Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2017

17.02.2017 | Original Article

Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties

verfasst von: H. Tam, W. Zhang, D. Infante, N. Parchment, M. Sacks, N. Vyavahare

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium (BP), are used to replace defective heart valves. However, valve failure can occur within 12–15 years due to calcification and/or progressive structural degeneration. We present a novel fabrication method that utilizes carbodiimide, neomycin trisulfate, and pentagalloyl glucose crosslinking chemistry (TRI) to better stabilize the extracellular matrix of BP. We demonstrate that TRI-treated BP is more compliant than GLUT-treated BP. GLUT-treated BP exhibited permanent geometric deformation and complete alteration of apparent mechanical properties when subjected to induced static strain. TRI BP, on the other hand, did not exhibit such permanent geometric deformations or significant alterations of apparent mechanical properties. TRI BP also exhibited better resistance to enzymatic degradation in vitro and calcification in vivo when implanted subcutaneously in juvenile rats for up to 30 days.
Literatur
1.
Zurück zum Zitat Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(18), 1864–80.CrossRefPubMed Schoen, F. J. (2008). Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation, 118(18), 1864–80.CrossRefPubMed
2.
Zurück zum Zitat Manji, R. A., Menkis, A. H., Ekser, B., & Cooper, D. K. (2012). Porcine bioprosthetic heart valves: the next generation. American Heart Journal, 164(2), 177–85.CrossRefPubMed Manji, R. A., Menkis, A. H., Ekser, B., & Cooper, D. K. (2012). Porcine bioprosthetic heart valves: the next generation. American Heart Journal, 164(2), 177–85.CrossRefPubMed
3.
Zurück zum Zitat Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–44.CrossRefPubMed Siddiqui, R. F., Abraham, J. R., & Butany, J. (2009). Bioprosthetic heart valves: modes of failure. Histopathology, 55(2), 135–44.CrossRefPubMed
4.
Zurück zum Zitat Mohammadi, H., & Mequanint, K. (2011). Prosthetic aortic heart valves: modeling and design. Medical Engineering and Physics, 33(2), 131–47.CrossRefPubMed Mohammadi, H., & Mequanint, K. (2011). Prosthetic aortic heart valves: modeling and design. Medical Engineering and Physics, 33(2), 131–47.CrossRefPubMed
5.
Zurück zum Zitat Sacks, M. S., & Schoen, F. J. (2002). Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. Journal of Biomedical Materials Research, 62(3), 359–71.CrossRefPubMed Sacks, M. S., & Schoen, F. J. (2002). Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. Journal of Biomedical Materials Research, 62(3), 359–71.CrossRefPubMed
6.
Zurück zum Zitat Wells, S. M., Sellaro, T., & Sacks, M. S. (2005). Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials, 26(15), 2611–9.CrossRefPubMed Wells, S. M., Sellaro, T., & Sacks, M. S. (2005). Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials, 26(15), 2611–9.CrossRefPubMed
7.
Zurück zum Zitat Eckert, C. E., Fan, R., Mikulis, B., Barron, M., Carruthers, C. A., Friebe, V. M., Vyavahare, N. R., & Sacks, M. S. (2013). On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomaterialia, 9(1), 4653–60.CrossRefPubMed Eckert, C. E., Fan, R., Mikulis, B., Barron, M., Carruthers, C. A., Friebe, V. M., Vyavahare, N. R., & Sacks, M. S. (2013). On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomaterialia, 9(1), 4653–60.CrossRefPubMed
8.
Zurück zum Zitat Sacks, M. S., David Merryman, W., & Schmidt, D. E. (2009). On the biomechanics of heart valve function. Journal of Biomechanics, 42(12), 1804–24.CrossRefPubMedPubMedCentral Sacks, M. S., David Merryman, W., & Schmidt, D. E. (2009). On the biomechanics of heart valve function. Journal of Biomechanics, 42(12), 1804–24.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Zilla, P., Brink, J., Human, P., & Bezuidenhout, D. (2008). Prosthetic heart valves: catering for the few. Biomaterials, 29(4), 385–406.CrossRefPubMed Zilla, P., Brink, J., Human, P., & Bezuidenhout, D. (2008). Prosthetic heart valves: catering for the few. Biomaterials, 29(4), 385–406.CrossRefPubMed
10.
