Skip to main content
Erschienen in: Translational Neurodegeneration 1/2014

Open Access 01.12.2014 | Review

Epigenetic modifications of chronic hypoxia-mediated neurodegeneration in Alzheimer’s disease

verfasst von: Hui Liu, Weidong Le

Erschienen in: Translational Neurodegeneration | Ausgabe 1/2014

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting the elderly people. AD is characterized by progressive and gradual decline in cognitive function and memory loss. While familial early-onset AD is usually associated with gene mutations, the etiology of sporadic late-onset form of AD is largely unknown. It has been reported that environmental factors and epigenetic alterations significantly contribute to the process of AD. Our previous studies have documented that chronic hypoxia is one of the environmental factors that may trigger the AD development and aggravate the disease progression. In this review, we will summarize the pathological effects of chronic hypoxia on the onset and development of AD and put forward the possible molecule mechanisms underlying the chronic hypoxia mediated AD pathogenesis. Finally, we propose that epigenetic regulations may represent new opportunity for the therapeutic intervention of this disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2047-9158-3-7) contains supplementary material, which is available to authorized users.

Competing interests

All authors declare no competing financial interests.

Authors’ contributions

HL reviewed the literature and has written the initial manuscript draft; WL reviewed and critiqued the manuscript. Both authors read and approved the final manuscript.
Abkürzungen
AD
Alzheimer’s disease
NFTs
Neurofibrillary tangles
beta-amyloid
FAD
Familial AD
LOAD
Late-onset form of AD
APP
Amyloid-precursor protein
PS
Presenilin
Apo E
Apolipoprotein E
GWAS
Genome-wide association studies
CLU
Clusterin
PICALM
Phosphatidylinositol binding clathrin assembly protein
CR1
Complement receptor 1
BIN1
Bridging integrator
MARK4
Microtubule affinity-regulating kinase4
ABCA7
The ATP cassette transporter
MS4A6A
A membrane-spanning 4-domains, subfamily A
CD2AP
A CD2-associated protein
EPHA1
Ephrin A1
Health ABC
Health, Aging, and Body Composition
NEP
Neprilysin
IDE
Insulin-degrading enzyme
HIF-1
Hypoxia-inducible factor-1
BACE
Beta-site APP-cleaving enzyme
CBZ
Carbamazepine.

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly people. The latest epidemiology study of AD reported that the number of people with the disease in China is significantly increased from 1.93 million in 1990 to 5.69 million in 2010[1], representing a major health problem and a heavy financial burden on individuals and society as a whole. Clinically, AD is characterized by progressive and gradual decline in cognitive function, accompanying with severe memory loss and, ultimately, decreasing physical functions and death. The clinical manifestations of AD are associated with the specific pathological changes in the brain of the patient. The pathological hallmarks of the disease are extracellular neuritic plaques, intracellular neurofibrillary tangles (NFTs), synaptic loss and neuron degeneration. Aberrant hyperphosphorylation of tau protein is the main constituent of NFTs. Neuritic plaques are composed of abnormal cleavaged β-amyloid (Aβ) peptide and are surrounded by reactive astrocytes and activated microglia[2, 3].
AD can be classified into two forms: early-onset familial AD (FAD) and sporadic late-onset form of AD (LOAD). Most cases of AD are sporadic, with only 5% of the total number of AD exhibiting a clear genetic inheritance[4]. Gene mutations in the amyloid precursor protein (APP), presenilin1 (PS1) and presenilin2 (PS2) have been documented as causatives for FAD, and the Apolipoprotein E4 (ApoE4) allele has been associated with LOAD[5]. Several new genetic findings derived from genome-wide association studies (GWAS) have been identified as new susceptibility loci. These include clusterin (CLU), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1), bridging integrator (BIN1), microtubule affinity-regulating kinase4 (MARK4), the ATP cassette transporter (ABCA7), a membrane-spanning 4-domains, subfamily A (MS4A6A), CD33, a CD2-associated protein (CD2AP), and ephrin A1 (EPHA1)[6, 7]. While gene mutations undoubtedly play an important role in the etiology of AD, more and more studies support that the environmental risk factors contribute greatly to the disease onset and progression[810]. It is believed that most cases of AD arise through interaction between genetic and environmental factors. Gene-environment interaction refers to a certain environmental exposure in the presence of a susceptibility gene[8]. It is thought that various environmental exposures can contribute to the risk of AD, such as aging, diet and nutrition, educational level, exposure to metals, pesticides, diabetes, brain trauma and etc.[1114]. Among all the environmental exposures, chronic hypoxia has been extensively studied recently[15]. It has been shown that chronic hypoxia may trigger the AD development and may also aggravate the disease progression[15]. Hereby we summarize current findings of the pathological effects of chronic hypoxia on the onset and development of AD and put forward the potential molecule mechanisms of epigenetic modification underlying the hypoxia mediated AD pathogenesis.

