Skip to main content
Erschienen in: Clinical Sarcoma Research 1/2015

Open Access 01.12.2015 | Research

First line palliative chemotherapy in elderly patients with advanced soft tissue sarcoma

verfasst von: Nadia Yousaf, Samuel Harris, Juan Martin-Liberal, Susannah Stanway, Mark Linch, Maria Ifijen, Omar Al Muderis, Komel Khabra, Cyril Fisher, Jonathan Noujaim, Ian Judson, Charlotte Benson

Erschienen in: Clinical Sarcoma Research | Ausgabe 1/2015

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

The efficacy and toxicity of first line palliative chemotherapy for soft tissue sarcomas (STS) in the elderly is poorly described.

Methods

Patients over the age of 65 years receiving first line chemotherapy for advanced non-GIST STS January 1998 - January 2012 at the Royal Marsden Hospital were identified. Data regarding survival and predictive factors were collected retrospectively.

Results

120 patients (52 females) with a median age of 72 (range 65–83) were treated. The most common histological subtypes were undifferentiated sarcoma (30%), leiomyosarcoma (27%), angiosarcoma (14%). 42% of patients had high grade tumours. 70% of patients had metastatic disease at presentation; lung metastasis being the most common disease site (72%). 80% received single agent chemotherapy, mostly with doxorubicin (60%). The median number of cycles was 2 (IQR 3). A partial response was reported in 20% of patients with disease stabilisation in a further 20%. 38% of patients were hospitalised for chemotherapy related toxicity. The median overall survival (OS) was 6.5 months (95% CI 4.7-8.3). Anaemia, lymphopenia, hypoalbuminemia, sarcoma subtype and co-morbidities were predictive for overall survival.

Conclusion

The overall survival for elderly patients with STS is poor but several predictive factors have been identified. Hospital admissions for chemotherapy related toxicity are common.
Hinweise

Competing interests

We would like to acknowledge NHS funding to the Royal Marsden/ICR National Institute for Health Research (NIHR) Biomedical Research Centre.

Authors’ contributions

NY: Participated in study design, data acquisition, analysis, interpretation and drafted the manuscript. SH: Participated in study design, data acquisition and interpretation. JML: Participated in data acquisition. SS: Concieved the study. ML: Participated in study design and data interpretation. MI: Participated in data acquisition. OAM: Prospectively maintains the sarcoma database and thereby contributed to data aquisition. KK: Participated in study design and performed statistcal anaysis. CF: Performed hisological analysis of all study sample. IJ: Participated in data interpretation and revision of manuscript. CB: Participated in study design, data interpretation and revison of manuscript. All authors read and approved the manuscript.

Background

Soft tissue sarcoma (STS) encompasses a wide spectrum of malignant tumours of mesenchymal origin with variable clinical behaviour. Optimal treatment for those with localised disease is surgery. However, up to half of these patients will later present with metastatic disease. Others present de-novo with locally advanced or metastatic disease which is not amenable to surgical resection. Over 40% of STS are diagnosed in people older than 65 years of age. Patients with inoperable STS have a poor prognosis with a median survival of 12 months or less [1]. The mainstay of treatment for these patients is palliative chemotherapy which has been shown to be beneficial in approximately one half of patients with metastatic STS [1]. Advancing age has been shown to be an independent prognostic factor for poor survival in patients with metastatic STS [1-3]. However, elderly patients are under-represented in clinical trials. A recent analysis of 2636 patient in first line EORTC trials for STS, found only 274 over 65 and 16 over aged over 75 [4]. As such, the efficacy and toxicity of first line palliative chemotherapy for STS in the elderly is poorly described.
We conducted this retrospective study with the aim of describing the efficacy and toxicity associated with first line chemotherapy for advanced STS in an unselected cohort of patients over the age of 65 years treated at a single institution. We aimed to identify predictive prognostic factors.

