic resistance and in vivo blood glucose-lowering activity. J Am Chem Soc. 2009;131:6237–45.PubMedCrossRef
28.
Zurück zum Zitat Hunter R. Standardization of the chloramine-T method of protein iodination. Proc Soc Exp Biol Med. 1970;133:989–92.PubMed Hunter R. Standardization of the chloramine-T method of protein iodination. Proc Soc Exp Biol Med. 1970;133:989–92.PubMed
29.
Zurück zum Zitat Webster R, Taberner J, Edgington A, Guhan S, Varghese J, Feeney H, et al. Role of sialylation in determining the pharmacokinetics of neutrophil inhibitory factor (NIF) in the Fischer 344 rat. Xenobiotica. 1999;29:1141–55.PubMedCrossRef Webster R, Taberner J, Edgington A, Guhan S, Varghese J, Feeney H, et al. Role of sialylation in determining the pharmacokinetics of neutrophil inhibitory factor (NIF) in the Fischer 344 rat. Xenobiotica. 1999;29:1141–55.PubMedCrossRef
30.
Zurück zum Zitat Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta. 1992;10:94–100. Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta. 1992;10:94–100.
31.
Zurück zum Zitat Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24.PubMedCrossRef Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24.PubMedCrossRef
32.
Zurück zum Zitat Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372:1240–50.PubMedCrossRef Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372:1240–50.PubMedCrossRef
33.
Zurück zum Zitat Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.PubMedCrossRef Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10:1093–5.PubMedCrossRef
34.
Zurück zum Zitat Melis M, Vegt E, Konijnenberg MW, de Visser M, Bijster M, Vermeij M, et al. Nephrotoxicity in mice after repeated imaging using 111In-labeled peptides. J Nucl Med. 2010;51:973–7.PubMedCrossRef Melis M, Vegt E, Konijnenberg MW, de Visser M, Bijster M, Vermeij M, et al. Nephrotoxicity in mice after repeated imaging using 111In-labeled peptides. J Nucl Med. 2010;51:973–7.PubMedCrossRef
Metadaten
Titel
Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1
verfasst von
Ayahisa Watanabe
Ken-ichi Nishijima
Songji Zhao
Yoshikazu Tanaka
Takeshi Itoh
Hiroshi Takemoto
Nagara Tamaki
Yuji Kuge
Publikationsdatum
01.02.2012
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 2/2012
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-011-0558-z

Weitere Artikel der Ausgabe 2/2012

Annals of Nuclear Medicine 2/2012 Zur Ausgabe