Zurück zum Zitat Aslam, A. K., Aslam, A. F., Vasavada, B. C., & Khan, I. A. (2007). Prosthetic heart valves: types and echocardiographic evaluation. International Journal of Cardiology, 122(2), 99–110.CrossRefPubMed Aslam, A. K., Aslam, A. F., Vasavada, B. C., & Khan, I. A. (2007). Prosthetic heart valves: types and echocardiographic evaluation. International Journal of Cardiology, 122(2), 99–110.CrossRefPubMed
11.
Zurück zum Zitat Takkenberg, J. J., van Herwerden, L. A., Eijkemans, M. J., Bekkers, J. A., & Bogers, A. J. (2002). Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. European Journal of Cardio-Thoracic Surgery Official Journal of the European Association for Cardio-Thoracic Surgery, 21(4), 683–91. discussion 691.CrossRefPubMed Takkenberg, J. J., van Herwerden, L. A., Eijkemans, M. J., Bekkers, J. A., & Bogers, A. J. (2002). Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. European Journal of Cardio-Thoracic Surgery Official Journal of the European Association for Cardio-Thoracic Surgery, 21(4), 683–91. discussion 691.CrossRefPubMed
12.
Zurück zum Zitat Schoen, F. J., Tsao, J. W., & Levy, R. J. (1986). Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization. The American Journal of Pathology, 123(1), 134–45.PubMedPubMedCentral Schoen, F. J., Tsao, J. W., & Levy, R. J. (1986). Calcification of bovine pericardium used in cardiac valve bioprostheses. Implications for the mechanisms of bioprosthetic tissue mineralization. The American Journal of Pathology, 123(1), 134–45.PubMedPubMedCentral
13.
Zurück zum Zitat Schoen, F. J., Levy, R. J., Nelson, A. C., Bernhard, W. F., Nashef, A., & Hawley, M. (1985). Onset and progression of experimental bioprosthetic heart valve calcification. Laboratory Investigation A Journal of Technical Methods and Pathology, 52(5), 523–32.PubMed Schoen, F. J., Levy, R. J., Nelson, A. C., Bernhard, W. F., Nashef, A., & Hawley, M. (1985). Onset and progression of experimental bioprosthetic heart valve calcification. Laboratory Investigation A Journal of Technical Methods and Pathology, 52(5), 523–32.PubMed
14.
Zurück zum Zitat L.J. Strates, B., & Nimni, M. E. (1989). Calcification in cardiovascular tissues and bioprostheses, Biotechnology ed. Bova Rotan: CRC Press. L.J. Strates, B., & Nimni, M. E. (1989). Calcification in cardiovascular tissues and bioprostheses, Biotechnology ed. Bova Rotan: CRC Press.
15.
16.
Zurück zum Zitat Perrotta, I., Russo, E., Camastra, C., Filice, G., Di Mizio, G., Colosimo, F., Ricci, P., Tripepi, S., Amorosi, A., Triumbari, F., & Donato, G. (2011). New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology, 59(3), 504–13.CrossRefPubMed Perrotta, I., Russo, E., Camastra, C., Filice, G., Di Mizio, G., Colosimo, F., Ricci, P., Tripepi, S., Amorosi, A., Triumbari, F., & Donato, G. (2011). New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology, 59(3), 504–13.CrossRefPubMed
17.