Methods

Patients over the age of 65 years diagnosed with STS from January 1998 - January 2012 at the Royal Marsden Hospital were identified via the prospectively maintained sarcoma database.
Only patients with a primary tumour not amenable to surgical resection or those with metastatic disease were included. All patients receiving first line palliative chemotherapy at our institution were included. Patients with gastro intestinal stromal tumour (GIST) were excluded.
Data regarding each patient were retrospectively collected from electronic patient records. Date of diagnosis, age at diagnosis, site of metastasis, chemotherapy agents used, dose reductions, hospital admission during treatment, performance status, serum albumin, sodium, LDH, lymphocyte count, platelet count, date of death or last follow-up were collected. Data on co-morbidities was also collected and the Age Adjusted Charlson Co-morbidity Index (AACCI) [5] for each patient was calculated. However, as locally advanced/metastatic sarcoma was the disease of interest (rather than a co-morbidity) it was excluded from the score. A higher score was indicative of a greater number of co-morbidities. The clinical outcome of each patient was recorded as alive or dead as of 31st of January 2013. Response to treatment was recorded by retrospective review of radiology reports as per Response Evaluation Criteria in Solid Tumors. Patients were re-imaged every 2–3 cycles or earlier if there was clinical suspicion of disease progression.
The study proposal was reviewed and approved by The Royal Marsden Hospital Institutional Audit Committee.

Statistics

The primary end point was overall survival. The secondary endpoints were response to treatment, admission to hospital secondary to chemotherapy toxicity and exploration of prognostic factors.
Overall survival was measured from the start of chemotherapy to the time of death and censored at last follow-up using the Kaplan-Meier methodology.
The effect of age, histologic subtype, grade, site of metastatic disease, blood parameters and AACCI on response to chemotherapy and hospital admission secondary to chemotherapy toxicity was investigated in univariate analysis by means of the χ2 test, Fisher exact test, Mann–Whitney test and Kruskall-Wallis one way ANOVA. Laboratory ranges for blood parameters were as follows; serum albumin (normal range 35 – 50 g/L), sodium (normal range 135 – 145 mmol/L), LDH (normal range 98–192 U/L), lymphocytes (normal range 1.3 – 3.5 × 109/L), platelets (normal range 150 – 400 × 109/L), and haemoglobin (normal range, male 13 – 18 g/dL, female 11.5 – 15.5 g/dl).
A Univariate log-rank analysis was used to investigate these parameters as potential prognostic factors. Multivariate analysis was not performed due to small numbers in subgroups.

Results

We identified a total for 220 patients ages 65 or over with non-GIST STS between January 1998 to January 2012. 24 patients were excluded as they attended our institution for a second opinion only and 76 patients were excluded as they did not receive chemotherapy. 120 patients (53 (44%) females) with a median age of 72 (range 65–83) were treated and eligible for inclusion in this study.
The most common histological subtypes were undifferentiated sarcoma (30%), leiomyosarcoma (27%), angiosarcoma (14%), liposarcoma (8%), rhabdomyosarcoma (7%) and myofibroblastic tumour (7%). 82 (68%) patients had previous surgical resection with or without radiotherapy for treatment of localised sarcoma. 36 (30%) patients received chemotherapy for locally advanced disease; the remainder had metastatic disease at presentation. Demographic data is shown in Table 1. Lymphopenia at the end of chemotherapy was reversed in only in 2 patients (a patient who progressed after 2 cycles of treatment and another with stable disease). Only 1 patient showed a clinically significant improvement in albumin (but progressed after 2 cycles).
Table 1
Demographic information
  
Number
%
Patients
 
120
 
Male
68
56.7
Female
52
43.3
Median age (range) in years
 
73 (65–86)
 
Histology
Rhabdomyosarcoma
8
6.7
Angiosarcoma
17
14.2
Liposarcoma
10
8.3
Myofibroblastic tumour
8
6.7
Synovial
2
1.7
Undifferentiated
36
30
Leiomyosarcoma
33
27.5
Other
6
5
Disease status
Locally advanced
36
30
Metastatic
84
70
Sites of metastatic disease
Lung
61
 
Liver
15
Bone
7
Other
14
Age Adjusted Charlson Index
2
7
5.8
3
17
14.2
4
4
3.3
5
3
2.5
6
5
4.2
8
24
20
9
37
30.8
10
10
8.3
>10
13
10.8
Anaemia*
 
65
54.2
LDH > 250U/L
 
71
59.2
Lymphopenia (<1×10 9 /L)
 
34
28.3
Hypoalbuminemia (<35 g/L)
 
48
40
*Haemoglobin < 13 g/L for males, <11.5 g/L females.