Chronic hypoxia is a risk factor for dementia and Alzheimer’s disease

Chronic hypoxia is a reduction of oxygen supply, which is a direct consequence of hypoperfusion and restricts the function of organs, tissues or cells. Efficient oxygen delivery to brain tissues is essential for normal brain function and cells survival. Clinically, chronic hypoxia is a common pathophysiological event and contributes significantly to the progression of widespread diseases including fever, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, stroke, cancer, neurodegenerative disorders and etc.[16]. It has been shown that individuals who have suffered severe hypoxia or ischemia are more susceptible to developing AD[1719]. Researchers reported that Aβ deposited in the brain after severe head injury[12, 20], and cardiac arrest induced a time-dependent increase level of Aβ in the serum of heart attack patients[21]. A recent clinical prospective study by Yaffe and colleagues, demonstrated that older women with sleep-disordered breathing and hypoxia had a significantly increased risk of developing cognitive impairment and dementia[22]. Their findings suggested that chronic hypoxia but not sleep fragmentation or duration was associated with the higher risk of mild cognitive impairment or dementia. Another prospective study named Health, Aging, and Body Composition (Health ABC) that took a follow-up observation over the 11 years has shown that anemia was associated with an increased risk of developing dementia among older adults[23].
Consistent results have been published in transgenic mouse models or cell models showing the impact of chronic hypoxia on AD. It is found that hypoxia increased both mRNA and protein levels of APP in cells and elevated the level of Aβ in culture medium significantly[24]. Our previous study has reported that repeated hypoxia treatment could lead to more and larger senile plaque formations and more Aβ42 production in aged APPSwe + PS1A246E double transgenic mice[25]. Interestingly, similar neuropathology was observed in the study of prenatal hypoxia in AD development in adult mice[26]. It has been found that prenatal chronic intermittent hypoxia significantly contributed to memory and cognition deficit in adult mice[26]. Moreover, prenatal hypoxia increased senile plaque formation and Aβ production in adult mice[26]. Another study also showed that hypoxia treatment impaired spatial learning and memory of AD transgenic mice, and caused ER stress and neuronal apoptosis[27]. These effects were associated with abnormal calpain activation because suppression of m-calpain expression could attenuate the hypoxia-induced ER stress and apoptosis[27].

Chronic hypoxia may facilitate AD pathogenesis by increasing Aβ generation and decreasing Aβ degradation

Abnormal cleavaged β-amyloid peptide is the main constituent of neuritic plaques, which derives from sequential cleavage of APP by β-secretase and γ-secretase[28]. In the brain, the clearance of Aβ is mainly degraded by neprilysin (NEP) and insulin-degrading enzyme (IDE)[29]. Several studies including ours have shown that chronic hypoxia may elevate the production of Aβ and reduce the degradation of Aβ[25, 26, 3033]. Chronic hypoxia in the human neuroblastoma SH-SY5Y cells caused reduced expression ADAM10, part of the α-secretases and increased the expression of β-site APP cleaving enzyme 1 (BACE1)[34, 35]. Our previous study has demonstrated that chronic hypoxia increased Aβ generation by altering β- and γ-cleavage of APP[25]. The ratio of C99/C83 was elevated by chronic hypoxia in the brain of AD transgenic mice and the expression level of APH-1a was enhanced under hypoxia condition, which in turn would lead to increase in Aβ production[25]. Others have also shown that hypoxia could up-regulate BACE1 and APH-1a at both transcriptional and translational levels in vitro and in vivo[30, 31, 33]. It is widely accepted that hypoxia-inducible factor-1 (HIF-1) is the master regulator of the cellular response to chronic hypoxia[36]. Further investigations have revealed a functional hypoxia responsive element in the BACE1 gene promoter, to which HIF-1α can bind and result in increased activity of β-secretase under hypoxia conditions[30, 33]. Similar HIF-1α binding site AP4 was identified in the promoter of APH-1a[31]. The binding of AP4 and HIF-1 to the promoter under hypoxia conditions may significantly affect the expression of APH-1a and lead to increased activity of γ-secretase[31]. All these findings suggest that hypoxia may increase the generation of Aβ in vivo and in vitro.
It is known that NEP plays a key role in the degradation of Aβ in the brain and it is one of the most important Aβ-degrading enzymes[29, 37]. Evidence showed that NEP mRNA, protein and activity levels were declined not only in AD but also in the normal aging in the brains[3842]. Fisk et al. demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity[43, 44]. We previously tested the expression levels of NEP in the cortex of AD transgenic mice, and found that the protein level of NEP started to reduce at the age of 6-month old in the brain of AD mice in comparison with age-matched wide-type mice[26]. Interestingly, the results also documented that chronic hypoxia induced significantly down regulation of NEP protein level in both transgenic mice and wide-type mice[26]. The declined level of NEP would reduce the clearance of Aβ. Given to the aggravated pathogenesis of AD and the over-load of Aβ burden under hypoxia condition, the chronic hypoxia-induced down regulation of NEP was implied to be a significant event in AD.