Zurück zum Zitat Gott, J. P., Girardot, M. N., Girardot, J. M., Hall, J. D., Whitlark, J. D., Horsley, W. S., Dorsey, L. M., Levy, R. J., Chen, W., Schoen, F. J., & Guyton, R. A. (1997). Refinement of the alpha aminooleic acid bioprosthetic valve anticalcification technique. The Annals of Thoracic Surgery, 64(1), 50–8.CrossRefPubMed Gott, J. P., Girardot, M. N., Girardot, J. M., Hall, J. D., Whitlark, J. D., Horsley, W. S., Dorsey, L. M., Levy, R. J., Chen, W., Schoen, F. J., & Guyton, R. A. (1997). Refinement of the alpha aminooleic acid bioprosthetic valve anticalcification technique. The Annals of Thoracic Surgery, 64(1), 50–8.CrossRefPubMed
18.
Zurück zum Zitat Ogle, M. F., Kelly, S. J., Bianco, R. W., & Levy, R. J. (2003). Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. The Annals of Thoracic Surgery, 75(4), 1267–73.CrossRefPubMed Ogle, M. F., Kelly, S. J., Bianco, R. W., & Levy, R. J. (2003). Calcification resistance with aluminum-ethanol treated porcine aortic valve bioprostheses in juvenile sheep. The Annals of Thoracic Surgery, 75(4), 1267–73.CrossRefPubMed
19.
Zurück zum Zitat Levy, R. J., Vyavahare, N., Ogle, M., Ashworth, P., Bianco, R., & Schoen, F. J. (2003). Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism. The Journal of Heart Valve Disease, 12(2), 209–16. discussion 216.PubMed Levy, R. J., Vyavahare, N., Ogle, M., Ashworth, P., Bianco, R., & Schoen, F. J. (2003). Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: background, mechanisms, and synergism. The Journal of Heart Valve Disease, 12(2), 209–16. discussion 216.PubMed
20.
Zurück zum Zitat Vyavahare, N., Hirsch, D., Lerner, E., Baskin, J. Z., Schoen, F. J., Bianco, R., Kruth, H. S., Zand, R., & Levy, R. J. (1997). Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and Mechanisms, Circulation, 95(2), 479–88.PubMed Vyavahare, N., Hirsch, D., Lerner, E., Baskin, J. Z., Schoen, F. J., Bianco, R., Kruth, H. S., Zand, R., & Levy, R. J. (1997). Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and Mechanisms, Circulation, 95(2), 479–88.PubMed
21.
Zurück zum Zitat Trantina-Yates, A. E., Human, P., & Zilla, P. (2003). Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model. The Journal of Heart Valve Disease, 12(1), 93–100. discussion 100–1.PubMed Trantina-Yates, A. E., Human, P., & Zilla, P. (2003). Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model. The Journal of Heart Valve Disease, 12(1), 93–100. discussion 100–1.PubMed
22.
Zurück zum Zitat Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., & Human, P. (2001). Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. Journal of Biomedical Materials Research, 56(1), 56–64.CrossRefPubMed Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., & Human, P. (2001). Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. Journal of Biomedical Materials Research, 56(1), 56–64.CrossRefPubMed
23.
Zurück zum Zitat Bezuidenhout, D., Oosthuysen, A., Human, P., Weissenstein, C., & Zilla, P. (2009). The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnology and Applied Biochemistry, 54(3), 133–40.CrossRefPubMed Bezuidenhout, D., Oosthuysen, A., Human, P., Weissenstein, C., & Zilla, P. (2009). The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnology and Applied Biochemistry, 54(3), 133–40.CrossRefPubMed
24.
Zurück zum Zitat Wright, G., & de la Fuente, A. (2015). Effectiveness of anti-calcification technologies in a rabbit model. The Journal of Heart Valve Disease, 24(3), 386–92.PubMed Wright, G., & de la Fuente, A. (2015). Effectiveness of anti-calcification technologies in a rabbit model. The Journal of Heart Valve Disease, 24(3), 386–92.PubMed
25.
