Skip to main content
Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 4/2016

24.05.2016 | Original Article

Friction behavior of self-ligating and conventional brackets with different ligature systems

verfasst von: Alexandra Szczupakowski, Susanne Reimann, Cornelius Dirk, Ludger Keilig, Anna Weber, Andreas Jäger, Christoph Bourauel

Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Self-ligating brackets are widely believed to offer better clinical efficiency and, in particular, less friction. Thus, the goal of this in vitro investigation was to assess the friction behavior of different bracket/archwire/ligature combinations during simulated canine retraction. An important aspect of this work was to determine whether conventional bracket systems behave differently in passive or active self-ligating brackets used with a Slide™ ligature, an elastic ligature, or a steel ligature.

Methods

Three conventional (Contour, Class One; Discovery®, Dentaurum; Mystique MB, GAC) and six self-ligating (Carriere SL, Class One; Clarity™ SL, 3M Unitek; Damon3, Ormco; In-Ovation® C, GAC; Speed Appliance, Speed System™; QuicKlear®, Forestadent®) bracket systems were analyzed. All brackets featured a 0.022″ slot (0.56 mm). Each conventional system was tested with a steel ligature (0.25 mm; Remanium®, Dentaurum), an elastic ligature (1.3 mm in diameter; Dentalastics, Dentaurum), and a modified elastic ligature (Slide™; Leone®). Each combination was used with four archwires, including rectangular stainless steel (0.46 × 0.64 mm, 0.018 × 0.025″, Dentaurum), rectangular nickel–titanium with Teflon coating (0.46 × 0.64 mm, 0.018 × 0.025″, Forestadent®), round coaxial nickel–titanium (0.46 mm, 0.018″, Speed), and half-round/half-square (D-profile) stainless steel (0.46 mm, 0.018″, Speed). In the orthodontic measurement and simulation system (OMSS), retraction of a canine was simulated on a Frasaco model replicated in resin. Based on the force systems, the respective friction values were determined. For each combination of materials, five brackets of the same type were tested and five single measurements performed.

Results

Friction values were found to vary distinctly with the different combinations, modifiers being the ligature systems and the archwire types. Any significant friction differences between the steel-ligated, Slide™-ligated, and self-ligated brackets were sporadic. All three systems were associated with average friction values of 40 %. Active self-ligating brackets and elastic-ligated conventional brackets, by contrast, generally differed significantly from the three above-mentioned bracket systems and showed distinctly higher friction values averaging 59 and 67 %, respectively.