Chronic hypoxia may aggravate Aβ burden through epigenetic modifications on genes associated with Aβ metabolism

It has been indicated that environmental factors and epigenetic mechanisms are likely to contribute to the etiology of LOAD[810]. Epigenetic mechanisms modify heritable and non-heritable traits without altering the underlying DNA code, mediated through the reversible modifications of DNA and histones[45]. Epigenetic processes play an important role in normal physical functions of cells and the body, so aberrant epigenetic modification are hypothesized to contribute to a majority of pathologies[46]. Abnormal PS1 methylation patterns have previously been associated with hypomethylation in promoter[47]. DNA demethylation has a strong correlation with transcriptional activation[48]. Hypomethylation in promoter CpG islands of other AD-associated genes such as APP and BACE1 has also been reported, which in turn may lead to abnormal up regulation of these genes and over-production of Aβ[49, 50]. In the study of epigenetic differences in monozygotic twins discordant for AD, a significantly reduction of DNA methylation was observed in the temporal cortex neuronal nuclei of AD twin[51]. It was shown that hypoxia can reduce global DNA methylation in cancer cell lines in vivo and in vitro[52]. Importantly, hypoxia could cause long-lasting change in DNA methylation change in promoter regions, some of which could be highly correlated with transcriptional modulation in a number of genes involved in neural growth and development[53]. Chen et al. found that Aβ could reduce global DNA methylation and increase NEP promoter methylation and further suppress the NEP expression in mRNA and protein levels[54]. However, the methylation status of the NEP promoters did not regulate its expression in vitro[55], and chronic hypoxia did not affect the methylation patterns of NEP gene promoters in mouse primary cortical and hippocampal neurons[32]. Interestingly, chronic hypoxia could cause significant down regulation of NEP by up-regulating G9a histone methyltransferase and histone deacetylase 1 (HDAC1), which resulted in increased expression of H3K9me2 and decreased expression of H3-Ace respectively[32]. In addition, methylation inhibitor 5-Aza, HDAC inhibitor valproic acid VA, and siRNA-mediated knockdown of G9a or HDAC1 could reverse the expression of NEP[32]. Others also reported that the NEP promoter could be repressed by HDACs and the expression of NEP was repressed in neuronal cells via the competitive binding of HDACs to its promoter[55]. All these findings suggest that chronic hypoxia aggravates AD by epigenetic modulations, mainly focusing on DNA methylaion and histones modifications, which are of tremendous importance to the onset and progression of the disease (Figure 1).

Epigenetic regulation targeting Aβ burden may help relieve the chronic hypoxia-mediated disease process

Currently, the treatment of AD focuses mainly on improving symptoms, targeting cholinergic and glutamatergic neuron transmission, with no therapeutics that can cure the disease[56]. Researchers around the world have worked hard to search for novel therapeutics for AD, which include the anti-Aβ (drugs to reduce its production, prevent its aggregation and promote its clearance), anti-tau (drugs to prevent its aggregation or phosphorylation), neurotrophins, and others[56]. Epigenetic regulation is a strong candidate therapeutic, since epigenetic modifications are reversible while genetic mutations are not. Drugs which can modulate DNA methylation and remodel the structure of chromatin through post-translational modifications of histones are promising potential candidates[5760]. Recently, several drugs have been reported to be effective on AD mice models by modulating DNA methylation and histone acetylation separately, although none have yet entered clinical development[58, 59, 61, 62]. Sodium valproic acid is one of these disease-modifying drugs, which may not only attenuate AD pathogenesis in transgenic AD mice, but also show effect in hypoxia-induced AD in the model. Valproic acid is a widely used antiepileptic drug, which has recently been found to have neuroprotection[63, 64], and histone deacetylase inhibitory property may offer potential therapeutic option for AD[65]. It has been reported that valproic acid could inhibit Aβ production, reduce neuritic plaque formation, and improve behavioral deficits in AD mice[66]. Further study has demonstrated that valproic acid could attenuate the prenatal hypoxia-induced AD neuropathology, improved learning deficits and decrease Aβ42 levels in AD transgenic mice by up regulation of NEP[67]. Moreover, valproic acid could also restore memory deficit in adult offspring caused by prenatal hypoxia via elevating NEP expression and activity[68]. Hence, epigenetic drugs that increase histone acetylation by inhibiting HDAC could be useful in the disease treatment. Strategies targeting Aβ burden by epigenetic regulations, may represent new opportunities for therapeutic intervention to AD.

Conclusion

Epigenetic effects can present throughout life and environmental factors can influence the individuals repeatedly along their whole life. A wide range of clinical diseases may be associated with chronic hypoxia including obstructive sleep apnea, cerebrovascular diseases, systemic hypertension, cardiovascular disease, chronic obstructive pulmonary disease, pulmonary hypertension, congestive heart failure and others[69]. Given to the possibility that chronic hypoxia is associated with AD, more attention should be paid to this pathological event and the underlying mechanisms. In addition, we hypothesize that prevent chronic hypoxic condition may be helpful for the reduction of AD. Unlike genetic mutations in FAD, epigenetic alterations are reversible, which are easier to modulate the process. Therefore, understanding the mechanisms of epigenetic alteration during AD pathogenesis caused by environmental factors, is essential for searching new treatment strategy for the disease.

Acknowledgement

This study was funded by research grants from the National Nature Science Foundation (NO. 81000541and NO. 81171201) and by the National Basic Research Program (NO. 2011CB510003).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

All authors declare no competing financial interests.