Zurück zum Zitat Zilla, P., Weissenstein, C., Bracher, M., & Human, P. (2001). The anticalcific effect of glutaraldehyde detoxification on bioprosthetic aortic wall tissue in the sheep model. Journal of Cardiac Surgery, 16(6), 467–72.CrossRefPubMed Zilla, P., Weissenstein, C., Bracher, M., & Human, P. (2001). The anticalcific effect of glutaraldehyde detoxification on bioprosthetic aortic wall tissue in the sheep model. Journal of Cardiac Surgery, 16(6), 467–72.CrossRefPubMed
26.
Zurück zum Zitat Shang, H., Claessens, S. M., Tian, B., & Wright, G. A. (2017). Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. Journal of Materials Science Materials in Medicine, 28(1), 16.CrossRefPubMed Shang, H., Claessens, S. M., Tian, B., & Wright, G. A. (2017). Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. Journal of Materials Science Materials in Medicine, 28(1), 16.CrossRefPubMed
27.
Zurück zum Zitat Chiang, Y. P., Chikwe, J., Moskowitz, A. J., Itagaki, S., Adams, D. H., & Egorova, N. N. (2014). Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA, 312(13), 1323–9.CrossRefPubMed Chiang, Y. P., Chikwe, J., Moskowitz, A. J., Itagaki, S., Adams, D. H., & Egorova, N. N. (2014). Survival and long-term outcomes following bioprosthetic vs mechanical aortic valve replacement in patients aged 50 to 69 years. JAMA, 312(13), 1323–9.CrossRefPubMed
28.
Zurück zum Zitat Singhal, P. (2013). Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomaterials, 2013, 1–16.CrossRef Singhal, P. (2013). Bioprosthetic heart valves: impact of implantation on biomaterials. ISRN Biomaterials, 2013, 1–16.CrossRef
29.
Zurück zum Zitat Sellaro, T. L., Hildebrand, D., Lu, Q., Vyavahare, N., Scott, M., & Sacks, M. S. (2007). Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. Journal of Biomedical Materials Research. Part A, 80(1), 194–205.CrossRefPubMed Sellaro, T. L., Hildebrand, D., Lu, Q., Vyavahare, N., Scott, M., & Sacks, M. S. (2007). Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. Journal of Biomedical Materials Research. Part A, 80(1), 194–205.CrossRefPubMed
30.
Zurück zum Zitat Sun, W., Sacks, M., Fulchiero, G., Lovekamp, J., Vyavahare, N., & Scott, M. (2004). Response of heterograft heart valve biomaterials to moderate cyclic loading. Journal of Biomedical Materials Research. Part A, 69(4), 658–69.CrossRefPubMed Sun, W., Sacks, M., Fulchiero, G., Lovekamp, J., Vyavahare, N., & Scott, M. (2004). Response of heterograft heart valve biomaterials to moderate cyclic loading. Journal of Biomedical Materials Research. Part A, 69(4), 658–69.CrossRefPubMed
31.
Zurück zum Zitat Smith, D. B., Sacks, M. S., Pattany, P. M., & Schroeder, R. (1997). High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. The Journal of Heart Valve Disease, 6(4), 424–32.PubMed Smith, D. B., Sacks, M. S., Pattany, P. M., & Schroeder, R. (1997). High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. The Journal of Heart Valve Disease, 6(4), 424–32.PubMed
32.
Zurück zum Zitat Vyavahare, N., Ogle, M., Schoen, F. J., Zand, R., Gloeckner, D. C., Sacks, M., & Levy, R. J. (1999). Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. Journal of Biomedical Materials Research, 46(1), 44–50.CrossRefPubMed Vyavahare, N., Ogle, M., Schoen, F. J., Zand, R., Gloeckner, D. C., Sacks, M., & Levy, R. J. (1999). Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. Journal of Biomedical Materials Research, 46(1), 44–50.CrossRefPubMed
33.
Zurück zum Zitat Scott, M., & Vesely, I. (1995). Aortic valve cusp microstructure: the role of elastin. The Annals of Thoracic Surgery, 60(2 Suppl), S391–4.CrossRefPubMed Scott, M., & Vesely, I. (1995). Aortic valve cusp microstructure: the role of elastin. The Annals of Thoracic Surgery, 60(2 Suppl), S391–4.CrossRefPubMed
34.
