Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 13/2022

29.07.2022 | Original Article

Feasibility of in vivo CAR T cells tracking using streptavidin–biotin-paired positron emission tomography

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 13/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

A novel reporter system, streptavidin (SA)- [68 Ga]Ga-labeled biotin ([68 Ga]Ga-DOTA-biotin), was constructed and its ability for PET imaging the behaviors of CAR T cells were also evaluated in this study.

Methods

In vitro activity and cytotoxicity of the SA transduced anti-CD19-CAR T (denoted as SA-CD19-CAR T) cells were determined. The feasibility of monitoring proliferation profiles of SA-CD19-CAR T cells using [68 Ga]Ga-DOTA-biotin was firstly investigated in a solid tumor model. Also, the pharmacodynamics and pharmacokinetics of the CAR T cells in whole-body hematologic neoplasms were evaluated by bioluminescence imaging and [68 Ga]Ga-DOTA-biotin PET imaging simultaneously.

Results

After transduction with SA, the activity and cytotoxicity of the modified CAR T cells were not affected. PET images revealed that the uptakes of [68 Ga]Ga-DOTA-biotin in CD19+ K562 solid tumors were 0.67 ± 0.32 ID%/g and 1.26 ± 0.13 ID%/g at 30 min and 96 h p.i. after administration of SA-CD19-CAR T cells respectively. It confirmed that the SA-CD19-CAR T cells could effectively inhibit the growth of Raji hematologic tumors. However, low radioactivity related to the proliferation of CD19-CAR T cells was detected in the Raji model.