Authors’ contributions

HL reviewed the literature and has written the initial manuscript draft; WL reviewed and critiqued the manuscript. Both authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H, Wang W, Rudan I: Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet 2013, 381: 2016-2023. 10.1016/S0140-6736(13)60221-4CrossRefPubMed Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H, Wang W, Rudan I: Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet 2013, 381: 2016-2023. 10.1016/S0140-6736(13)60221-4CrossRefPubMed
2.
Zurück zum Zitat Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH: Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 2010, 30: 14946-14954. 10.1523/JNEUROSCI.4305-10.2010PubMedCentralCrossRefPubMed Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH: Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 2010, 30: 14946-14954. 10.1523/JNEUROSCI.4305-10.2010PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Goedert M, Spillantini MG: A century of Alzheimer’s disease. Science 2006, 314: 777-781. 10.1126/science.1132814CrossRefPubMed Goedert M, Spillantini MG: A century of Alzheimer’s disease. Science 2006, 314: 777-781. 10.1126/science.1132814CrossRefPubMed
5.
Zurück zum Zitat Bertram L, Lill CM, Tanzi RE: The genetics of Alzheimer disease: back to the future. Neuron 2010, 68: 270-281. 10.1016/j.neuron.2010.10.013CrossRefPubMed Bertram L, Lill CM, Tanzi RE: The genetics of Alzheimer disease: back to the future. Neuron 2010, 68: 270-281. 10.1016/j.neuron.2010.10.013CrossRefPubMed
6.
Zurück zum Zitat Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41: 1088-1093. 10.1038/ng.440PubMedCentralCrossRefPubMed Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41: 1088-1093. 10.1038/ng.440PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011, 43: 429-435. 10.1038/ng.803PubMedCentralCrossRefPubMed Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011, 43: 429-435. 10.1038/ng.803PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Chouliaras L, Sierksma AS, Kenis G, Prickaerts J, Lemmens MA, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, Van Leeuwen F, Hof PR, Van Os J, Steinbusch HWM, Van den Hove DLA, Rutten BPF: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010., 2010: doi: 10.4061/2010/859101 Chouliaras L, Sierksma AS, Kenis G, Prickaerts J, Lemmens MA, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, Van Leeuwen F, Hof PR, Van Os J, Steinbusch HWM, Van den Hove DLA, Rutten BPF: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010., 2010: doi: 10.4061/2010/859101
9.
Zurück zum Zitat Lahiri DK, Maloney B, Zawia NH: The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 2009, 14: 992-1003. 10.1038/mp.2009.82CrossRefPubMed Lahiri DK, Maloney B, Zawia NH: The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 2009, 14: 992-1003. 10.1038/mp.2009.82CrossRefPubMed
10.
Zurück zum Zitat Lahiri DK, Zawia NH, Greig NH, Sambamurti K, Maloney B: Early-life events may trigger biochemical pathways for Alzheimer’s disease: the “LEARn” model. Biogerontology 2008, 9: 375-379. 10.1007/s10522-008-9162-6CrossRefPubMed Lahiri DK, Zawia NH, Greig NH, Sambamurti K, Maloney B: Early-life events may trigger biochemical pathways for Alzheimer’s disease: the “LEARn” model. Biogerontology 2008, 9: 375-379. 10.1007/s10522-008-9162-6CrossRefPubMed
11.
Zurück zum Zitat Carrillo MC, Blackwell A, Hampel H, Lindborg J, Sperling R, Schenk D, Sevigny JJ, Ferris S, Bennett DA, Craft S, Timothy H, Klunk W: Early risk assessment for Alzheimer’s disease. Alzheimers Dement 2009, 5: 182-196. 10.1016/j.jalz.2009.01.019CrossRefPubMed Carrillo MC, Blackwell A, Hampel H, Lindborg J, Sperling R, Schenk D, Sevigny JJ, Ferris S, Bennett DA, Craft S, Timothy H, Klunk W: Early risk assessment for Alzheimer’s disease. Alzheimers Dement 2009, 5: 182-196. 10.1016/j.jalz.2009.01.019CrossRefPubMed
12.
Zurück zum Zitat Fleminger S, Oliver D, Lovestone S, Rabe-Hesketh S, Giora A: Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 2003, 74: 857-862. 10.1136/jnnp.74.7.857PubMedCentralCrossRefPubMed Fleminger S, Oliver D, Lovestone S, Rabe-Hesketh S, Giora A: Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 2003, 74: 857-862. 10.1136/jnnp.74.7.857PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Sivanandam TM, Thakur MK: Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 2012, 36: 1376-1381. 10.1016/j.neubiorev.2012.02.013CrossRefPubMed Sivanandam TM, Thakur MK: Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 2012, 36: 1376-1381. 10.1016/j.neubiorev.2012.02.013CrossRefPubMed
14.
Zurück zum Zitat Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA: Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002, 346: 476-483. 10.1056/NEJMoa011613CrossRefPubMed Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA: Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002, 346: 476-483. 10.1056/NEJMoa011613CrossRefPubMed
15.
