Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2015

01.01.2015

Expression of Sarcomeric Tropomyosin in Striated Muscles in Axolotl Treated with Shz-1, a Small Cardiogenic Molecule

verfasst von: Changlong Nan, Syamalima Dube, Amr Matoq, Lauren Mikesell, Lynn Abbott, Ruham Alshiekh-Nasany, Henry Chionuma, Xupei Huang, Bernard J. Poiesz, Dipak K. Dube

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

We evaluated the effect of shz-1, a cardiogenic molecule, on the expression of various tropomyosin (TM) isoforms in the Mexican axolotl (Ambystoma mexicanum) hearts. qRT-PCR data show a ~1.5-fold increase in cardiac transcripts of the Nkx2.5 gene, which plays a crucial role in cardiogenesis in vertebrates. Shz-1 augments the expression of transcripts of the total sarcomeric TPM1 (both TPM1α & TPM1κ) and sarcomeric TPM4α. In order to understand the mechanism by which shz-1 augments the expression of sarcomeric TPM transcription in axolotl hearts, we transfected C2C12 cells with pGL3.axolotl. We transfected C2C12 cells with pGL3-axolotl TPM4 promoter constructs containing the firefly luciferase reporter gene. The transfected C2C12 cells were grown in the absence or presence of shz-1 (5 μM). Subsequently, we determined the firefly luciferase activity in the extracts of transfected cells. The results suggest that shz-1 activates the axolotl TPM4 promoter-driven ectopic expression in C2C12 cells. Also, we transfected C2C12 cells with a pGL3.1 vector containing the promoter of the mouse skeletal muscle troponin-I and observed a similar increase in the luciferase activity in shz-1-treated cells. We conclude that shz-1 activates the promoters of a variety of genes including axolotl TPM4. We have quantified the expression of the total sarcomeric TPM1 and observed a 1.5-fold increase in treated cells. Western blot analyses with CH1 monoclonal antibody specific for sarcomeric isoforms show that shz-1 does not increase the expression of TM protein in axolotl hearts, whereas it does in C2C12 cells. These findings support our hypothesis that cardiac TM expression in axolotl undergoes translational control.
Literatur
1.
Zurück zum Zitat Gunning, P., O’Neill, G., & Hardmen, E. (2008). Tropomyosin-based regulation of actin cytoskeleton in time and space. Physiology Review, 88, 1–35.CrossRef Gunning, P., O’Neill, G., & Hardmen, E. (2008). Tropomyosin-based regulation of actin cytoskeleton in time and space. Physiology Review, 88, 1–35.CrossRef
2.
Zurück zum Zitat Lees-Miller, J., & Helfman, D. (1991). The molecular basis for tropomyosin isoform diversity. BioEssays, 13, 429–437.CrossRefPubMed Lees-Miller, J., & Helfman, D. (1991). The molecular basis for tropomyosin isoform diversity. BioEssays, 13, 429–437.CrossRefPubMed
3.
Zurück zum Zitat Perry, S. V. (2001). Vertebrate tropomyosin, properties and function. Journal of Muscle Research and Cell Motility, 22, 5–49.CrossRefPubMed Perry, S. V. (2001). Vertebrate tropomyosin, properties and function. Journal of Muscle Research and Cell Motility, 22, 5–49.CrossRefPubMed
4.
Zurück zum Zitat Piples, K., & Wieczorek, D. F. (2000). Tropomyosin 3 increases striated muscle isoform diversity. Biochemistry, 39, 8291–8297.CrossRef Piples, K., & Wieczorek, D. F. (2000). Tropomyosin 3 increases striated muscle isoform diversity. Biochemistry, 39, 8291–8297.CrossRef
5.
Zurück zum Zitat Pittenger, M. F., Kazzaz, J. A., & Helfman, D. M. (1994). Functional properties of nonmuscle tropomyosin isoforms. Current Opinion in Cell Biology, 6, 96–104.CrossRefPubMed Pittenger, M. F., Kazzaz, J. A., & Helfman, D. M. (1994). Functional properties of nonmuscle tropomyosin isoforms. Current Opinion in Cell Biology, 6, 96–104.CrossRefPubMed
6.
Zurück zum Zitat Wieczorek, D. F. (1988). Regulation of alternatively spliced alpha-tropomyosin gene expression by nerve extract. Journal of Biological Chemistry, 263, 10456–10463.PubMed Wieczorek, D. F. (1988). Regulation of alternatively spliced alpha-tropomyosin gene expression by nerve extract. Journal of Biological Chemistry, 263, 10456–10463.PubMed