Zurück zum Zitat Lee, T. C., Midura, R. J., Hascall, V. C., & Vesely, I. (2001). The effect of elastin damage on the mechanics of the aortic valve. Journal of Biomechanics, 34(2), 203–10.CrossRefPubMed Lee, T. C., Midura, R. J., Hascall, V. C., & Vesely, I. (2001). The effect of elastin damage on the mechanics of the aortic valve. Journal of Biomechanics, 34(2), 203–10.CrossRefPubMed
35.
Zurück zum Zitat Vesely, I. (1998). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–23.CrossRefPubMed Vesely, I. (1998). The role of elastin in aortic valve mechanics. Journal of Biomechanics, 31(2), 115–23.CrossRefPubMed
36.
Zurück zum Zitat Christian, A. J., Lin, H., Alferiev, I. S., Connolly, J. M., Ferrari, G., Hazen, S. L., Ischiropoulos, H., & Levy, R. J. (2014). The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials, 35(7), 2097–102.CrossRefPubMed Christian, A. J., Lin, H., Alferiev, I. S., Connolly, J. M., Ferrari, G., Hazen, S. L., Ischiropoulos, H., & Levy, R. J. (2014). The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials, 35(7), 2097–102.CrossRefPubMed
37.
Zurück zum Zitat Sacks, M. S. (2001). The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. Journal of Long-Term Effects of Medical Implants, 11(3–4), 231–47.PubMed Sacks, M. S. (2001). The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. Journal of Long-Term Effects of Medical Implants, 11(3–4), 231–47.PubMed
38.
Zurück zum Zitat Tripi, D. R., & Vyavahare, N. R. (2014). Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. Journal of Biomaterials Applications, 28(5), 757–66.CrossRefPubMedPubMedCentral Tripi, D. R., & Vyavahare, N. R. (2014). Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. Journal of Biomaterials Applications, 28(5), 757–66.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Yang, B., Lesicko, J., Sharma, M., Hill, M., Sacks, M. S., & Tunnell, J. W. (2015). Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomedicals Optics Express, 6(4), 1520–33.CrossRef Yang, B., Lesicko, J., Sharma, M., Hill, M., Sacks, M. S., & Tunnell, J. W. (2015). Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomedicals Optics Express, 6(4), 1520–33.CrossRef
40.
Zurück zum Zitat Grashow, J. S., Yoganathan, A. P., & Sacks, M. S. (2006). Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering, 34(2), 315–25.CrossRefPubMed Grashow, J. S., Yoganathan, A. P., & Sacks, M. S. (2006). Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Annals of Biomedical Engineering, 34(2), 315–25.CrossRefPubMed
41.
Zurück zum Zitat Zhang, W., Feng, Y., Lee, C. H., Billiar, K. L., & Sacks, M. S. (2015). A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. Journal of Biomechanical Engineering, 137(6), 064501.CrossRefPubMed Zhang, W., Feng, Y., Lee, C. H., Billiar, K. L., & Sacks, M. S. (2015). A generalized method for the analysis of planar biaxial mechanical data using tethered testing configurations. Journal of Biomechanical Engineering, 137(6), 064501.CrossRefPubMed
42.
Zurück zum Zitat Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. Journal of Biomechanical Engineering, 122(1), 23–30.CrossRefPubMed Billiar, K. L., & Sacks, M. S. (2000). Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. Journal of Biomechanical Engineering, 122(1), 23–30.CrossRefPubMed
43.
Zurück zum Zitat Gratzer, P. F., & Lee, J. M. (2001). Control of pH alters the type of cross-linking produced by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) treatment of acellular matrix vascular grafts. Journal of Biomedical Materials Research, 58(2), 172–9.CrossRefPubMed Gratzer, P. F., & Lee, J. M. (2001). Control of pH alters the type of cross-linking produced by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) treatment of acellular matrix vascular grafts. Journal of Biomedical Materials Research, 58(2), 172–9.CrossRefPubMed
44.
