Skip to main content

01.12.2018 | Research | Ausgabe 1/2018 Open Access

Scoliosis and Spinal Disorders 1/2018

Evaluation of functional and structural leg length discrepancy in patients with adolescent idiopathic scoliosis using the EOS imaging system: a prospective comparative study

Scoliosis and Spinal Disorders > Ausgabe 1/2018
Tatsuhiro Sekiya, Yoichi Aota, Katsutaka Yamada, Kanichiro Kaneko, Manabu Ide, Tomoyuki Saito



To our knowledge, no studies have reported the exact structural leg length discrepancies (LLDs) in patients with adolescent idiopathic scoliosis (AIS). Therefore, this study aimed to evaluate the differences between functional and structural LLDs and to examine the correlations between LLDs and spinopelvic parameters in patients with AIS using an EOS imaging system, which permits the three-dimensional reconstruction of spinal and lower-limb bony structures.


Eighty-two consecutive patients with AIS underwent whole-body EOS radiography in a standing position between August 2014 and March 2016. Functional LLD, lumbar Cobb angle, thoracic curve Cobb angle, coronal balance, and pelvic obliquity were measured using two-dimensional EOS radiography. Structural LLDs were measured using three-dimensional EOS-reconstructed images. The comparison between LLDs was assessed using paired t test. Pearson’s correlation coefficient (r) was used to determine potential correlations between the LLDs and spinopelvic alignment parameters.


Functional LLDs were significantly larger than structural LLDs (5.6 ± 5.0 vs. 0.2 ± 3.6 mm, respectively; p < 0.001). Both functional and structural LLDs were significantly correlated with pelvic obliquity (r = 0.69 and r = 0.51, respectively; p < 0.001 for both). Functional LLD, but not structural LLD, was correlated with lumbar Cobb angle (r = 0.44, p < 0.001; r = 0.17, p = 0.12, respectively). In addition, functional and structural LLDs were not correlated with thoracic Cobb angle (r = 0.09 and r = − 0.05, respectively; p ≥ 0.68 for both).


Although patients with AIS often have functional LLDs, structural LLDs tend to be smaller. The correlation between functional LLDs and the lumbar Cobb angle indicates that functional LLDs compensate for the lumbar curve. Thus, the difference between functional and structural LLDs indicates a compensatory mechanism involving extension and flexion of the lower limbs.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Scoliosis and Spinal Disorders 1/2018 Zur Ausgabe