Skip to main content
Erschienen in: BMC Oral Health 1/2020

Open Access 01.12.2020 | Research article

Effect of reconstruction parameters on cone beam CT trabecular bone microstructure quantification in sheep

verfasst von: Aso Muhammad Ali Muhammad, Norliza Ibrahim, Rohana Ahmad, Muhammad Khan Asif, Zamri Radzi, Zuraiza Mohamad Zaini, Hairil Rashmizal Abdul Razak

Erschienen in: BMC Oral Health | Ausgabe 1/2020

Abstract

Background

Cone Beam Computed Tomography (CBCT) is a reliable radiographic modality to assess trabecular bone microarchitecture. The aim of this study was to determine the effect of CBCT image reconstruction parameters, namely, the threshold value and reconstruction voxel size, on trabecular bone microstructure assessment.

Methods

Five sectioned maxilla of adult Dorper male sheep were scanned using a CBCT system with a resolution of 76 μm3 (Kodak 9000). The CBCT images were reconstructed using different reconstruction parameters and analysed. The effect of reconstruction voxel size (76, 100 and 200 μm3) and threshold values (±15% from the global threshold value) on trabecular bone microstructure measurement was assessed using image analysis software (CT analyser version 1.15).

Results

There was no significant difference in trabecular bone microstructure measurement between the reconstruction voxel sizes, but a significant difference (Tb.N = 0.03, Tb.Sp = 0.04, Tb.Th = 0.01, BV/TV = 0.00) was apparent when the global threshold value was decreased by 15%.

Conclusions

Trabecular bone microstructure measurements are not compromised by changing the CBCT reconstruction voxel size. However, measurements can be affected when applying a threshold value of less than 15% of the recommended global value.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BV/TV
Bone volume fraction
CBCT
Cone beam computed tomography
Micro-CT
Micro- computed tomography
Tb.N
Trabecular number
Tb.Sp
Trabecular spacing
Tb.Th
Trabecular thickness

Background

Assessment of trabecular bone microstructure from CBCT images prior to implant surgery is a growing treatment planning protocol to ensure successful placement and clinical longevity of the dental implants [1]. This is because the trabecular bone microstructure has been shown to have major effects on primary stability during implant placement [2, 3]. In addition, primary stability can be accurately predicted based on the status of the trabecular bone microarchitecture prior to implant placement [4]. Nevertheless, the assessment of trabecular parameters from CBCT images may be compromised by the reconstruction parameters that are used for image segmentation, such as the reconstruction voxel size and threshold value.
Reconstruction voxel size is the voxel size that is used to reconstruct an image of raw data. A larger image reconstruction voxel size than the actual image acquisition voxel size is usually used to reduce the reconstruction time and to reduce computational expenses [5]. This is used in some practices such as analysing large-scale finite element models using a micro- CT-based image [57]. However, it is presumed that the image accuracy will be decreased when using a larger reconstruction voxel size than the acquisition voxel size [8]. The effect of CBCT reconstruction voxel size has focused on image quality [9] and 3D measurement of dental morphology [10]. However, the effect on trabecular bone microstructure measurements remains unknown.
Segmentation is a process of separating images to either bone or other soft tissue structures which can be affected by the threshold values [11]. Many studies have used μCT to investigate the effect of threshold values on trabecular microstructure parameters such as trabecular number (Tb.N), thickness (Tb.Th), spacing (Tb.Sp) and bone volume fraction (BV/TV) of small animal models [12]. Although studies on scanning parameters are abundant in large animal models, the effect of reconstruction parameters using CBCT are scarce. Hence, as it has been suggested that CBCT can be used for trabecular bone measurement to aid surgical treatment planning, the CBCT reconstruction parameters that affect these measurements should be investigated.
Threshold values are commonly used for segmentation as it is the most straightforward and feasible segmentation method specifically when measuring bone volume [13]. Therefore, its effect on trabecular quantification is also investigated in this study. The findings of this study will provide clinicians with an evidence-based guideline in deciding the suitable reconstruction voxel size and threshold values to be used for their CBCT image reconstruction prior to trabecular bone microstructure analysis.

