Skip to main content
Erschienen in: Tumor Biology 7/2016

09.01.2016 | Original Article

Evaluation of RIP1K and RIP3K expressions in the malignant and benign breast tumors

verfasst von: Fatemeh Karami-Tehrani, Amin Rahimi Malek, Zahra Shahsavari, Morteza Atri

Erschienen in: Tumor Biology | Ausgabe 7/2016

Einloggen, um Zugang zu erhalten

Abstract

Receptor-interacting protein kinase 1 (RIP1K) and RIP3K belong to RIPK family, which regulate cell survival and cell death. In the present investigation, the expression levels of RIP1K and RIP3K were evaluated in the 30 malignant, 15 benign, and 20 normal breast tissues, and their correlation with clinicopathological characteristics was also studied. The expression levels of RIP1K and RIP3K were determined, by western blot analysis. The relative RIP1K expression was significantly higher in the malignant and benign tumors when compared to those of normal tissues (P < 0.0001 and P < 0.001, respectively). However, the expression level of RIP3K was significantly lower in the malignant tumors than those of normal and benign values (P < 0.001 and P < 0.01, respectively). Positive significant correlation was found for RIP1K expression with tumor size (P < 0.001), grades (P < 0.0001), and c-erbB2 (P < 0.001), but negative significant correlation was detected with patient’s age (P < 0.001), estrogen receptor (ER) (P < 0.001), progesterone receptor (PR) (P < 0.01), and P53 (P<0.01) status. RIP3K expression was significantly lower in the pre-menopauses (P < 0.01), grade III (P < 0.05), ER-negative (P < 0.05), and c-erbB2-negative malignant tumors, but no correlation was detected with tumor size, PR, and P53 status. No significant correlation was observed for RIP1K and RIP3K expressions with Ki67 and Her2. Based on the present results, it is concluded that reduction of RIP3K expression in the malignant breast tumor might be an important evidence to support the antitumor activity of this enzyme in vivo. However, RIP1K expression was shown to be higher in the malignant breast tumors than those of normal and benign breast tissues, which probably designates as a poor prognostic factor.
Literatur
1.
Zurück zum Zitat Ofengeim D, Y. J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 2013;14:727–36.CrossRefPubMed Ofengeim D, Y. J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 2013;14:727–36.CrossRefPubMed
4.
Zurück zum Zitat Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.CrossRefPubMedPubMedCentral Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, et al. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci. 2014;71:331–48.CrossRefPubMed Sosna J, Voigt S, Mathieu S, Lange A, Thon L, Davarnia P, et al. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol Life Sci. 2014;71:331–48.CrossRefPubMed
6.
Zurück zum Zitat Cho Y, McQuade T, Zhang H, Zhang J, Chan FK. RIP1-dependent and independent effects of necrostatin-1 in necrosis and t cell activation. PLoS One. 2011;6, e23209.CrossRefPubMedPubMedCentral Cho Y, McQuade T, Zhang H, Zhang J, Chan FK. RIP1-dependent and independent effects of necrostatin-1 in necrosis and t cell activation. PLoS One. 2011;6, e23209.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS. RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell. 2011;44:9–16.CrossRefPubMedPubMedCentral Green DR, Oberst A, Dillon CP, Weinlich R, Salvesen GS. RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Mol Cell. 2011;44:9–16.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Maki JL, Tres Brazell J, Teng X, Cuny GD, Degterev A. Expression and purification of active receptor interacting protein 1 kinase using a baculovirus system. Protein Expr Purif. 2013;89:156–61.CrossRefPubMedPubMedCentral Maki JL, Tres Brazell J, Teng X, Cuny GD, Degterev A. Expression and purification of active receptor interacting protein 1 kinase using a baculovirus system. Protein Expr Purif. 2013;89:156–61.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.CrossRefPubMed Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.CrossRefPubMed
10.
Zurück zum Zitat Ramnarain DB, Paulmurugan R, Park S, Mickey BE, Asaithamby A, Saha D, et al. RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR. Cell Death Differ. 2008;15:344–53.CrossRefPubMed Ramnarain DB, Paulmurugan R, Park S, Mickey BE, Asaithamby A, Saha D, et al. RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR. Cell Death Differ. 2008;15:344–53.CrossRefPubMed
11.