Survival

At the time of analysis 9 patients were still alive. The median overall survival (OS) was 6.5 months (95% CI 4.7-8.3; range 0 – 106) Figure 1. 2 (1.5%) patients died within 30 days of receiving chemotherapy. Univariate analysis revealed lymphocyte count (p = 0.003), albumin (p = 0.003), haemoglobin (p = 0.02), histological subtype (p = 0.02) and AACI (p = 0.03) were predictive of OS (See Table 2).
Table 2
Univariate analysis
Variable
Groups
Median overall survival in months (95% confidence interval)
Statistical significance, p
Sex
male
5.4 (3.1 – 7.7)
0.2
female
6.3 (3.5 – 9.1)
Age
<75 years
6.5 (4.6 – 8.4)
0.3
>75 years
5.3 (3.9 – 6.6)
LDH
normal
7.1 (4.6 – 9.7)
0.3
high
5.4 (3.5 – 7.3)
Lymphocytes
normal
7.8 (5.9 – 9.5)
0.003*
low
3.7 (1.8 - 5.6)
Sodium
normal
5.8 (4.4 – 7.2)
0.8
low
8.2 (4.2 – 12.3)
Albumin
normal
7.7 (4.9 – 10.5)
0.003*
low
3.1 (0.9 – 5.1)
Haemoglobin
normal
8.1 (5.7 – 10.5)
0.02*
5.3 (3.7 – 6.9)
Grade
low
6.0 (4.5 – 7.6)
0.9
intermediate
7.5 (6.8 – 8.1)
high
6.3 (4.8 – 7.9)
Histological subtype
leiomyosarcoma
10.1 (3.9 – 16.4)
0.02*
angiosarcoma
9.7 (6.4 – 12.9)
undifferentiated
3.7 (1.2 – 6.2)
other
5.1 (2.9 – 7.2)
Sites of visceral involvement
Lungs
5.7 (4.5 – 7.1)
0.2
Liver
10.1 (0 – 30.9)
bone
6.3 (0.9 – 11.7)
Age Adjusted Charlson Index
<3
9.6 (4.4 – 14.9)
0.03*
>3
5.6 (3.8 – 7.4)
*significant factors in univariate analysis. Laboratory ranges for blood parameters were as follows; serum albumin (normal range 35 – 50 g/L), sodium (normal range 135 – 145 mmol/L) lymphocytes (normal range 1 – 3.5 × 109/L), platelets (normal range 150 – 400 × 109/L) , LDH (normal range 100 – 250 U/L) and haemoglobin (normal range, male 13 – 18 g/dL, female 11.5 – 15.5 g/dl).

Response and toxicity

97 patients (80%) received single agent chemotherapy, most commonly doxorubicin (n = 61) followed by paclitaxel (n = 16). The most common combination chemotherapy regimens were gemcitabine and docetaxel (n = 8) and doxorubicin and ifosfamide (n = 6). The median number of cycles received was 2 (range 1–11). A partial response was reported in 20% of patients, with disease stabilisation in a further 20% (clinical benefit). Univariate analysis did not identify any factors predictive for response to chemotherapy.
38% of patients were hospitalised for chemotherapy related toxicity. Univariate analysis identified only serum albumin as a predictive factor for hospital admission due to toxicity. 32% of patients with a low albumin were admitted to hospital for chemotherapy related toxicity, compared to 24% of patients with a normal serum albumin (p = 0.02).