Methods

Five sectioned maxillae of adult Dorper male sheep (age ranging from 20 to 48 months and body weight 50–60 kg) were obtained from the Animal Experimental Unit, Faculty of Veterinary Medicine, University Putra Malaysia (UPM), Malaysia following approval from the Institutional Animal Care and Use Committee (IACUC), UPM (No. UPM/IACUC/AUP-R031). The samples were imaged using a CBCT system (Carestream 9000, Kodak) at the Division of Oral Radiology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia. The selected scanning parameters for CBCT were 76 μm3 for the voxel size, 4 × 4 cm FOV and 360° arm rotation. Images were acquired at 65kv, 6 mA and 10.8 s. The samples were fitted in a cylinder-shaped plastic container to reduce any possible movement during scanning. The images were subsequently converted into BMP and imported into DataViewer (v 1.5, SkyScan, Kontich, Belgium) to obtain the sagittal view for image processing and analyses in CTAnalyser software (v 1.15, SkyScan, Kontich, Belgium).

The effect of CBCT reconstruction voxel size on trabecular bone microstructure assessment

The images were reconstructed using three different voxel sizes (76, 100, and 200 μm3) resulting in three different datasets. For the first dataset, a ROI was selected (14 × 8 mm) and reconstructed using a voxel size of 76 μm3. Then, the same ROI was used to reconstruct the other 2 datasets using a voxel size of 100 and 200 μm3, respectively (Fig. 1). Thus, three sets of ROI were obtained which were thresholded and binarized using a global threshold value (threshold value 82). The global threshold value was automatically generated by CTAnalyser software (v 1.15, SkyScan, Kontich, Belgium). This global threshold value was used as the optimal threshold value in this study. Later, trabecular bone analysis was performed using CTAnalyser software (v 1.15, SkyScan, Kontich, Belgium) to examine the effect of various reconstruction voxel sizes on the assessment of trabecular bone parameters (Tb.N, Tb.Th, Tb.Sp and BV/TV).

The effect of CBCT threshold value on trabecular bone microstructure assessment

The effect of different range of threshold values on the CBCT datasets was assessed using the first dataset as a reference. Three datasets were created by varying the global threshold value as follows: (Dataset A) decreasing the global selected threshold value by 15%, (Dataset B) and (Dataset C) increasing the global threshold value by 15% (Fig. 2). The images from all 3 datasets were then exported into CTAnalyser software (v 1.15, SkyScan, Kontich, Belgium) for the selection of the ROI. Three-dimensional analyses were then performed on all three datasets to assess the trabecular bone parameters (Tb.N, Tb.Th, Tb.Sp and BV/TV).

Statistical analyses

The assessments were performed twice by two examiners with a minimum interval of one week between the two measurements. Intraclass correlation coefficient (ICC) was employed to examine the intra-observer reliability and inter-rater agreement in reproducing the measurements. The trabecular bone microstructure parameters that were assessed include trabecular number (Tb.N), thickness (Tb.Th), separation (Tb.Sp) and bone volume fraction (BV/TV). One-way ANOVA was used to assess the differences obtained from three reconstruction voxel sizes and threshold values. Additionally, the Bonferroni test was used as a post hoc test to examine the significant differences between threshold values.

Results

The effect of reconstruction voxel size on the assessment of trabecular bone microstructure

The intra-observer reproducibility (> 0.91) and inter-rater agreement (> 0.80) of trabecular bone microstructure measurements were excellent for all parameters (Tables 1 and 2). One-way ANOVA showed no significant difference between the three reconstruction voxel sizes in all trabecular bone microstructures (Tb.N, p = 0.579; Tb.Th, p = 0.095; Tb.Sp, p = 0.131; BV/TV, p = 0.908), as shown in Table 3.
Table 1
Intraobserver reliability for different reconstruction voxel sizes using the intraclass correlation coefficient (ICC)
 