Zurück zum Zitat Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015;6, e1636.CrossRefPubMedPubMedCentral Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015;6, e1636.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al. Caspase 8 inhibits programmed necrosis by processing cyld. Nat Cell Biol. 2011;13:1437–42.CrossRefPubMedPubMedCentral O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al. Caspase 8 inhibits programmed necrosis by processing cyld. Nat Cell Biol. 2011;13:1437–42.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Feoktistova M, Leverkus M. Programmed necrosis and necroptosis signalling. FEBS J. 2015;282:19–31.CrossRefPubMed Feoktistova M, Leverkus M. Programmed necrosis and necroptosis signalling. FEBS J. 2015;282:19–31.CrossRefPubMed
14.
Zurück zum Zitat Su X, Wang H, Kang D, Zhu J, Sun Q, Li T, et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem Res. 2015;40:643–50.CrossRefPubMed Su X, Wang H, Kang D, Zhu J, Sun Q, Li T, et al. Necrostatin-1 ameliorates intracerebral hemorrhage-induced brain injury in mice through inhibiting RIP1/RIP3 pathway. Neurochem Res. 2015;40:643–50.CrossRefPubMed
15.
Zurück zum Zitat Vandenabeele P, Grootjans S, Callewaert N, Takahashi N. Necrostatin-1 blocks both RIPK1 and ido: consequences for the study of cell death in experimental disease models. Cell Death and Differentiation. 2013;20:185–7.CrossRefPubMed Vandenabeele P, Grootjans S, Callewaert N, Takahashi N. Necrostatin-1 blocks both RIPK1 and ido: consequences for the study of cell death in experimental disease models. Cell Death and Differentiation. 2013;20:185–7.CrossRefPubMed
16.
Zurück zum Zitat Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell. 2009;138:229–32.CrossRefPubMed Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell. 2009;138:229–32.CrossRefPubMed
17.
Zurück zum Zitat Salami S, Karami-Tehrani F. Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem. 2003;36:247–53.CrossRefPubMed Salami S, Karami-Tehrani F. Biochemical studies of apoptosis induced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin Biochem. 2003;36:247–53.CrossRefPubMed
18.
Zurück zum Zitat Tavakoli-Yaraki M, Karami-Tehrani F, Salimi V, Sirati-Sabet M. Induction of apoptosis by trichostatin a in human breast cancer cell lines: Involvement of 15-LOX-1. Tumour Biol. 2013;34:241–9.CrossRefPubMed Tavakoli-Yaraki M, Karami-Tehrani F, Salimi V, Sirati-Sabet M. Induction of apoptosis by trichostatin a in human breast cancer cell lines: Involvement of 15-LOX-1. Tumour Biol. 2013;34:241–9.CrossRefPubMed
19.
Zurück zum Zitat Aghaei M, Karami-Tehrani F, Salami S, Atri M. Adenosine deaminase activity in the serum and malignant tumors of breast cancer: the assessment of isoenzyme ADA1 and ADA2 activities. Clin Biochem. 2005;38:887–91.CrossRefPubMed Aghaei M, Karami-Tehrani F, Salami S, Atri M. Adenosine deaminase activity in the serum and malignant tumors of breast cancer: the assessment of isoenzyme ADA1 and ADA2 activities. Clin Biochem. 2005;38:887–91.CrossRefPubMed
20.
Zurück zum Zitat Zhou W, Yuan J. Necroptosis in health and diseases. Seminars in cell and developmental biology. 2014;35:14–23.CrossRefPubMed Zhou W, Yuan J. Necroptosis in health and diseases. Seminars in cell and developmental biology. 2014;35:14–23.CrossRefPubMed
21.
Zurück zum Zitat de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Seminars in cell and developmental biology. 2015;39:56–62.CrossRefPubMed de Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Seminars in cell and developmental biology. 2015;39:56–62.CrossRefPubMed
22.
Zurück zum Zitat Wang Q, Chen W, Xu X, Li B, He W, Padilla MT, et al. RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species. Carcinogenesis. 2013;34:2119–28.CrossRefPubMedPubMedCentral Wang Q, Chen W, Xu X, Li B, He W, Padilla MT, et al. RIP1 potentiates BPDE-induced transformation in human bronchial epithelial cells through catalase-mediated suppression of excessive reactive oxygen species. Carcinogenesis. 2013;34:2119–28.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Wang Q, Chen W, Bai L, Chen W, Padilla MT, Lin AS, et al. Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. J Biol Chem. 2014;289:5654–63.CrossRefPubMedPubMedCentral Wang Q, Chen W, Bai L, Chen W, Padilla MT, Lin AS, et al. Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. J Biol Chem. 2014;289:5654–63.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Yu S, Hou D, Chen P, Zhang Q, Lv B, Ma Y, et al. Adenosine induces apoptosis through TNFR1/RIPK1/p38 axis in colon cancer cells. Biochem Biophys Res Commun. 2015;460:759–65.CrossRefPubMed Yu S, Hou D, Chen P, Zhang Q, Lv B, Ma Y, et al. Adenosine induces apoptosis through TNFR1/RIPK1/p38 axis in colon cancer cells. Biochem Biophys Res Commun. 2015;460:759–65.CrossRefPubMed
25.