Zurück zum Zitat Zhang X, Le W: Pathological role of hypoxia in Alzheimer’s disease. Exp Neurol 2010, 223: 299-303. 10.1016/j.expneurol.2009.07.033CrossRefPubMed Zhang X, Le W: Pathological role of hypoxia in Alzheimer’s disease. Exp Neurol 2010, 223: 299-303. 10.1016/j.expneurol.2009.07.033CrossRefPubMed
17.
Zurück zum Zitat Ivan CS, Seshadri S, Beiser A, Au R, Kase CS, Kelly-Hayes M, Wolf PA: Dementia after stroke the Framingham study. Stroke 2004, 35: 1264-1268. 10.1161/01.STR.0000127810.92616.78CrossRefPubMed Ivan CS, Seshadri S, Beiser A, Au R, Kase CS, Kelly-Hayes M, Wolf PA: Dementia after stroke the Framingham study. Stroke 2004, 35: 1264-1268. 10.1161/01.STR.0000127810.92616.78CrossRefPubMed
18.
Zurück zum Zitat Savva GM, Stephan BC: Epidemiological studies of the effect of stroke on incident dementia a systematic review. Stroke 2010, 41: e41-e46. 10.1161/STROKEAHA.109.559880CrossRefPubMed Savva GM, Stephan BC: Epidemiological studies of the effect of stroke on incident dementia a systematic review. Stroke 2010, 41: e41-e46. 10.1161/STROKEAHA.109.559880CrossRefPubMed
19.
Zurück zum Zitat Ukraintseva S, Sloan F, Arbeev K, Yashin A: Increasing rates of dementia at time of declining mortality from stroke. Stroke 2006, 37: 1155-1159. 10.1161/01.STR.0000217971.88034.e9CrossRefPubMed Ukraintseva S, Sloan F, Arbeev K, Yashin A: Increasing rates of dementia at time of declining mortality from stroke. Stroke 2006, 37: 1155-1159. 10.1161/01.STR.0000217971.88034.e9CrossRefPubMed
20.
Zurück zum Zitat Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI: Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994, 57: 419-425. 10.1136/jnnp.57.4.419PubMedCentralCrossRefPubMed Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI: Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994, 57: 419-425. 10.1136/jnnp.57.4.419PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel PP, Ferrell E, Fournier DR, Kan CW, Campbell TG: Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS One 2011, 6: e28263. 10.1371/journal.pone.0028263PubMedCentralCrossRefPubMed Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel PP, Ferrell E, Fournier DR, Kan CW, Campbell TG: Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PLoS One 2011, 6: e28263. 10.1371/journal.pone.0028263PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Kristine Yaffe AML, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL: Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 2011, 306: 613-619.PubMedCentralPubMed Kristine Yaffe AML, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL: Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 2011, 306: 613-619.PubMedCentralPubMed
23.
Zurück zum Zitat Hong CH, Falvey C, Harris TB, Simonsick EM, Satterfield S, Ferrucci L, Metti AL, Patel KV, Yaffe K: Anemia and risk of dementia in older adults: findings from the Health ABC study. Neurology 2013, 81: 528-533. 10.1212/WNL.0b013e31829e701dPubMedCentralCrossRefPubMed Hong CH, Falvey C, Harris TB, Simonsick EM, Satterfield S, Ferrucci L, Metti AL, Patel KV, Yaffe K: Anemia and risk of dementia in older adults: findings from the Health ABC study. Neurology 2013, 81: 528-533. 10.1212/WNL.0b013e31829e701dPubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Li J, Dong Z, Liu B, Zhuo Y, Sun X, Yang Z, Ge J, Tan Z: Hypoxia induces beta-amyloid in association with death of RGC-5 cells in culture. Biochem Biophys Res Commun 2011, 410: 40-44. 10.1016/j.bbrc.2011.05.101CrossRefPubMed Li J, Dong Z, Liu B, Zhuo Y, Sun X, Yang Z, Ge J, Tan Z: Hypoxia induces beta-amyloid in association with death of RGC-5 cells in culture. Biochem Biophys Res Commun 2011, 410: 40-44. 10.1016/j.bbrc.2011.05.101CrossRefPubMed
25.
Zurück zum Zitat Li L, Zhang X, Yang D, Luo G, Chen S, Le W: Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging 2009, 30: 1091-1098. 10.1016/j.neurobiolaging.2007.10.011CrossRefPubMed Li L, Zhang X, Yang D, Luo G, Chen S, Le W: Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging 2009, 30: 1091-1098. 10.1016/j.neurobiolaging.2007.10.011CrossRefPubMed
26.
Zurück zum Zitat Zhang X, Li L, Zhang X, Xie W, Li L, Yang D, Heng X, Du Y, Doody RS, Le W: Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer’s disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging 2013, 34: 663-678. 10.1016/j.neurobiolaging.2012.06.012CrossRefPubMed Zhang X, Li L, Zhang X, Xie W, Li L, Yang D, Heng X, Du Y, Doody RS, Le W: Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer’s disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging 2013, 34: 663-678. 10.1016/j.neurobiolaging.2012.06.012CrossRefPubMed
27.
Zurück zum Zitat Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, An L, Wang ZY: Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 2013, 19: 820-833.PubMed Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, An L, Wang ZY: Hypoxia-triggered m-calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a transgenic mouse model of Alzheimer’s disease. CNS Neurosci Ther 2013, 19: 820-833.PubMed
29.