V1 = 76 μm3
V2 = 100 μm3
V3 = 200 μm3
Tb.N
0.991
0.986
0.977
Tb.Sp
0.912
0.973
0.989
Tb.Th
0.981
0.989
0.996
BV/TV
0.994
0.999
0.999
Trabecular number (Tb.N), separation (Tb.Sp), thickness (Tb.Th), and bone volume fraction (BV/TV)
V = Voxel size
*p < 0.05
Table 2
Inter-rater agreement for different reconstruction voxel sizes using the intraclass correlation coefficient (ICC)
 
V1 = 76 μm3
V2 = 100 μm3
V3 = 200 μm3
Tb.N
0.823
0.840
0.813
Tb.Sp
0.804
0.853
0.876
Tb.Th
0.883
0.819
0.837
BV/TV
0.829
0.871
0.845
Trabecular number (Tb.N), separation (Tb.Sp), thickness (Tb.Th), and bone volume fraction (BV/TV)
V = Voxel size
*p < 0.05
Table 3
The mean and standard deviation (SD) of trabecular microstructure measurements analyzed using One Way ANOVA for different reconstruction voxel size
Voxel size
n
Trabecular number Tb.N (μm− 1)
Trabecular spacing Tb.Sp (μm)
Trabecular thickness Tb.Th (μm)
Bone Volume/Tissue volume BV/TV %
Mean
SD
p
Mean
SD
p
Mean
SD
p
Mean
SD
p
76 μm3
5
0.0153
0.007
0.579
17.6388
2.040
0.095
6.8204
1.832
0.131
11.4783
8.212
0.908
100 μm3
5
0.0168
0.008
16.8204
2.206
6.1350
1.966
11.6022
8.817
200 μm3
5
0.0204
0.007
14.4790
2.230
4.3543
1.676
9.6478
6.309
*p < 0.05

The effect of different threshold values on trabecular bone microstructure measurements

The reproducibility of trabecular bone microstructure measurements revealed excellent intra-observer reliability (> 0.91) and inter-rater agreement (> 0.82) when using different threshold values (Tables 4 and 5). One-way ANOVA showed significant differences between the three tested threshold values. Bonferroni Post-Hoc analyses with pair-wise multiple comparisons were performed to test the difference between the three different threshold values. A significant difference was observed (Tb.N = 0.03, Tb.Sp = 0.04, Tb.Th = 0.01, BV/TV = 0.00) when the threshold value was decreased by 15% from the global value. However, the increase in the threshold value (Th: 90) from the global value (Th: 82) had no significant (p >0.05) effect on the trabecular bone measurements (Table 6).
Table 4
Intraobserver reliability for different threshold values using intraclass correlation coefficient (ICC)
 
Th 1 = 73
Th 2 = 82
Th 3 = 90
Tb.N
0.988
0.991
0.994
Tb.Sp
0.996
0.912
0.975
Tb.Th
0.998
0.981
0.973
BV/TV
0.971
0.994
0.985
Trabecular number (Tb.N), separation (Tb.Sp), thickness (Tb.Th), bone volume fraction (BV/TV) and threshold value (Th)
Table 5
Inter-rater agreement for different threshold values using intraclass correlation coefficient (ICC)
 
Th 1 = 73
Th 2 = 82
Th 3 = 90
Tb.N
0.870
0.853
0.824
Tb.Sp
0.857
0.841
0.872
Tb.Th
0.865
0.821
0.854
BV/TV
0.837
0.860
0.883
Trabecular number (Tb.N), separation (Tb.Sp), thickness (Tb.Th), bone volume fraction (BV/TV) and threshold value (Th)
Table 6
The mean and standard deviation (SD) of trabecular microstructural measurements analyzed using One Way ANOVA for different threshold values
Threshold value
n
Trabecular number Tb.N (μm−1)
Trabecular spacing Tb.Sp (μm)
Trabecular thickness Tb.Th (μm)
Bone Volume/Tissue volume BV/TV %
Mean
SD
P
Mean
SD
p
Mean
SD
p
Mean
SD
p
73
5
0.0264
0.00385
 