Discussion

In this retrospective analysis of real world data from 120 older patients undergoing palliative chemotherapy for STS we have found that the overall survival for this group of patients is poor. Previously reported data from our own institution in patients under the age of 65 showed a median OS of around 1 year [1]. Synovial and liposarcomas represented almost a quarter of this cohort and were found to be independently associated with better survival. In our older cohort, these subtypes accounted for less than 10% of patients and therefore their absence may contribute to the poor survival. We also found that other aspects of tumour histology were an important determinant of prognosis in this elderly population. In particular, median overall survival was significantly better for patients with leiomyosarcomas (10.1 months) and angiosarcomas (9.7) when compared to undifferentiated sarcomas (3.7). This difference was statistically (p = 0.02) and clinically significant and likely reflects differences in the underlying nature of these diseases, and their variation across differing age groups. Undifferentiated sarcoma is often highly aggressive and sometimes resistant to treatment while conversely, the angiosarcoma frequently observed in older patients affects the scalp and face, responds to treatment with paclitaxel and liposomal doxorubicin and may remain relatively localised for many months.
A recent analysis of 274 patients aged over 65 with STS treated with first line chemotherapy within EORTC trials was presented at the 2014 European Society of Medical Oncologists Congress [4]. These patients had a median survival of 9.8 months, but the population differed from ours in that patients were slightly younger (median 68 versus 72 years), with a larger proportion of leiomyosarcomas and were likely to be of a better performance status (more than 85% with a PS of 0–1), since they were patients who had been recruited into clinical trials. Patients with significant co-morbidities are often excluded from clinical trials. We found that more co-morbidity, as assessed by the AACCI was associated with worse OS. This has been reported in other tumour types [6-8] and may be because patients with multiple co-morbidities tolerate chemotherapy less well, or are perhaps sub-optimally treated [9].
Functional capabilities and nutritional status [10] alongside laboratory markers have been shown to predict for survival in older patients [11]. We were unable to gather data regarding the functional ability of patients treated but found a number of laboratory markers to predict for survival. In keeping with previous reports we found that around a quarter of this cohort of patients with advanced STC were lymphopenic and this was associated with worse survival [12]. As the rate of lymphopenia in this elderly population is similar to that previous reported in patients with advanced STS, age related reductions in thymic function are unlikely to be the explanation [13]. Lymphopenia may be an indicator of decreased self-renewal capacity of hematopoietic stem cells thereby contributing to impaired immune function [14] or may also reflect tumour related immunosuppression [15]. Anaemia and hypoalbuminemia in malignancy may be indicative of malnutrition but also reflect a complex tumour related inflammatory cytokine response [16-18]. We collected lymphocyte count and albumin at the end of treatment but found that in the vast majority of patients, even in those that responded to treatment, these markers did not improve. It is difficult to interpret this data but may be related to the overall poor prognosis in this patient group.
We were not able to assess the impact of specific chemotherapy agents on toxicity, response or survival due to the heterogeneity of regimes used. Previous data from our institute in younger patients showed that doublet chemotherapy improved overall survival [1], although this has not been demonstrated in prospective phase 3 studies [19-21]. Only a few single arm studies have specifically investigated tolerability and efficacy of specific chemotherapy regimes in the elderly patients with STS. A small study of daily oral metronomic cyclophosphamide and prednisolone in elderly patients with unresectable STS showed good tolerability and a response rate of almost 27% [22]. Also a retrospective analysis of patients with head and neck angiosarcoma (mainly an elderly population), showed a response rate of greater than 80% and good tolerability [23].
We were unable to identify factors associated with response perhaps because of the smaller number of patients in our study, or perhaps because sarcomas are a heterogonous group of disease with many displaying intrinsic chemotherapy resistance.
We used hospitalisation as a surrogate marker for chemotherapy toxicity and found that over one third of patients were admitted to hospital while undergoing chemotherapy. This is not inconsistent with other data in this age group. A study of patients over the age of 75 undergoing palliative chemotherapy for bowel cancer demonstrated that 42% of patients suffered grade 3 or 4 toxicity [24]. We found that low albumin (possibly due to advanced disease, tumour cachexia or malnutrition) was associated with an increased risk of hospitalisation. Low albumin is known to affect the volume of distribution of chemotherapy drugs and therefore in part there is likely to be a pharmacokinetic explanation for this finding [25].
Comprehensive Geriatric Assessment (CGA) is defined as a multidimensional, interdisciplinary diagnostic process focusing on determining an older person’s co-morbidities, psychosocial, and functional capabilities to develop a coordinated and integrated plan for treatment and long-term follow-up [26]. CGA can detect problems commonly missed in routine clinical assessment [27] in up to 50% of geriatric patients [28] and have been shown to be more sensitive at selecting frail patients than physicians judgement [29]. This could allow for optimisation of co-morbidities prior to assessing older patients for chemotherapy. As age is an independent risk factor for anthracycline induced cardiomyopathy [30] we have adopted an approach of optimising cardiovascular health with cardio-oncology input prior to administration of anthracylines and/or considering liposomal doxorubicin [31].
Despite the potential value, the main limitation to incorporating CGA in oncology clinics is that it requires time and service development. Furthermore, there is a lack of randomised studies to assess the effectiveness of CGA in selecting patient for active oncology treatment versus best supportive care. Attempts have been made to simplify the process of CGA and develop tools incorporating geriatric assessment variables which can be used in clinics. Two large prospective studies [32,33] have demonstrated that scores including geriatric assessment variables have moderate ability to predict for chemotherapy related toxicity and are more sensitive than PS alone [32]. Despite acknowledging the current limitations, The International Society of Geriatric Oncology recommends the use of a CGA to optimise the management of elderly patients with cancer [26].
Our key limitations are those of any retrospective analysis. Data on performance status, weight and specific chemotherapy toxicity were poorly documented and therefore we were unable to assess the effect of these on survival and response.
Older patients with STS have a poor prognosis. Some do benefit from palliative chemotherapy however there is also a high risk of significant toxicity. Selecting appropriate patients to undergo treatment is complex and dependant on several factors including sarcoma subtype, co-morbidities and a number of biomarkers that probably reflect disease burden, such as performance status, low albumin, anaemia etc. These challenges remain, even in an age of targeted therapies as many of these can cause cardiovascular complications [34]. Optimising the management of older people with cancer by developing a robust assessment process and evidence base is imperative. Older patients should be recruited to clinical trials and in some instances specific clinical trials for elderly patients with co-morbidities are warranted.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