Zurück zum Zitat Olde Damink, L. H., Dijkstra, P. J., van Luyn, M. J., van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17(8), 765–73.CrossRefPubMed Olde Damink, L. H., Dijkstra, P. J., van Luyn, M. J., van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17(8), 765–73.CrossRefPubMed
45.
Zurück zum Zitat Tam, H., Zhang, W., Feaver, K. R., Parchment, N., Sacks, M. S., & Vyavahare, N. (2015). A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials, 66, 83–91.CrossRefPubMedPubMedCentral Tam, H., Zhang, W., Feaver, K. R., Parchment, N., Sacks, M. S., & Vyavahare, N. (2015). A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials, 66, 83–91.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Trantina-Yates, A., Weissenstein, C., Human, P., & Zilla, P. (2001). Stentless bioprosthetic heart valve research: sheep versus primate model. The Annals of Thoracic Surgery, 71(5 Suppl), S422–7.CrossRefPubMed Trantina-Yates, A., Weissenstein, C., Human, P., & Zilla, P. (2001). Stentless bioprosthetic heart valve research: sheep versus primate model. The Annals of Thoracic Surgery, 71(5 Suppl), S422–7.CrossRefPubMed
47.
Zurück zum Zitat Martin, C., & Sun, W. (2013). Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomechanics and Modeling in Mechanobiology, 12(4), 645–55.CrossRefPubMed Martin, C., & Sun, W. (2013). Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomechanics and Modeling in Mechanobiology, 12(4), 645–55.CrossRefPubMed
48.
Zurück zum Zitat Zilla, P., Human, P., & Bezuidenhout, D. (2004). Bioprosthetic heart valves: the need for a quantum leap. Biotechnology and Applied Biochemistry, 40(Pt 1), 57–66.PubMed Zilla, P., Human, P., & Bezuidenhout, D. (2004). Bioprosthetic heart valves: the need for a quantum leap. Biotechnology and Applied Biochemistry, 40(Pt 1), 57–66.PubMed
49.
Zurück zum Zitat Girardot, J. M., & Girardot, M. N. (1996). Amide cross-linking: an alternative to glutaraldehyde fixation. The Journal of Heart Valve Disease, 5(5), 518–25.PubMed Girardot, J. M., & Girardot, M. N. (1996). Amide cross-linking: an alternative to glutaraldehyde fixation. The Journal of Heart Valve Disease, 5(5), 518–25.PubMed
50.
Zurück zum Zitat Isenburg, J. C., Karamchandani, N. V., Simionescu, D. T., & Vyavahare, N. R. (2006). Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials, 27(19), 3645–51.PubMed Isenburg, J. C., Karamchandani, N. V., Simionescu, D. T., & Vyavahare, N. R. (2006). Structural requirements for stabilization of vascular elastin by polyphenolic tannins. Biomaterials, 27(19), 3645–51.PubMed
51.
Zurück zum Zitat Chow, J. P., Simionescu, D. T., Warner, H., Wang, B., Patnaik, S. S., Liao, J., & Simionescu, A. (2013). Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials, 34(3), 685–95.CrossRefPubMed Chow, J. P., Simionescu, D. T., Warner, H., Wang, B., Patnaik, S. S., Liao, J., & Simionescu, A. (2013). Mitigation of diabetes-related complications in implanted collagen and elastin scaffolds using matrix-binding polyphenol. Biomaterials, 34(3), 685–95.CrossRefPubMed
Metadaten
Titel
Fixation of Bovine Pericardium-Based Tissue Biomaterial with Irreversible Chemistry Improves Biochemical and Biomechanical Properties
verfasst von
H. Tam
W. Zhang
D. Infante
N. Parchment
M. Sacks
N. Vyavahare
Publikationsdatum
17.02.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9733-5

Weitere Artikel der Ausgabe 2/2017

Journal of Cardiovascular Translational Research 2/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.