14.4607
1.49057
 
12.2463
3.12846
 
32.7632
10.87921
 
82
   
0.033
  
0.037
  
0.007
  
0.004
90
   
0.000
  
0.001
  
0.000
  
0.000
82
5
0.0153
0.00784
 
17.6388
2.04041
 
6.8204
1.83221
 
11.4783
8.21205
 
73
   
0.033
  
0.037
  
0.007
  
0.004
90
   
0.082
  
0.190
  
0.381
  
0.404
90
5
0.0059
0.00518
 
19.8544
1.55221
 
4.4882
1.42399
 
3.2503
3.42096
 
73
   
0.000
  
0.001
  
0.000
  
0.000
82
   
0.82
  
0.190
  
0.381
  
0.404
*p < 0.05

Discussion

The enhanced resolution of cone-beam computed tomography (CBCT) images has significantly improved the measurement of trabecular bone microstructure [14, 15]. Unlike scanning parameters (voxel size, field of view and scanning rotation) [16], the effect of CBCT reconstruction parameters (reconstruction voxel size and threshold value) on diagnostic accuracy of trabecular bone microstructure has not been reported [17, 18].
The accuracy of micro-CT images in measuring trabecular bone microstructure can be compromised by the reconstruction voxel size [8, 19, 20]. Previous micro-CT studies have reported that the image quality cannot be improved by using a smaller reconstruction voxel size after originally scanning the sample using a large voxel size [8, 21]. This is due to an increase in image noise (9). Therefore, in the current study, CBCT images that were scanned using 76 μm3 were reconstructed using larger voxel sizes (100 and 200 μm3). The findings indicated no differences in trabecular bone measurements between different reconstructed images. However, our results differ to those reported in previously studies [8, 21] as the scanning voxel size (76 μm3) is almost 4 times larger than was used in micro-CT studies (21 μm3). It was demonstrated in micro-CT studies that only certain trabecular bone parameters namely BV/TV and Tb.Th are compromised by scanning parameters when reconstructing the images of 21 μm3 using larger voxel sizes (50 and 110 μm3) [8]. This is due to the fact that the trabecular bone parameters are significantly affected by the scanning voxel size rather than the reconstruction voxel size. However, this effect can only be observed when the difference between the scan and reconstruction voxel is very large [21]. The results of the present study showed that trabecular bone microstructure measurements are not influenced by CBCT reconstruction voxel size, although it is important to note other CBCT systems with different scanning and reconstruction parameters may generate different results.
Threshold values may influence the analysis of trabecular microstructure parameters in micro-CT images [2224]. Similarly, our study of CBCT images showed that a reducing the threshold value by 15% had a significant effect on all trabecular bone microstructure parameters (Tb.N = 0.03, Tb.Sp = 0.04, Tb.Th = 0.01, BV/TV = 0.00). However, increasing the threshold value from the global value had no significant (p < 0.05) effect on trabecular bone measurements (Table 4). The deviation of trabecular bone measurements might be due to partial volume effects that might alter the layers of voxels from the trabecular surface [25]. However, Tb.N measurements are insensitive to threshold variation if the selected threshold values are within the range of realistic values.
However, some limitations should be noted. In this study, the samples were not assessed using micro CT images due to computational constrains. Although strong correlations between micro CT and CBCT trabecular bone measurements have been largely described [2628], the comparison in varying the reconstruction parameters is highly recommended to further validate the accuracy of the current findings.

Conclusion

This study showed that trabecular bone microstructure measurements are not compromised by changing the CBCT reconstruction voxel size. However, measurements can be affected when applying a threshold value less than 15% of the recommended global value.