We would like to acknowledge NHS funding to the Royal Marsden/ICR National Institute for Health Research (NIHR) Biomedical Research Centre.

Authors’ contributions

NY: Participated in study design, data acquisition, analysis, interpretation and drafted the manuscript. SH: Participated in study design, data acquisition and interpretation. JML: Participated in data acquisition. SS: Concieved the study. ML: Participated in study design and data interpretation. MI: Participated in data acquisition. OAM: Prospectively maintains the sarcoma database and thereby contributed to data aquisition. KK: Participated in study design and performed statistcal anaysis. CF: Performed hisological analysis of all study sample. IJ: Participated in data interpretation and revision of manuscript. CB: Participated in study design, data interpretation and revison of manuscript. All authors read and approved the manuscript.
Literatur
1.
Zurück zum Zitat Karavasilis V, Seddon BM, Ashley S, Al-Muderis O, Fisher C, Judson I. Significant clinical benefit of first-line palliative chemotherapy in advanced soft-tissue sarcoma: retrospective analysis and identification of prognostic factors in 488 patients. Cancer. 2008;112(7):1585–91.CrossRefPubMed Karavasilis V, Seddon BM, Ashley S, Al-Muderis O, Fisher C, Judson I. Significant clinical benefit of first-line palliative chemotherapy in advanced soft-tissue sarcoma: retrospective analysis and identification of prognostic factors in 488 patients. Cancer. 2008;112(7):1585–91.CrossRefPubMed
2.
Zurück zum Zitat Italiano A, Mathoulin-Pelisser S, Cesne AL, Terrier P, Collin F, Michels JJ, et al. Trends in survival for patients with metastatic soft-tissue sarcoma. Cancer. 2011;117(5):1049–54.CrossRefPubMed Italiano A, Mathoulin-Pelisser S, Cesne AL, Terrier P, Collin F, Michels JJ, et al. Trends in survival for patients with metastatic soft-tissue sarcoma. Cancer. 2011;117(5):1049–54.CrossRefPubMed
3.
Zurück zum Zitat Van Glabbeke M, van Oosterom AT, Oosterhuis JW, Mouridsen H, Crowther D, Somers R, et al. Prognostic factors for the outcome of chemotherapy in advanced soft tissue sarcoma: an analysis of 2,185 patients treated with anthracycline-containing first-line regimens–a European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol. 1999;17(1):150–7.PubMed Van Glabbeke M, van Oosterom AT, Oosterhuis JW, Mouridsen H, Crowther D, Somers R, et al. Prognostic factors for the outcome of chemotherapy in advanced soft tissue sarcoma: an analysis of 2,185 patients treated with anthracycline-containing first-line regimens–a European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol. 1999;17(1):150–7.PubMed
4.
Zurück zum Zitat Van der Graaf W, Le Cesne A, Mir O, Gelderblom H, Italiano S, Marreaud I, et al. Outcome of first-line treatment of elderly advanced soft tissue sarcoma (STS) patients: a pooled analysis of eleven EORTC Soft Tissue and Bone Sarcoma Group trials. Ann Oncol. 2014;25 Suppl 4:494–510. Van der Graaf W, Le Cesne A, Mir O, Gelderblom H, Italiano S, Marreaud I, et al. Outcome of first-line treatment of elderly advanced soft tissue sarcoma (STS) patients: a pooled analysis of eleven EORTC Soft Tissue and Bone Sarcoma Group trials. Ann Oncol. 2014;25 Suppl 4:494–510.
5.
Zurück zum Zitat Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47(11):1245–51.CrossRefPubMed Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47(11):1245–51.CrossRefPubMed
6.
Zurück zum Zitat Koppie TM, Serio AM, Vickers AJ, Vora K, Dalbagni G, Donat SM, et al. Age-adjusted Charlson comorbidity score is associated with treatment decisions and clinical outcomes for patients undergoing radical cystectomy for bladder cancer. Cancer. 2008;112(11):2384–92.CrossRefPubMed Koppie TM, Serio AM, Vickers AJ, Vora K, Dalbagni G, Donat SM, et al. Age-adjusted Charlson comorbidity score is associated with treatment decisions and clinical outcomes for patients undergoing radical cystectomy for bladder cancer. Cancer. 2008;112(11):2384–92.CrossRefPubMed