7.
Zurück zum Zitat Lemanski, L. F. (1979). Role of tropomyosin in actin filament formation in embryonic salamander heart cells. Journal of Cell Biology, 82, 227–238.CrossRefPubMed Lemanski, L. F. (1979). Role of tropomyosin in actin filament formation in embryonic salamander heart cells. Journal of Cell Biology, 82, 227–238.CrossRefPubMed
8.
Zurück zum Zitat Zhang, C., Jia, P., Huang, X., Sferrazza, G. F., Athauda, G., Achary, A. P., et al. (2009). Myofibril-Inducing RNA (MIR) is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts. Journal of Biomedical Sciences, 16, 81. Zhang, C., Jia, P., Huang, X., Sferrazza, G. F., Athauda, G., Achary, A. P., et al. (2009). Myofibril-Inducing RNA (MIR) is essential for tropomyosin expression and myofibrillogenesis in axolotl hearts. Journal of Biomedical Sciences, 16, 81.
9.
Zurück zum Zitat Spinner, B. J., Zajdel, R. W., McLean, M. D., Denz, C. R., Dube, S., Mehta, S., et al. (2002). Characterization of a TM-4 type tropomyosin that is essential for myofibrillogenesis and contractile activity in embryonic hearts of the Mexican axolotl. Journal of Cellular Biochemistry, 85, 747–761.CrossRefPubMed Spinner, B. J., Zajdel, R. W., McLean, M. D., Denz, C. R., Dube, S., Mehta, S., et al. (2002). Characterization of a TM-4 type tropomyosin that is essential for myofibrillogenesis and contractile activity in embryonic hearts of the Mexican axolotl. Journal of Cellular Biochemistry, 85, 747–761.CrossRefPubMed
10.
Zurück zum Zitat Zajdel, R. W., McLean, M. D., Lemanski, S. L., Muthuchamy, M., Wieczorek, D. F., Lemanski, L. F., et al. (1998). Ectopic expression of tropomyosin promotes myofibrillogenesis in mutant axolotl hearts. Developmental Dynamics, 213, 412–420.CrossRefPubMed Zajdel, R. W., McLean, M. D., Lemanski, S. L., Muthuchamy, M., Wieczorek, D. F., Lemanski, L. F., et al. (1998). Ectopic expression of tropomyosin promotes myofibrillogenesis in mutant axolotl hearts. Developmental Dynamics, 213, 412–420.CrossRefPubMed
11.
Zurück zum Zitat Luque, E. A., Lemanski, L. F., & Dube, D. K. (1994). Molecular cloning, sequencing and expression of a tropomyosin form cardiac muscle of the Mexican axolotl, Ambystoma mexicanum. Biochemical and Biophysical Research Communications, 203, 319–325.CrossRefPubMed Luque, E. A., Lemanski, L. F., & Dube, D. K. (1994). Molecular cloning, sequencing and expression of a tropomyosin form cardiac muscle of the Mexican axolotl, Ambystoma mexicanum. Biochemical and Biophysical Research Communications, 203, 319–325.CrossRefPubMed
12.
Zurück zum Zitat Luque, E. A., Spinner, B. J., Dube, S., Dube, D. K., & Lemanski, L. F. (1997). Differential expression of a novel isoform of alpha-tropomyosin in cardiac and skeletal muscle of the Mexican axolotl (Ambystoma mexicanum). Gene, 185, 175–180.CrossRefPubMed Luque, E. A., Spinner, B. J., Dube, S., Dube, D. K., & Lemanski, L. F. (1997). Differential expression of a novel isoform of alpha-tropomyosin in cardiac and skeletal muscle of the Mexican axolotl (Ambystoma mexicanum). Gene, 185, 175–180.CrossRefPubMed
13.
14.
Zurück zum Zitat Zajdel, R. W., Dube, D. K., & Lemanski, L. F. (1999). The cardiac mutant Mexican axolotl is a unique animal model for evaluation of cardiac myofibrillogenesis. Experimental Cell Research, 248, 557–566.CrossRefPubMed Zajdel, R. W., Dube, D. K., & Lemanski, L. F. (1999). The cardiac mutant Mexican axolotl is a unique animal model for evaluation of cardiac myofibrillogenesis. Experimental Cell Research, 248, 557–566.CrossRefPubMed
15.
Zurück zum Zitat Zajdel, R. W., McLean, M. D., Lemanski, L. F., & Dube, D. K. (2000). Alteration of cardiac myofibrillogenesis by lipofectin-mediated delivery of exogenous proteins and nucleic acids into whole embryonic hearts. Anatomy and Embryology, 210, 217–228.CrossRef Zajdel, R. W., McLean, M. D., Lemanski, L. F., & Dube, D. K. (2000). Alteration of cardiac myofibrillogenesis by lipofectin-mediated delivery of exogenous proteins and nucleic acids into whole embryonic hearts. Anatomy and Embryology, 210, 217–228.CrossRef