Zurück zum Zitat Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, et al. RIP1 kinase is an oncogenic driver in melanoma. Cancer Res. 2015;75:1736–48.CrossRefPubMed Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, et al. RIP1 kinase is an oncogenic driver in melanoma. Cancer Res. 2015;75:1736–48.CrossRefPubMed
26.
Zurück zum Zitat Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, et al. The receptor interacting protein 1 inhibits p53 induction through nf-kappab activation and confers a worse prognosis in glioblastoma. Cancer Res. 2009;69:2809–16.CrossRefPubMedPubMedCentral Park S, Hatanpaa KJ, Xie Y, Mickey BE, Madden CJ, Raisanen JM, et al. The receptor interacting protein 1 inhibits p53 induction through nf-kappab activation and confers a worse prognosis in glioblastoma. Cancer Res. 2009;69:2809–16.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.CrossRefPubMed He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11.CrossRefPubMed
28.
Zurück zum Zitat Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induces cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumor Biology. 2015. Shahsavari Z, Karami-Tehrani F, Salami S, Ghasemzadeh M. RIP1K and RIP3K provoked by shikonin induces cell cycle arrest in the triple negative breast cancer cell line, MDA-MB-468: necroptosis as a desperate programmed suicide pathway. Tumor Biology. 2015.
29.
Zurück zum Zitat Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 2015;25:707–25.CrossRefPubMedPubMedCentral Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 2015;25:707–25.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Idirisinghe PK, Thike AA, Cheok PY, Tse GM, Lui PC, Fook-Chong S, et al. Hormone receptor and c-erbB2 status in distant metastatic and locally recurrent breast cancer. pathologic correlations and clinical significance. Am J Clin Pathol. 2010;133:416–29.CrossRefPubMed Idirisinghe PK, Thike AA, Cheok PY, Tse GM, Lui PC, Fook-Chong S, et al. Hormone receptor and c-erbB2 status in distant metastatic and locally recurrent breast cancer. pathologic correlations and clinical significance. Am J Clin Pathol. 2010;133:416–29.CrossRefPubMed
31.
Zurück zum Zitat Lee A, Park WC, Yim HW, Lee MA, Park G, Lee KY. Expression of c-erbB2, cyclin D1 and estrogen receptor and their clinical implications in the invasive ductal carcinoma of the breast. Jpn J Clin Oncol. 2007;37:708–14.CrossRefPubMed Lee A, Park WC, Yim HW, Lee MA, Park G, Lee KY. Expression of c-erbB2, cyclin D1 and estrogen receptor and their clinical implications in the invasive ductal carcinoma of the breast. Jpn J Clin Oncol. 2007;37:708–14.CrossRefPubMed
32.
Zurück zum Zitat Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139:539–52.CrossRefPubMedPubMedCentral Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139:539–52.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Panjehpour M, Karami-Tehrani F. An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int J Biochem Cell Biol. 2004;36:1502–9.CrossRefPubMed Panjehpour M, Karami-Tehrani F. An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int J Biochem Cell Biol. 2004;36:1502–9.CrossRefPubMed
34.
Zurück zum Zitat Hashemi M, Karami-Tehrani F, Ghavami S, Maddika S, Los M. Adenosine and deoxyadenosine induces apoptosis in oestrogen receptor-positive and -negative human breast cancer cells via the intrinsic pathway. Cell Prolif. 2005;38:269–85.CrossRefPubMed Hashemi M, Karami-Tehrani F, Ghavami S, Maddika S, Los M. Adenosine and deoxyadenosine induces apoptosis in oestrogen receptor-positive and -negative human breast cancer cells via the intrinsic pathway. Cell Prolif. 2005;38:269–85.CrossRefPubMed
35.
Zurück zum Zitat Panjehpour M, Karami-Tehrani F. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res. 2007;16:575–85.CrossRefPubMed Panjehpour M, Karami-Tehrani F. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res. 2007;16:575–85.CrossRefPubMed
36.
Zurück zum Zitat Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: Involvement of intrinsic pathway. J Cancer Res Clin Oncol. 2011;137:1511–23.CrossRefPubMed Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: Involvement of intrinsic pathway. J Cancer Res Clin Oncol. 2011;137:1511–23.CrossRefPubMed
Metadaten
Titel
Evaluation of RIP1K and RIP3K expressions in the malignant and benign breast tumors
verfasst von
Fatemeh Karami-Tehrani
Amin Rahimi Malek
Zahra Shahsavari
Morteza Atri
Publikationsdatum
09.01.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 7/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4762-7

Weitere Artikel der Ausgabe 7/2016

Tumor Biology 7/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.