7.
Zurück zum Zitat Kopek N, Paludan M, Petersen J, Hansen AT, Grau C, Høyer M. Co-morbidity index predicts for mortality after stereotactic body radiotherapy for medically inoperable early-stage non-small cell lung cancer. Radiother Oncol. 2009;93(3):402–7.CrossRefPubMed Kopek N, Paludan M, Petersen J, Hansen AT, Grau C, Høyer M. Co-morbidity index predicts for mortality after stereotactic body radiotherapy for medically inoperable early-stage non-small cell lung cancer. Radiother Oncol. 2009;93(3):402–7.CrossRefPubMed
8.
Zurück zum Zitat Sperling C, Noer MC, Christensen IJ, Nielsen ML, Lidegaard Ø, Høgdall C. Comorbidity is an independent prognostic factor for the survival of ovarian cancer: a Danish register-based cohort study from a clinical database. Gynecol Oncol. 2013;129(1):97–102.CrossRefPubMed Sperling C, Noer MC, Christensen IJ, Nielsen ML, Lidegaard Ø, Høgdall C. Comorbidity is an independent prognostic factor for the survival of ovarian cancer: a Danish register-based cohort study from a clinical database. Gynecol Oncol. 2013;129(1):97–102.CrossRefPubMed
9.
Zurück zum Zitat Hurria A, Leung D, Trainor K, Borgen P, Norton L, Hudis C. Factors influencing treatment patterns of breast cancer patients age 75 and older. Crit Rev Oncol Hematol. 2003;46(2):121–6.CrossRefPubMed Hurria A, Leung D, Trainor K, Borgen P, Norton L, Hudis C. Factors influencing treatment patterns of breast cancer patients age 75 and older. Crit Rev Oncol Hematol. 2003;46(2):121–6.CrossRefPubMed
10.
Zurück zum Zitat Puts MT, Hardt J, Monette J, Girre V, Springall E, Alibhai SM. Use of geriatric assessment for older adults in the oncology setting: a systematic review. J Natl Cancer Inst. 2012;104(15):1133–63.CrossRefPubMed Puts MT, Hardt J, Monette J, Girre V, Springall E, Alibhai SM. Use of geriatric assessment for older adults in the oncology setting: a systematic review. J Natl Cancer Inst. 2012;104(15):1133–63.CrossRefPubMed
11.
Zurück zum Zitat Gough N, Smith C, Ross JR, Riley J, Judson I. A prognostic score to guide appropriate delivery of first line palliative chemotherapy for soft tissue sarcoma. Ann Oncol. 2012;23 suppl 9:ix478–91. Gough N, Smith C, Ross JR, Riley J, Judson I. A prognostic score to guide appropriate delivery of first line palliative chemotherapy for soft tissue sarcoma. Ann Oncol. 2012;23 suppl 9:ix478–91.
12.
Zurück zum Zitat Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69(13):5383–91.CrossRefPubMedCentralPubMed Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69(13):5383–91.CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Ferrando-Martinez S, Franco JM, Hernandez A, Ordoñez A, Gutierrez E, Abad A, et al. Thymopoiesis in elderly human is associated with systemic inflammatory status. Age (Dordr). 2009;31(2):87–97.CrossRef Ferrando-Martinez S, Franco JM, Hernandez A, Ordoñez A, Gutierrez E, Abad A, et al. Thymopoiesis in elderly human is associated with systemic inflammatory status. Age (Dordr). 2009;31(2):87–97.CrossRef
14.
Zurück zum Zitat Falandry C, Bonnefoy M, Freyer G, Gilson E. Biology of Cancer and Aging: A Complex Association with Cellular Senescence. J Clin Oncol. 2014;32(24):2604–10.CrossRefPubMed Falandry C, Bonnefoy M, Freyer G, Gilson E. Biology of Cancer and Aging: A Complex Association with Cellular Senescence. J Clin Oncol. 2014;32(24):2604–10.CrossRefPubMed
15.
Zurück zum Zitat Strand S, Hofmann WJ, Huq H, Muller M, Otto G, Strand D, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nat Med. 1996;2(12):1361–6.CrossRefPubMed Strand S, Hofmann WJ, Huq H, Muller M, Otto G, Strand D, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells–a mechanism of immune evasion? Nat Med. 1996;2(12):1361–6.CrossRefPubMed