Zurück zum Zitat Malito E, Hulse RE, Tang W-J: Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 2008, 65: 2574-2585. 10.1007/s00018-008-8112-4PubMedCentralCrossRefPubMed Malito E, Hulse RE, Tang W-J: Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 2008, 65: 2574-2585. 10.1007/s00018-008-8112-4PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE, Song W: Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 2006, 103: 18727-18732. 10.1073/pnas.0606298103PubMedCentralCrossRefPubMed Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE, Song W: Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 2006, 103: 18727-18732. 10.1073/pnas.0606298103PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Wang R, Zhang YW, Zhang X, Liu R, Zhang X, Hong S, Xia K, Xia J, Zhang Z, Xu H: Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J 2006, 20: 1275-1277. 10.1096/fj.06-5839fjeCrossRefPubMed Wang R, Zhang YW, Zhang X, Liu R, Zhang X, Hong S, Xia K, Xia J, Zhang Z, Xu H: Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J 2006, 20: 1275-1277. 10.1096/fj.06-5839fjeCrossRefPubMed
32.
Zurück zum Zitat Wang Z, Yang D, Zhang X, Li T, Li J, Tang Y, Le W: Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 2011, 6: e19229. 10.1371/journal.pone.0019229PubMedCentralCrossRefPubMed Wang Z, Yang D, Zhang X, Li T, Li J, Tang Y, Le W: Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 2011, 6: e19229. 10.1371/journal.pone.0019229PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW: Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007, 282: 10873-10880. 10.1074/jbc.M608856200CrossRefPubMed Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, Xu H, Zhang YW: Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007, 282: 10873-10880. 10.1074/jbc.M608856200CrossRefPubMed
34.
Zurück zum Zitat Marshall AJ, Rattray M, Vaughan PF: Chronic hypoxia in the human neuroblastoma SH-SY5Y causes reduced expression of the putative α-secretases, ADAM10 and TACE, without altering their mRNA levels. Brain Res 2006, 1099: 18-24. 10.1016/j.brainres.2006.05.008CrossRefPubMed Marshall AJ, Rattray M, Vaughan PF: Chronic hypoxia in the human neuroblastoma SH-SY5Y causes reduced expression of the putative α-secretases, ADAM10 and TACE, without altering their mRNA levels. Brain Res 2006, 1099: 18-24. 10.1016/j.brainres.2006.05.008CrossRefPubMed
35.
Zurück zum Zitat Webster NJ, Green KN, Peers C, Vaughan PF: Altered processing of amyloid precursor protein in the human neuroblastoma SH SY5Y by chronic hypoxia. J Neurochem 2002, 83: 1262-1271. 10.1046/j.1471-4159.2002.01236.xCrossRefPubMed Webster NJ, Green KN, Peers C, Vaughan PF: Altered processing of amyloid precursor protein in the human neuroblastoma SH SY5Y by chronic hypoxia. J Neurochem 2002, 83: 1262-1271. 10.1046/j.1471-4159.2002.01236.xCrossRefPubMed
36.
Zurück zum Zitat Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 1998, 12: 149-162. 10.1101/gad.12.2.149PubMedCentralCrossRefPubMed Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 1998, 12: 149-162. 10.1101/gad.12.2.149PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM: Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 2007, 171: 241-251. 10.2353/ajpath.2007.070105PubMedCentralCrossRefPubMed Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM: Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 2007, 171: 241-251. 10.2353/ajpath.2007.070105PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Apelt J, Ach K, Schliebs R: Aging-related down-regulation of neprilysin, a putative β-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of β-amyloid plaques. Neurosci Lett 2003, 339: 183-186. 10.1016/S0304-3940(03)00030-2CrossRefPubMed Apelt J, Ach K, Schliebs R: Aging-related down-regulation of neprilysin, a putative β-amyloid-degrading enzyme, in transgenic Tg2576 Alzheimer-like mouse brain is accompanied by an astroglial upregulation in the vicinity of β-amyloid plaques. Neurosci Lett 2003, 339: 183-186. 10.1016/S0304-3940(03)00030-2CrossRefPubMed
39.
Zurück zum Zitat Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM: Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 2005, 26: 645-654. 10.1016/j.neurobiolaging.2004.06.013CrossRefPubMed Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM: Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 2005, 26: 645-654. 10.1016/j.neurobiolaging.2004.06.013CrossRefPubMed
40.
Zurück zum Zitat Wang D-S, Lipton RB, Katz MJ, Davies P, Buschke H, Kuslansky G, Verghese J, Younkin SG, Eckman C, Dickson DW: Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. J Neuropathol Exp Neurol 2005, 64: 378-385.CrossRefPubMed Wang D-S, Lipton RB, Katz MJ, Davies P, Buschke H, Kuslansky G, Verghese J, Younkin SG, Eckman C, Dickson DW: Decreased neprilysin immunoreactivity in Alzheimer disease, but not in pathological aging. J Neuropathol Exp Neurol 2005, 64: 378-385.CrossRefPubMed
41.
Zurück zum Zitat Russo R, Borghi R, Markesbery W, Tabaton M, Piccini A: Neprylisin decreases uniformly in Alzheimer’s disease and in normal aging. FEBS Lett 2005, 579: 6027-6030. 10.1016/j.febslet.2005.09.054CrossRefPubMed Russo R, Borghi R, Markesbery W, Tabaton M, Piccini A: Neprylisin decreases uniformly in Alzheimer’s disease and in normal aging. FEBS Lett 2005, 579: 6027-6030. 10.1016/j.febslet.2005.09.054CrossRefPubMed