16.
Zurück zum Zitat Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences USA, 105, 6063–6068.CrossRef Sadek, H., Hannack, B., Choe, E., Wang, J., Latif, S., Garry, M. G., et al. (2008). Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences USA, 105, 6063–6068.CrossRef
17.
Zurück zum Zitat Pinnamaneni, S., Dube, S., Welch, C., Shrestha, R., Benz, P. M., Abbott, L., et al. (2013). Effect of Shz-1, a cardiogenic small molecule, on expression of tropomyosin in axolotl heart. American Based Research Journal, 2, 24–40. Pinnamaneni, S., Dube, S., Welch, C., Shrestha, R., Benz, P. M., Abbott, L., et al. (2013). Effect of Shz-1, a cardiogenic small molecule, on expression of tropomyosin in axolotl heart. American Based Research Journal, 2, 24–40.
18.
Zurück zum Zitat Schwartz, R. J., Sepulveda, J., & Belaguli, S. N. (2002). Molecular regulation of cardiac myofibrillogenesis: Roles of serum response factor, Nkx2.5, and GATA-4. In D. Dube (Ed.), Myofibrillogenesis (pp. 103–127). New York: Springer.CrossRef Schwartz, R. J., Sepulveda, J., & Belaguli, S. N. (2002). Molecular regulation of cardiac myofibrillogenesis: Roles of serum response factor, Nkx2.5, and GATA-4. In D. Dube (Ed.), Myofibrillogenesis (pp. 103–127). New York: Springer.CrossRef
19.
Zurück zum Zitat Tanaka, M., Kasahara, H., Bartunkova, S., Schinke, M., Komuro, I., Inagaki, H., et al. (1998). Vertebrate homologs of tinman and bagpipe: Roles of the homeobox genes in cardiovascular development. Developmental Genetics, 22, 239–249.CrossRefPubMed Tanaka, M., Kasahara, H., Bartunkova, S., Schinke, M., Komuro, I., Inagaki, H., et al. (1998). Vertebrate homologs of tinman and bagpipe: Roles of the homeobox genes in cardiovascular development. Developmental Genetics, 22, 239–249.CrossRefPubMed
20.
Zurück zum Zitat Thurston, H. L., Prayaga, S., Thomas, A., Guharoy, V., Dube, S., Poiesz, B. J., et al. (2009). Expression of Nkx2.5 in wild type, cardiac mutant, and thyroxine-induced metamorphosed hearts of the Mexican axolotl. Cardiovascular Toxicology, 9, 13–20.CrossRefPubMed Thurston, H. L., Prayaga, S., Thomas, A., Guharoy, V., Dube, S., Poiesz, B. J., et al. (2009). Expression of Nkx2.5 in wild type, cardiac mutant, and thyroxine-induced metamorphosed hearts of the Mexican axolotl. Cardiovascular Toxicology, 9, 13–20.CrossRefPubMed
21.
Zurück zum Zitat Pffaffl, M. W. (2001). A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Research, 29, 2002–2007.CrossRef Pffaffl, M. W. (2001). A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Research, 29, 2002–2007.CrossRef
22.
Zurück zum Zitat Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2-DDCT method. Methods, 25, 402–408.CrossRefPubMed Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2-DDCT method. Methods, 25, 402–408.CrossRefPubMed
23.
24.
Zurück zum Zitat Thomas, A., Rajan, S., Thurston, H. L., Masineni, S. N., Dube, P., Bose, A., et al. (2010). Expression of a novel tropomyosin isoform in axolotl heart and skeletal muscle. Journal of Cellular Biochemistry, 110, 875–881.CrossRefPubMedCentralPubMed Thomas, A., Rajan, S., Thurston, H. L., Masineni, S. N., Dube, P., Bose, A., et al. (2010). Expression of a novel tropomyosin isoform in axolotl heart and skeletal muscle. Journal of Cellular Biochemistry, 110, 875–881.CrossRefPubMedCentralPubMed
25.
Zurück zum Zitat Clemente, C. F., Corat, M. A., Saad, S. T., & Franchini, K. G. (2005). Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R862–R870.PubMed Clemente, C. F., Corat, M. A., Saad, S. T., & Franchini, K. G. (2005). Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 289, R862–R870.PubMed
26.