16.
Zurück zum Zitat Dicato M, Plawny L, Diederich M. Anemia in cancer. Ann Oncol. 2010;21 Suppl 7:vii167–72.PubMed Dicato M, Plawny L, Diederich M. Anemia in cancer. Ann Oncol. 2010;21 Suppl 7:vii167–72.PubMed
17.
Zurück zum Zitat Scott HR, McMillan DC, Forrest LM, Brown DJ, McArdle CS, Milroy R. The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer. Br J Cancer. 2002;87(3):264–7.CrossRefPubMedCentralPubMed Scott HR, McMillan DC, Forrest LM, Brown DJ, McArdle CS, Milroy R. The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer. Br J Cancer. 2002;87(3):264–7.CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat MacDonald N. Cancer cachexia and targeting chronic inflammation: a unified approach to cancer treatment and palliative/supportive care. J Support Oncol. 2007;5(4):157–62. discussion 164–6, 183.PubMed MacDonald N. Cancer cachexia and targeting chronic inflammation: a unified approach to cancer treatment and palliative/supportive care. J Support Oncol. 2007;5(4):157–62. discussion 164–6, 183.PubMed
19.
Zurück zum Zitat Santoro A, Tursz T, Mouridsen H, Verweij, Steward W, Somers R, et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol. 1995;13(7):1537–45.PubMed Santoro A, Tursz T, Mouridsen H, Verweij, Steward W, Somers R, et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol. 1995;13(7):1537–45.PubMed
20.
Zurück zum Zitat Edmonson JH, Ryan LM, Blum RH, Brooks JS, Shiraki M, Frytak S, et al. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. J Clin Oncol. 1993;11(7):1269–75.PubMed Edmonson JH, Ryan LM, Blum RH, Brooks JS, Shiraki M, Frytak S, et al. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. J Clin Oncol. 1993;11(7):1269–75.PubMed
21.
Zurück zum Zitat Judson I, Verweij J, Gelderblom H, Hartmann JT, Schöffski P, Blay JY, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15(4):415–23.CrossRefPubMed Judson I, Verweij J, Gelderblom H, Hartmann JT, Schöffski P, Blay JY, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15(4):415–23.CrossRefPubMed
22.
Zurück zum Zitat Mir O, Domont J, Cioffi A, Bonvalot S, Boulet B, Le Pechoux C, et al. Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperable or metastatic soft tissue sarcoma. Eur J Cancer. 2011;47(4):515–9.CrossRefPubMed Mir O, Domont J, Cioffi A, Bonvalot S, Boulet B, Le Pechoux C, et al. Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperable or metastatic soft tissue sarcoma. Eur J Cancer. 2011;47(4):515–9.CrossRefPubMed
23.
Zurück zum Zitat Letsa I, Benson C, Al-Muderis O, Judson I. Angiosarcoma of the face and scalp: effective systemic treatment in the older patient. J Geriatr Oncol. 2014;5(3):276–80.CrossRefPubMed Letsa I, Benson C, Al-Muderis O, Judson I. Angiosarcoma of the face and scalp: effective systemic treatment in the older patient. J Geriatr Oncol. 2014;5(3):276–80.CrossRefPubMed
24.
Zurück zum Zitat Aparicio T, Desramé J, Lecomte T, Mitry E, Belloc J, Etienny I, et al. Oxaliplatin- or irinotecan-based chemotherapy for metastatic colorectal cancer in the elderly. Br J Cancer. 2003;89(8):1439–44.CrossRefPubMedCentralPubMed Aparicio T, Desramé J, Lecomte T, Mitry E, Belloc J, Etienny I, et al. Oxaliplatin- or irinotecan-based chemotherapy for metastatic colorectal cancer in the elderly. Br J Cancer. 2003;89(8):1439–44.CrossRefPubMedCentralPubMed
25.
Zurück zum Zitat Balis FM. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin Pharmacokinet. 1986;11(3):223–35.CrossRefPubMed Balis FM. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin Pharmacokinet. 1986;11(3):223–35.CrossRefPubMed
26.