42.
Zurück zum Zitat Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M: Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002, 61: 849-856.PubMed Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M: Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002, 61: 849-856.PubMed
43.
Zurück zum Zitat Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ: Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 2007, 32: 1741-1748. 10.1007/s11064-007-9349-2CrossRefPubMed Fisk L, Nalivaeva NN, Boyle JP, Peers CS, Turner AJ: Effects of hypoxia and oxidative stress on expression of neprilysin in human neuroblastoma cells and rat cortical neurones and astrocytes. Neurochem Res 2007, 32: 1741-1748. 10.1007/s11064-007-9349-2CrossRefPubMed
44.
Zurück zum Zitat Nalivaevaa NN, Fisk L, Kochkina EG, Plesneva SA, Zhuravin IA, Babusikova E, Dobrota D, Turner AJ: Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid degrading enzymes. Ann N Y Acad Sci 2004, 1035: 21-33. 10.1196/annals.1332.002CrossRefPubMed Nalivaevaa NN, Fisk L, Kochkina EG, Plesneva SA, Zhuravin IA, Babusikova E, Dobrota D, Turner AJ: Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid degrading enzymes. Ann N Y Acad Sci 2004, 1035: 21-33. 10.1196/annals.1332.002CrossRefPubMed
45.
Zurück zum Zitat Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, 33: 245-254. 10.1038/ng1089CrossRefPubMed Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, 33: 245-254. 10.1038/ng1089CrossRefPubMed
46.
Zurück zum Zitat Rodenhiser D, Mann M: Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J 2006, 174: 341-348. 10.1503/cmaj.050774CrossRef Rodenhiser D, Mann M: Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J 2006, 174: 341-348. 10.1503/cmaj.050774CrossRef
47.
Zurück zum Zitat Wang S-C, Oelze B, Schumacher A: Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008, 3: e2698. 10.1371/journal.pone.0002698PubMedCentralCrossRefPubMed Wang S-C, Oelze B, Schumacher A: Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 2008, 3: e2698. 10.1371/journal.pone.0002698PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13: 484-492. 10.1038/nrg3230CrossRefPubMed Jones PA: Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012, 13: 484-492. 10.1038/nrg3230CrossRefPubMed
49.
Zurück zum Zitat Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S: S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005, 28: 195-204. 10.1016/j.mcn.2004.09.007CrossRefPubMed Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S: S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005, 28: 195-204. 10.1016/j.mcn.2004.09.007CrossRefPubMed
50.
Zurück zum Zitat Roger L, West JML, Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 1995, 6: 141-146. 10.1007/BF02736773CrossRef Roger L, West JML, Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 1995, 6: 141-146. 10.1007/BF02736773CrossRef
51.
Zurück zum Zitat Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD: Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 2009, 4: e6617. 10.1371/journal.pone.0006617PubMedCentralCrossRefPubMed Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD: Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 2009, 4: e6617. 10.1371/journal.pone.0006617PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Shahrzad S, Bertrand K, Minhas K, Coomber B: Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007, 2: 119-125. 10.4161/epi.2.2.4613CrossRefPubMed Shahrzad S, Bertrand K, Minhas K, Coomber B: Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007, 2: 119-125. 10.4161/epi.2.2.4613CrossRefPubMed
53.
Zurück zum Zitat Hartley I, Elkhoury FF, Shin JH, Xie B, Gu X, Gao Y, Zhou D, Haddad GG: Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013, 8: e77859. 10.1371/journal.pone.0077859PubMedCentralCrossRefPubMed Hartley I, Elkhoury FF, Shin JH, Xie B, Gu X, Gao Y, Zhou D, Haddad GG: Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013, 8: e77859. 10.1371/journal.pone.0077859PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J: The epigenetic effects of amyloid-β < sub > 1–40</sub > on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009, 378: 57-61. 10.1016/j.bbrc.2008.10.173CrossRefPubMed Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J: The epigenetic effects of amyloid-β < sub > 1–40</sub > on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009, 378: 57-61. 10.1016/j.bbrc.2008.10.173CrossRefPubMed
55.
Zurück zum Zitat Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ: Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 2008, 10: 94-100.PubMedCentralCrossRefPubMed Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ: Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 2008, 10: 94-100.PubMedCentralCrossRefPubMed
56.
Zurück zum Zitat Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M: Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010, 9: 702-716. 10.1016/S1474-4422(10)70119-8CrossRefPubMed Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M: Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010, 9: 702-716. 10.1016/S1474-4422(10)70119-8CrossRefPubMed