Acknowledgements

Not applicable.
Ethical approval for the study was obtained from the Institutional Animal Care and Use Committee (IACUC), UPM (No. UPM/IACUC/AUP-R031).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. The role of the finite element model in dental implants. J Oral Implantol. 2000;26:77–81.CrossRef DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. The role of the finite element model in dental implants. J Oral Implantol. 2000;26:77–81.CrossRef
2.
Zurück zum Zitat Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent. 2009;18:480–5.CrossRef Sakka S, Coulthard P. Bone quality: a reality for the process of osseointegration. Implant Dent. 2009;18:480–5.CrossRef
3.
Zurück zum Zitat Fanuscu MI, Chang TL. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res. 2004;15:213–8.CrossRef Fanuscu MI, Chang TL. Three-dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res. 2004;15:213–8.CrossRef
4.
Zurück zum Zitat Ibrahim N, Parsa A, Hassan B, Van der Stelt P, Wismeijer D. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review. Dentomaxillofac Radiol. 2013;42:20120075.CrossRef Ibrahim N, Parsa A, Hassan B, Van der Stelt P, Wismeijer D. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review. Dentomaxillofac Radiol. 2013;42:20120075.CrossRef
5.
Zurück zum Zitat Homminga J, Huiskes R, Van Rietbergen B, Rüegsegger P, Weinans H. Introduction and evaluation of a gray-value voxel conversion technique. J Biomech. 2001;34(4):513–7.CrossRef Homminga J, Huiskes R, Van Rietbergen B, Rüegsegger P, Weinans H. Introduction and evaluation of a gray-value voxel conversion technique. J Biomech. 2001;34(4):513–7.CrossRef
6.
Zurück zum Zitat Ladd AJ, Kinney JH, Haupt DL, Goldstein SA. Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res. 1998;16:622–8.CrossRef Ladd AJ, Kinney JH, Haupt DL, Goldstein SA. Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res. 1998;16:622–8.CrossRef
7.
Zurück zum Zitat Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech. 1999;32:165–73.CrossRef Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech. 1999;32:165–73.CrossRef
8.
Zurück zum Zitat Kim D-G, Christopherson GT, Dong XN, Fyhrie DP, Yeni YN. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone. 2004;35:1375–82.CrossRef Kim D-G, Christopherson GT, Dong XN, Fyhrie DP, Yeni YN. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone. 2004;35:1375–82.CrossRef
9.
Zurück zum Zitat Tanimoto H, Arai Y. The effect of voxel size on image reconstruction in cone-beam computed tomography. Oral Radiol. 2009;25:149.CrossRef Tanimoto H, Arai Y. The effect of voxel size on image reconstruction in cone-beam computed tomography. Oral Radiol. 2009;25:149.CrossRef
10.
Zurück zum Zitat Hassan B, Souza PC, Jacobs R, de Azambuja BS, van der Stelt P. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig. 2010;14:303–10.CrossRef Hassan B, Souza PC, Jacobs R, de Azambuja BS, van der Stelt P. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig. 2010;14:303–10.CrossRef
11.
Zurück zum Zitat Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys. 2010;35:3.CrossRef Sharma N, Aggarwal LM. Automated medical image segmentation techniques. J Med Phys. 2010;35:3.CrossRef
12.
Zurück zum Zitat Christiansen BA. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone reports. 2016;5:136–40.CrossRef Christiansen BA. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone reports. 2016;5:136–40.CrossRef
13.
Zurück zum Zitat Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech. 1998;31:1187–92.CrossRef Ulrich D, van Rietbergen B, Weinans H, Rüegsegger P. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech. 1998;31:1187–92.CrossRef
14.
Zurück zum Zitat Miracle A, Mukherji S. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009;30:1285–92.CrossRef Miracle A, Mukherji S. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol. 2009;30:1285–92.CrossRef
15.
Zurück zum Zitat Koskinen SK, Haapamäki VV, Salo J, Lindfors NC, Kortesniemi M, Seppälä L, et al. CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skelet Radiol. 2013;42:649–57.CrossRef Koskinen SK, Haapamäki VV, Salo J, Lindfors NC, Kortesniemi M, Seppälä L, et al. CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skelet Radiol. 2013;42:649–57.CrossRef