Zurück zum Zitat Wildiers H, Heeren P, Puts M, Topinkova E, Janssen_Heijnen ML, et al. International Society of Geriatric Oncology Consensus on Geriatric Assessment in Older Patients with Cancer. J Clin Oncol. 2014;32(24):2595–603.CrossRefPubMed Wildiers H, Heeren P, Puts M, Topinkova E, Janssen_Heijnen ML, et al. International Society of Geriatric Oncology Consensus on Geriatric Assessment in Older Patients with Cancer. J Clin Oncol. 2014;32(24):2595–603.CrossRefPubMed
27.
Zurück zum Zitat Extermann M, Aapro M, Bernbei R, Cohen HJ, Droz JP, Lichtman S, et al. Use of comprehensive geriatric assessment in older cancer patients: recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit Rev Oncol Hematol. 2005;55(3):241–52.CrossRefPubMed Extermann M, Aapro M, Bernbei R, Cohen HJ, Droz JP, Lichtman S, et al. Use of comprehensive geriatric assessment in older cancer patients: recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit Rev Oncol Hematol. 2005;55(3):241–52.CrossRefPubMed
28.
Zurück zum Zitat Versteeg KS, Konings IR, Laqaay AM, van de Loosdrecht AA, Verheul HM. Prediction of treatment-related toxicity and outcome with geriatric assessment in elderly patients with solid malignancies treated with chemotherapy: a systematic review. Ann Oncol. 2014;25(10):1914–8.CrossRefPubMed Versteeg KS, Konings IR, Laqaay AM, van de Loosdrecht AA, Verheul HM. Prediction of treatment-related toxicity and outcome with geriatric assessment in elderly patients with solid malignancies treated with chemotherapy: a systematic review. Ann Oncol. 2014;25(10):1914–8.CrossRefPubMed
29.
Zurück zum Zitat Wedding U, Ködding D, Pientka L, Steinmetz, Schmitz S. Physicians’ judgement and comprehensive geriatric assessment (CGA) select different patients as fit for chemotherapy. Crit Rev Oncol Hematol. 2007;64(1):1–9.CrossRefPubMed Wedding U, Ködding D, Pientka L, Steinmetz, Schmitz S. Physicians’ judgement and comprehensive geriatric assessment (CGA) select different patients as fit for chemotherapy. Crit Rev Oncol Hematol. 2007;64(1):1–9.CrossRefPubMed
30.
Zurück zum Zitat Von Hoff DD, Layard MW, Basa P, Davis Jr HL, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.CrossRef Von Hoff DD, Layard MW, Basa P, Davis Jr HL, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.CrossRef
31.
Zurück zum Zitat van Dalen EC, Michiels EMC, Caron HN, Kremer LCM. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews, 2010. DOI: 10.1002/14651858.CD005006.pub4. van Dalen EC, Michiels EMC, Caron HN, Kremer LCM. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews, 2010. DOI: 10.1002/14651858.CD005006.pub4.
32.
Zurück zum Zitat Hurria A, Toqawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29(25):3457–65.CrossRefPubMedCentralPubMed Hurria A, Toqawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29(25):3457–65.CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Extermann M, Boler I, Reich RR, Lyman GH, Brown RH, DeFelice J, et al. Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer. 2012;118(13):3377–86.CrossRefPubMed Extermann M, Boler I, Reich RR, Lyman GH, Brown RH, DeFelice J, et al. Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer. 2012;118(13):3377–86.CrossRefPubMed
34.
Zurück zum Zitat Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.CrossRefPubMed Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.CrossRefPubMed
Metadaten
Titel
First line palliative chemotherapy in elderly patients with advanced soft tissue sarcoma
verfasst von
Nadia Yousaf
Samuel Harris
Juan Martin-Liberal
Susannah Stanway
Mark Linch
Maria Ifijen
Omar Al Muderis
Komel Khabra
Cyril Fisher
Jonathan Noujaim
Ian Judson
Charlotte Benson
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Clinical Sarcoma Research / Ausgabe 1/2015
Elektronische ISSN: 2045-3329
DOI
https://doi.org/10.1186/s13569-015-0026-y

Weitere Artikel der Ausgabe 1/2015

Clinical Sarcoma Research 1/2015 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.