57.
Zurück zum Zitat Lee JH: Mini review: epigenetic modification is linked to alzheimers disease: is it a maker or a marker? BMB Rep 2010, 43: 649-655. 10.5483/BMBRep.2010.43.10.649CrossRefPubMed Lee JH: Mini review: epigenetic modification is linked to alzheimers disease: is it a maker or a marker? BMB Rep 2010, 43: 649-655. 10.5483/BMBRep.2010.43.10.649CrossRefPubMed
58.
Zurück zum Zitat Adwan L, Zawia NH: Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 2013, 139(1):41-50. 10.1016/j.pharmthera.2013.03.010PubMedCentralCrossRefPubMed Adwan L, Zawia NH: Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 2013, 139(1):41-50. 10.1016/j.pharmthera.2013.03.010PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Caraci F, Leggio GM, Drago F, Salomone S: Epigenetic drugs for Alzheimer’s disease: hopes and challenges. Br J Clin Pharmacol 2012, 75: 1154-1155.PubMedCentralCrossRef Caraci F, Leggio GM, Drago F, Salomone S: Epigenetic drugs for Alzheimer’s disease: hopes and challenges. Br J Clin Pharmacol 2012, 75: 1154-1155.PubMedCentralCrossRef
60.
Zurück zum Zitat Wang J, Yu J-T, Tan M-S, Jiang T, Tan L: Epigenetic mechanisms in Alzheimer’s disease: Implications for pathogenesis and therapy. Ageing Res Rev 2013, 12(4):1024-41. 10.1016/j.arr.2013.05.003CrossRefPubMed Wang J, Yu J-T, Tan M-S, Jiang T, Tan L: Epigenetic mechanisms in Alzheimer’s disease: Implications for pathogenesis and therapy. Ageing Res Rev 2013, 12(4):1024-41. 10.1016/j.arr.2013.05.003CrossRefPubMed
61.
Zurück zum Zitat Cuadrado-Tejedor M, Oyarzabal J, Lucas MP, Franco R, García-Osta A: Epigenetic drugs in Alzheimer’s disease. Biomolecular Concepts 2013, 4: 433-445.CrossRefPubMed Cuadrado-Tejedor M, Oyarzabal J, Lucas MP, Franco R, García-Osta A: Epigenetic drugs in Alzheimer’s disease. Biomolecular Concepts 2013, 4: 433-445.CrossRefPubMed
63.
Zurück zum Zitat Monti B, Polazzi E, Contestabile A: Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2009, 2: 95-109. 10.2174/1874467210902010095CrossRefPubMed Monti B, Polazzi E, Contestabile A: Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2009, 2: 95-109. 10.2174/1874467210902010095CrossRefPubMed
64.
Zurück zum Zitat Nalivaeva NN, Belyaev ND, Turner AJ: Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 2009, 30: 509-514. 10.1016/j.tips.2009.07.002CrossRefPubMed Nalivaeva NN, Belyaev ND, Turner AJ: Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 2009, 30: 509-514. 10.1016/j.tips.2009.07.002CrossRefPubMed
65.
Zurück zum Zitat Zhang X-Z, Li X-J, Zhang H-Y: Valproic acid as a promising agent to combat Alzheimer’s disease. Brain Res Bull 2010, 81: 3-6. 10.1016/j.brainresbull.2009.09.003CrossRefPubMed Zhang X-Z, Li X-J, Zhang H-Y: Valproic acid as a promising agent to combat Alzheimer’s disease. Brain Res Bull 2010, 81: 3-6. 10.1016/j.brainresbull.2009.09.003CrossRefPubMed
66.
Zurück zum Zitat Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H: Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 2008, 205: 2781-2789. 10.1084/jem.20081588PubMedCentralCrossRefPubMed Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H: Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 2008, 205: 2781-2789. 10.1084/jem.20081588PubMedCentralCrossRefPubMed
67.
Zurück zum Zitat Wang Z, Zhang XJ, Li T, Li J, Tang Y, Le W: Valproic acid reduces neuritic plaque formation and improves learning deficits in APPSwe/PS1A246E transgenic mice via preventing the prenatal hypoxia induced down regulation of neprilysin. CNS Neurosci Ther 2013, 20: 209-217.CrossRefPubMed Wang Z, Zhang XJ, Li T, Li J, Tang Y, Le W: Valproic acid reduces neuritic plaque formation and improves learning deficits in APPSwe/PS1A246E transgenic mice via preventing the prenatal hypoxia induced down regulation of neprilysin. CNS Neurosci Ther 2013, 20: 209-217.CrossRefPubMed
68.
Zurück zum Zitat Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ: Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Mol Neurosci 2012, 46: 569-577. 10.1007/s12031-011-9644-xCrossRefPubMed Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ: Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Mol Neurosci 2012, 46: 569-577. 10.1007/s12031-011-9644-xCrossRefPubMed
69.
Zurück zum Zitat Daulatzai MA: Death by a thousand cuts in Alzheimer’s disease: hypoxia—the prodrome. Neurotox Res 2013, 24: 216-243. 10.1007/s12640-013-9379-2CrossRefPubMed Daulatzai MA: Death by a thousand cuts in Alzheimer’s disease: hypoxia—the prodrome. Neurotox Res 2013, 24: 216-243. 10.1007/s12640-013-9379-2CrossRefPubMed
Metadaten
Titel
Epigenetic modifications of chronic hypoxia-mediated neurodegeneration in Alzheimer’s disease
verfasst von
Hui Liu
Weidong Le
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Translational Neurodegeneration / Ausgabe 1/2014
Elektronische ISSN: 2047-9158
DOI
https://doi.org/10.1186/2047-9158-3-7

Weitere Artikel der Ausgabe 1/2014

Translational Neurodegeneration 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.