Conclusion

SA-CD19-CAR T cells were constructed successfully without disturbing the antitumor functions of the cells. The proliferation of the CAR T cells in solid tumors could be early detected by [68 Ga]Ga-DOTA-biotin PET imaging.
Literatur
1.
Zurück zum Zitat Reiser V, Beyond CAR. T-cell therapy: continued monitoring and management of complications. J Adv Pract Oncol. 2020;11:159–67.PubMedPubMedCentral Reiser V, Beyond CAR. T-cell therapy: continued monitoring and management of complications. J Adv Pract Oncol. 2020;11:159–67.PubMedPubMedCentral
2.
Zurück zum Zitat Ellis GI, Sheppard NC, Riley JL. Genetic engineering of T cells for immunotherapy. Nat Rev Genet. 2021;22:427–47.CrossRef Ellis GI, Sheppard NC, Riley JL. Genetic engineering of T cells for immunotherapy. Nat Rev Genet. 2021;22:427–47.CrossRef
3.
Zurück zum Zitat Moreno-Cortes E, Forero-Forero JV, Lengerke-Diaz PA, Castro JE. Chimeric antigen receptor T cell therapy in oncology - pipeline at a glance: analysis of the ClinicalTrials.gov database. Crit Rev Oncol Hematol. 2021;159:103239.CrossRef Moreno-Cortes E, Forero-Forero JV, Lengerke-Diaz PA, Castro JE. Chimeric antigen receptor T cell therapy in oncology - pipeline at a glance: analysis of the ClinicalTrials.gov database. Crit Rev Oncol Hematol. 2021;159:103239.CrossRef
4.
Zurück zum Zitat Labbé RP, Vessillier S, Rafiq QA. Lentiviral vectors for T cell engineering: clinical applications, bioprocessing and future perspectives. Viruses.;2021:13. Labbé RP, Vessillier S, Rafiq QA. Lentiviral vectors for T cell engineering: clinical applications, bioprocessing and future perspectives. Viruses.;2021:13.
5.
Zurück zum Zitat Maloney DG, Kuruvilla J, Liu FF, Kostic A, Kim Y, Bonner A, et al. Matching-adjusted indirect treatment comparison of liso-cel versus axi-cel in relapsed or refractory large B cell lymphoma. J Hematol Oncol. 2021;14:140.CrossRef Maloney DG, Kuruvilla J, Liu FF, Kostic A, Kim Y, Bonner A, et al. Matching-adjusted indirect treatment comparison of liso-cel versus axi-cel in relapsed or refractory large B cell lymphoma. J Hematol Oncol. 2021;14:140.CrossRef
6.
Zurück zum Zitat Mihályová J, Hradská K, Jelínek T, Motais B, Celichowski P, Hájek R. Promising Immunotherapeutic modalities for B-cell lymphoproliferative disorders. Int J Mol Sci. 2021;22. Mihályová J, Hradská K, Jelínek T, Motais B, Celichowski P, Hájek R. Promising Immunotherapeutic modalities for B-cell lymphoproliferative disorders. Int J Mol Sci. 2021;22.
7.
Zurück zum Zitat Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, et al. The European Medicines agency review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist. 2020;25:e321–7.CrossRef Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, et al. The European Medicines agency review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist. 2020;25:e321–7.CrossRef
8.
Zurück zum Zitat Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21:e168–78.CrossRef Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21:e168–78.CrossRef
9.
Zurück zum Zitat June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.CrossRef June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.CrossRef
10.
Zurück zum Zitat Ghorashian S, Kramer AM, Onuoha S, Wright G, Bartram J, Richardson R, et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med. 2019;25:1408–14.CrossRef Ghorashian S, Kramer AM, Onuoha S, Wright G, Bartram J, Richardson R, et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med. 2019;25:1408–14.CrossRef
11.
Zurück zum Zitat Sarikonda G, Pahuja A, Kalfoglou C, Burns K, Nguyen K, Ch’en IL, et al. Monitoring CAR T cell kinetics in clinical trials by multiparametric flow cytometry: Benefits and challenges. Cytometry B Clin Cytom. 2021;100:72–8.CrossRef Sarikonda G, Pahuja A, Kalfoglou C, Burns K, Nguyen K, Ch’en IL, et al. Monitoring CAR T cell kinetics in clinical trials by multiparametric flow cytometry: Benefits and challenges. Cytometry B Clin Cytom. 2021;100:72–8.CrossRef
12.
Zurück zum Zitat Qu C, Ping N, Kang L, Liu H, Qin S, Wu Q, et al. Radiation priming chimeric antigen receptor T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma with high tumor burden. J Immunother. 2020;43:32–7.CrossRef Qu C, Ping N, Kang L, Liu H, Qin S, Wu Q, et al. Radiation priming chimeric antigen receptor T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma with high tumor burden. J Immunother. 2020;43:32–7.CrossRef
13.
Zurück zum Zitat Yan L, Qu S, Shang J, Shi X, Kang L, Xu N, et al. Sequential CD19 and BCMA-specific CAR T-cell treatment elicits sustained remission of relapsed and/or refractory myeloma. Cancer Med. 2021;10:563–74.CrossRef Yan L, Qu S, Shang J, Shi X, Kang L, Xu N, et al. Sequential CD19 and BCMA-specific CAR T-cell treatment elicits sustained remission of relapsed and/or refractory myeloma. Cancer Med. 2021;10:563–74.CrossRef
14.
Zurück zum Zitat Saeed M, Xu Z, De Geest BG, Xu H, Yu H. Molecular imaging for cancer immunotherapy: seeing is believing. Bioconjug Chem. 2020;31:404–15.CrossRef Saeed M, Xu Z, De Geest BG, Xu H, Yu H. Molecular imaging for cancer immunotherapy: seeing is believing. Bioconjug Chem. 2020;31:404–15.CrossRef
15.
Zurück zum Zitat Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: Concept, design, and applications. Chem Rev. 2020;120:3787–851.CrossRef Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: Concept, design, and applications. Chem Rev. 2020;120:3787–851.CrossRef
17.