Zurück zum Zitat Denz, C. R., Zhang, C., Jia, P., Du, J., Huang, X., Dube, S., et al. (2011). Absence of mutation at the 5′-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum). Cardiovascular Toxicology, 11, 235–243.CrossRefPubMed Denz, C. R., Zhang, C., Jia, P., Du, J., Huang, X., Dube, S., et al. (2011). Absence of mutation at the 5′-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum). Cardiovascular Toxicology, 11, 235–243.CrossRefPubMed
27.
Zurück zum Zitat Du, J., Nan, C., Huang, J. J., Zhang, C., Liu, J., Jia, P., et al. (2008). Functional characterization of mouse fetal TnI gene promoters in myocardial cells. Journal of Biomedical Science, 15, 605–613.CrossRefPubMed Du, J., Nan, C., Huang, J. J., Zhang, C., Liu, J., Jia, P., et al. (2008). Functional characterization of mouse fetal TnI gene promoters in myocardial cells. Journal of Biomedical Science, 15, 605–613.CrossRefPubMed
28.
Zurück zum Zitat Nan, C., & Huang, X. (2009). Transcription factor Yin Yang 1 represses fetal troponin I gene expression in neonatal myocardial cells. Biochemical and Biophysical Research Communications, 378, 62–67.CrossRefPubMed Nan, C., & Huang, X. (2009). Transcription factor Yin Yang 1 represses fetal troponin I gene expression in neonatal myocardial cells. Biochemical and Biophysical Research Communications, 378, 62–67.CrossRefPubMed
29.
Zurück zum Zitat Hardy, S., Theze, N., Lepetit, D., Allo, M. R., & Thiebaud, P. (1995). The Xenopus laevis TM-4 gene encodes non-muscle and cardiac tropomyosin isoforms through alternative splicing. Gene, 156, 265–270.CrossRefPubMed Hardy, S., Theze, N., Lepetit, D., Allo, M. R., & Thiebaud, P. (1995). The Xenopus laevis TM-4 gene encodes non-muscle and cardiac tropomyosin isoforms through alternative splicing. Gene, 156, 265–270.CrossRefPubMed
30.
Zurück zum Zitat Fleenor, D. E., Hickman, K. H., Lindquester, G. J., & Devlin, R. B. (1992). Avian cardiac tropomyosin gene produces tissue-specific isoforms through alternative RNA splicing. Journal of Muscle Research & Cell Motility, 13, 55–63.CrossRef Fleenor, D. E., Hickman, K. H., Lindquester, G. J., & Devlin, R. B. (1992). Avian cardiac tropomyosin gene produces tissue-specific isoforms through alternative RNA splicing. Journal of Muscle Research & Cell Motility, 13, 55–63.CrossRef
31.
Zurück zum Zitat Yaffe, D., & Saxel, O. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270, 725–727.CrossRefPubMed Yaffe, D., & Saxel, O. (1977). Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270, 725–727.CrossRefPubMed
32.
Zurück zum Zitat Chen, C. Y., & Schwartz, R. J. (1996). Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Molecular and Cellular Biology, 16, 6372–6384.PubMedCentralPubMed Chen, C. Y., & Schwartz, R. J. (1996). Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Molecular and Cellular Biology, 16, 6372–6384.PubMedCentralPubMed
33.
Zurück zum Zitat Biben, C., & Harvey, R. P. (1997). Homeodomain factor Nk2–5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes & Development, 11, 1357–1369.CrossRef Biben, C., & Harvey, R. P. (1997). Homeodomain factor Nk2–5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes & Development, 11, 1357–1369.CrossRef
34.
Zurück zum Zitat Riazi, A. M., Lee, H., Hsu, C., & Arsdell, G. V. (2005). CSX/Nkx2.5 modulates differentiation of skeletal myoblasts and promotes differentiation into neuronal cells in vitro. Journal of Biological Chemistry, 280, 10716–10720.CrossRefPubMed Riazi, A. M., Lee, H., Hsu, C., & Arsdell, G. V. (2005). CSX/Nkx2.5 modulates differentiation of skeletal myoblasts and promotes differentiation into neuronal cells in vitro. Journal of Biological Chemistry, 280, 10716–10720.CrossRefPubMed
Metadaten
Titel
Expression of Sarcomeric Tropomyosin in Striated Muscles in Axolotl Treated with Shz-1, a Small Cardiogenic Molecule
verfasst von
Changlong Nan
Syamalima Dube
Amr Matoq
Lauren Mikesell
Lynn Abbott
Ruham Alshiekh-Nasany
Henry Chionuma
Xupei Huang
Bernard J. Poiesz
Dipak K. Dube
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2015
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9265-z

Weitere Artikel der Ausgabe 1/2015

Cardiovascular Toxicology 1/2015 Zur Ausgabe