16.
Zurück zum Zitat Bechara B, McMahan CA, Moore WS, Noujeim M, Geha H, Teixeira FB. Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines. J Oral Sci. 2012;54:227–32.CrossRef Bechara B, McMahan CA, Moore WS, Noujeim M, Geha H, Teixeira FB. Contrast-to-noise ratio difference in small field of view cone beam computed tomography machines. J Oral Sci. 2012;54:227–32.CrossRef
17.
Zurück zum Zitat Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol. 2015;44:20150078.CrossRef Pauwels R, Faruangsaeng T, Charoenkarn T, Ngonphloy N, Panmekiate S. Effect of exposure parameters and voxel size on bone structure analysis in CBCT. Dentomaxillofac Radiol. 2015;44:20150078.CrossRef
18.
Zurück zum Zitat Maret D, Telmon N, Peters O, Lepage B, Treil J, Inglèse J, et al. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac Radiol. 2012;41:649–55.CrossRef Maret D, Telmon N, Peters O, Lepage B, Treil J, Inglèse J, et al. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac Radiol. 2012;41:649–55.CrossRef
19.
Zurück zum Zitat Cooper D, Turinsky A, Sensen C, Hallgrimsson B. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int. 2007;80:211–9.CrossRef Cooper D, Turinsky A, Sensen C, Hallgrimsson B. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int. 2007;80:211–9.CrossRef
20.
Zurück zum Zitat Tabor Z. Analysis of the influence of image resolution on the discriminating power of trabecular bone architectural parameters. Bone. 2004;34:170–9.CrossRef Tabor Z. Analysis of the influence of image resolution on the discriminating power of trabecular bone architectural parameters. Bone. 2004;34:170–9.CrossRef
21.
Zurück zum Zitat Yeni YN, Christopherson GT, Dong XN, Kim D-G, Fyhrie DP. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. J Biomech Eng. 2005;127:1–8.CrossRef Yeni YN, Christopherson GT, Dong XN, Kim D-G, Fyhrie DP. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone. J Biomech Eng. 2005;127:1–8.CrossRef
22.
Zurück zum Zitat Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivo μCT imaging. J Bone Miner Res. 2004;19:1640–50.CrossRef Waarsing JH, Day JS, Weinans H. An improved segmentation method for in vivo μCT imaging. J Bone Miner Res. 2004;19:1640–50.CrossRef
23.
Zurück zum Zitat Ito M, Nakamura T, Matsumoto T, Tsurusaki K, Hayashi K. Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture. Bone. 1998;23:163–9.CrossRef Ito M, Nakamura T, Matsumoto T, Tsurusaki K, Hayashi K. Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture. Bone. 1998;23:163–9.CrossRef
24.
Zurück zum Zitat Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58:24–9.CrossRef Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58:24–9.CrossRef
25.
Zurück zum Zitat Hara T, Tanck E, Homminga J, Huiskes R. The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone. 2002;31:107–9.CrossRef Hara T, Tanck E, Homminga J, Huiskes R. The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone. 2002;31:107–9.CrossRef
26.
Zurück zum Zitat Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Implants Res. 2014;25:941–5.CrossRef Ibrahim N, Parsa A, Hassan B, van der Stelt P, Aartman IH, Wismeijer D. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Implants Res. 2014;25:941–5.CrossRef
27.
Zurück zum Zitat Gonzalez-Garcia R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. 2013;24:871–9.CrossRef Gonzalez-Garcia R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. 2013;24:871–9.CrossRef
28.
Zurück zum Zitat Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol. 2013;42:20130145.CrossRef Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol. 2013;42:20130145.CrossRef
Metadaten
Titel
Effect of reconstruction parameters on cone beam CT trabecular bone microstructure quantification in sheep
verfasst von
Aso Muhammad Ali Muhammad
Norliza Ibrahim
Rohana Ahmad
Muhammad Khan Asif
Zamri Radzi
Zuraiza Mohamad Zaini
Hairil Rashmizal Abdul Razak
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2020
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-1035-7

Weitere Artikel der Ausgabe 1/2020

BMC Oral Health 1/2020 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.