Zurück zum Zitat Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, et al. PET of adoptively transferred chimeric antigen receptor T cells with (89)Zr-oxine. J Nucl Med. 2018;59:1531–7.CrossRef Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, et al. PET of adoptively transferred chimeric antigen receptor T cells with (89)Zr-oxine. J Nucl Med. 2018;59:1531–7.CrossRef
18.
Zurück zum Zitat Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9.
19.
Zurück zum Zitat Minn I, Huss DJ, Ahn HH, Chinn TM, Park A, Jones J, et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv. 2019;5:eaaw5096.CrossRef Minn I, Huss DJ, Ahn HH, Chinn TM, Park A, Jones J, et al. Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv. 2019;5:eaaw5096.CrossRef
20.
Zurück zum Zitat Vedvyas Y, Shevlin E, Zaman M, Min IM, Amor-Coarasa A, Park S, et al. Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight. 2016;1:e90064.CrossRef Vedvyas Y, Shevlin E, Zaman M, Min IM, Amor-Coarasa A, Park S, et al. Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight. 2016;1:e90064.CrossRef
21.
Zurück zum Zitat Sedlak SM, Schendel LC, Gaub HE, Bernardi RC. Streptavidin/biotin: tethering geometry defines unbinding mechanics. Sci Adv. 2020;6:eaay5999.CrossRef Sedlak SM, Schendel LC, Gaub HE, Bernardi RC. Streptavidin/biotin: tethering geometry defines unbinding mechanics. Sci Adv. 2020;6:eaay5999.CrossRef
22.
Zurück zum Zitat Liu J, Xu N, Wang X, Wang Y, Wu Q, Li X, et al. Quantitative radio-thin-layer chromatography and positron emission tomography studies for measuring streptavidin transduced chimeric antigen receptor T cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1182:122944.CrossRef Liu J, Xu N, Wang X, Wang Y, Wu Q, Li X, et al. Quantitative radio-thin-layer chromatography and positron emission tomography studies for measuring streptavidin transduced chimeric antigen receptor T cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1182:122944.CrossRef
23.
Zurück zum Zitat Hoegger MJ, Longtine MS, Shim K, Wahl RL. Bioluminescent tumor signal is mouse strain and pelt color dependent: experience in a disseminated lymphoma model. Mol Imaging Biol. 2021;23:697–702.CrossRef Hoegger MJ, Longtine MS, Shim K, Wahl RL. Bioluminescent tumor signal is mouse strain and pelt color dependent: experience in a disseminated lymphoma model. Mol Imaging Biol. 2021;23:697–702.CrossRef
24.
Zurück zum Zitat Wen H, Qu Z, Yan Y, Pu C, Wang C, Jiang H, et al. Preclinical safety evaluation of chimeric antigen receptor-modified T cells against CD19 in NSG mice. Ann Transl Med. 2019;7:735.CrossRef Wen H, Qu Z, Yan Y, Pu C, Wang C, Jiang H, et al. Preclinical safety evaluation of chimeric antigen receptor-modified T cells against CD19 in NSG mice. Ann Transl Med. 2019;7:735.CrossRef
25.
Zurück zum Zitat Kang L, Tang X, Zhang J, Li M, Xu N, Qi W, et al. Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes. Exp Hematol Oncol. 2020;9:11.CrossRef Kang L, Tang X, Zhang J, Li M, Xu N, Qi W, et al. Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes. Exp Hematol Oncol. 2020;9:11.CrossRef
26.
Zurück zum Zitat Gu B, Shi BY, Zhang X, Zhou SY, Chu JH, Wu XJ, et al. Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells. Bone Marrow Transplant. 2021;56:91–100.CrossRef Gu B, Shi BY, Zhang X, Zhou SY, Chu JH, Wu XJ, et al. Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells. Bone Marrow Transplant. 2021;56:91–100.CrossRef
27.
Zurück zum Zitat Zhang Y, Li J, Lou X, Chen X, Yu Z, Kang L, et al. A prospective investigation of bispecific CD19/22 CAR T cell therapy in patients with relapsed or refractory B cell non-hodgkin lymphoma. Front Oncol. 2021;11:664421.CrossRef Zhang Y, Li J, Lou X, Chen X, Yu Z, Kang L, et al. A prospective investigation of bispecific CD19/22 CAR T cell therapy in patients with relapsed or refractory B cell non-hodgkin lymphoma. Front Oncol. 2021;11:664421.CrossRef
28.
Zurück zum Zitat Chen LY, Kang LQ, Zhou HX, Gao HQ, Zhu XF, Xu N, et al. Successful application of anti-CD19 CAR T therapy with IL-6 knocking down to patients with central nervous system B-cell acute lymphocytic leukemia. Transl Oncol. 2020;13:100838.CrossRef Chen LY, Kang LQ, Zhou HX, Gao HQ, Zhu XF, Xu N, et al. Successful application of anti-CD19 CAR T therapy with IL-6 knocking down to patients with central nervous system B-cell acute lymphocytic leukemia. Transl Oncol. 2020;13:100838.CrossRef
29.
Zurück zum Zitat Wu Q, Wang Y, Wang X, Liang N, Liu J, Pan D, et al. Pharmacokinetic and pharmacodynamic studies of CD19 CAR T cell in human leukaemic xenograft models with dual-modality imaging. J Cell Mol Med. 2021;25:7451–61.CrossRef Wu Q, Wang Y, Wang X, Liang N, Liu J, Pan D, et al. Pharmacokinetic and pharmacodynamic studies of CD19 CAR T cell in human leukaemic xenograft models with dual-modality imaging. J Cell Mol Med. 2021;25:7451–61.CrossRef
30.
Zurück zum Zitat Sakemura R, Bansal A, Siegler EL, Hefazi M, Yang N, Khadka RH, et al. Development of a clinically relevant reporter for chimeric antigen receptor T-cell expansion, trafficking, and toxicity. Cancer Immunol Res. 2021;9:1035–46.CrossRef Sakemura R, Bansal A, Siegler EL, Hefazi M, Yang N, Khadka RH, et al. Development of a clinically relevant reporter for chimeric antigen receptor T-cell expansion, trafficking, and toxicity. Cancer Immunol Res. 2021;9:1035–46.CrossRef
Metadaten
Titel
Feasibility of in vivo CAR T cells tracking using streptavidin–biotin-paired positron emission tomography
Publikationsdatum
29.07.2022
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 13/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05923-5

Weitere Artikel der Ausgabe 13/2022

European Journal of Nuclear Medicine and Molecular Imaging 13/2022 Zur Ausgabe