Conclusions

While passive self-ligating bracket systems have frequently been touted as advantageous in the literature, they should not be regarded as the only favorable system. Steel-ligated and Slide™-ligated conventional bracket systems are capable of offering similar friction performance.
Literatur
1.
Zurück zum Zitat Baccetti T, Franchi L (2006) Friction produced by types of elastomeric ligatures in treatment mechanics with the preadjusted appliance. Angle Orthod 76:211–216PubMed Baccetti T, Franchi L (2006) Friction produced by types of elastomeric ligatures in treatment mechanics with the preadjusted appliance. Angle Orthod 76:211–216PubMed
2.
Zurück zum Zitat Baccetti T, Franchi L, Camporesi M (2008) Forces in the presence of ceramic versus stainless steel brackets with unconventional vs. conventional ligatures. Angle Orthod 78:120–124CrossRefPubMed Baccetti T, Franchi L, Camporesi M (2008) Forces in the presence of ceramic versus stainless steel brackets with unconventional vs. conventional ligatures. Angle Orthod 78:120–124CrossRefPubMed
3.
Zurück zum Zitat Bednar JR, Gruendemann GW, Sandrik JL (1991) A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 100:513–522CrossRefPubMed Bednar JR, Gruendemann GW, Sandrik JL (1991) A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 100:513–522CrossRefPubMed
4.
Zurück zum Zitat Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378CrossRefPubMed Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378CrossRefPubMed
5.
Zurück zum Zitat Bourauel C, Drescher D, Nolte LP (1993) Computergestützte Entwicklung kieferorthopädischer Behandlungselemente aus NiTi-Memory-Legierungen am Beispiel einer pseudoelastischen Retraktionsfeder. Fortschr Kieferorthop 54:45–56CrossRefPubMed Bourauel C, Drescher D, Nolte LP (1993) Computergestützte Entwicklung kieferorthopädischer Behandlungselemente aus NiTi-Memory-Legierungen am Beispiel einer pseudoelastischen Retraktionsfeder. Fortschr Kieferorthop 54:45–56CrossRefPubMed
6.
Zurück zum Zitat Bourauel C, Fries T, Drescher D et al (1998) Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance and profilometry. Eur J Orthodont 20:79–92CrossRef Bourauel C, Fries T, Drescher D et al (1998) Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance and profilometry. Eur J Orthodont 20:79–92CrossRef
7.
Zurück zum Zitat Camporesi M, Baccetti T, Franchi L (2007) Forces released by esthetic preadjusted appliances with low-friction and conventional elastomeric ligatures. Am J Orthod Dentofacial Orthop 131:772–775CrossRefPubMed Camporesi M, Baccetti T, Franchi L (2007) Forces released by esthetic preadjusted appliances with low-friction and conventional elastomeric ligatures. Am J Orthod Dentofacial Orthop 131:772–775CrossRefPubMed
8.
Zurück zum Zitat Condo R, Casaglia A, Armellin E et al (2013) Traditional elastic ligatures versus slide ligation system. A morphological evaluation. Oral Implantol 6:15–24 Condo R, Casaglia A, Armellin E et al (2013) Traditional elastic ligatures versus slide ligation system. A morphological evaluation. Oral Implantol 6:15–24
9.
Zurück zum Zitat Drescher D, Bourauel C, Schumacher HA (1989) Frictional forces between bracket and arch wire. Am J Orthod Dentofac Orthop 96:397–404CrossRef Drescher D, Bourauel C, Schumacher HA (1989) Frictional forces between bracket and arch wire. Am J Orthod Dentofac Orthop 96:397–404CrossRef
10.
Zurück zum Zitat Drescher D, Bourauel C, Thier M (1990) Materialtechnische Besonderheiten orthodontischer Nickel-Titan-Drähte. Fortschr Kieferorthop 51:320–326CrossRefPubMed Drescher D, Bourauel C, Thier M (1990) Materialtechnische Besonderheiten orthodontischer Nickel-Titan-Drähte. Fortschr Kieferorthop 51:320–326CrossRefPubMed
11.
Zurück zum Zitat Drescher D, Bourauel C, Thier M (1991) Orthodontische Meß- und Simulationssystem (OMSS) für die statische und dynamische Analyse der Zahnbewegung. Fortschr Kieferorthop 52:133–140CrossRefPubMed Drescher D, Bourauel C, Thier M (1991) Orthodontische Meß- und Simulationssystem (OMSS) für die statische und dynamische Analyse der Zahnbewegung. Fortschr Kieferorthop 52:133–140CrossRefPubMed
12.
Zurück zum Zitat Elayyan F, Silikas N, Bearn D (2008) Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod 30:661–667CrossRefPubMed Elayyan F, Silikas N, Bearn D (2008) Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod 30:661–667CrossRefPubMed
13.
Zurück zum Zitat Farronato G, Maijer R, Caria MP et al (2012) The effect of Teflon coating on the resistance to sliding of orthodontic archwires. Eur J Orthod 34:410–417CrossRefPubMed Farronato G, Maijer R, Caria MP et al (2012) The effect of Teflon coating on the resistance to sliding of orthodontic archwires. Eur J Orthod 34:410–417CrossRefPubMed
14.
Zurück zum Zitat Franchi L, Baccetti T (2006) Forces released during alignment with a preadjusted appliance with different types of elastomeric ligatures. Am J Orthod Dentofacial Orthop 129:687–690CrossRefPubMed Franchi L, Baccetti T (2006) Forces released during alignment with a preadjusted appliance with different types of elastomeric ligatures. Am J Orthod Dentofacial Orthop 129:687–690CrossRefPubMed
15.
Zurück zum Zitat Frank CA, Nikolai RJ (1980) A comparative study of frictional resistances between orthodontic brackets and archwire. Am J Orthod 78:593–609CrossRefPubMed Frank CA, Nikolai RJ (1980) A comparative study of frictional resistances between orthodontic brackets and archwire. Am J Orthod 78:593–609CrossRefPubMed
16.
Zurück zum Zitat Gandini P, Orsi L, Bertoncini C et al (2008) In vitro frictional forces generated by three different ligation methods. Angle Orthod 78:917–921CrossRefPubMed Gandini P, Orsi L, Bertoncini C et al (2008) In vitro frictional forces generated by three different ligation methods. Angle Orthod 78:917–921CrossRefPubMed
17.
18.
Zurück zum Zitat Husmann P, Bourauel C, Wessinger M et al (2002) The frictional behavior of coated guiding archwires. J Orofac Orthop 63:199–211CrossRefPubMed Husmann P, Bourauel C, Wessinger M et al (2002) The frictional behavior of coated guiding archwires. J Orofac Orthop 63:199–211CrossRefPubMed
19.
Zurück zum Zitat Jones SP, Ben Bihi S (2009) Static frictional resistance with the slide low-friction elastomeric ligature system. Aust Orthod J 25:136–141PubMed Jones SP, Ben Bihi S (2009) Static frictional resistance with the slide low-friction elastomeric ligature system. Aust Orthod J 25:136–141PubMed
20.
Zurück zum Zitat Le Gall M, Bachet C, Dameron C (2014) The time needed to refit an orthodontic wire: influence of the attachments. Int Orthod 12:431–444PubMed Le Gall M, Bachet C, Dameron C (2014) The time needed to refit an orthodontic wire: influence of the attachments. Int Orthod 12:431–444PubMed
21.
Zurück zum Zitat Mendes B de AB, Ferreira RAN, Pithon MM et al (2014) Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study. J Appl Oral Sci 22:194–203 Mendes B de AB, Ferreira RAN, Pithon MM et al (2014) Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study. J Appl Oral Sci 22:194–203
22.
Zurück zum Zitat Montasser MA, El-Bialy T, Keilig L et al (2014) Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod 36:31–38CrossRefPubMed Montasser MA, El-Bialy T, Keilig L et al (2014) Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod 36:31–38CrossRefPubMed
23.
Zurück zum Zitat Monteiro MR, Silva LE, Elias CN et al (2014) Frictional resistance of self-ligating versus conventional brackets in different bracket–archwire–angle combinations. J Appl Oral Sci 22:228–234CrossRefPubMedPubMedCentral Monteiro MR, Silva LE, Elias CN et al (2014) Frictional resistance of self-ligating versus conventional brackets in different bracket–archwire–angle combinations. J Appl Oral Sci 22:228–234CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Neumann P, Bourauel C, Jäger A (2002) Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J Mater Sci Mater Med 13:141–147CrossRefPubMed Neumann P, Bourauel C, Jäger A (2002) Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J Mater Sci Mater Med 13:141–147CrossRefPubMed
25.
Zurück zum Zitat Oliver CL, Daskalogiannakis J, Tompson BD (2011) Archwire depth is a significant parameter in the frictional resistance of active and interactive, but not passive, self-ligating brackets. Angle Orthod 81:1036–1044CrossRefPubMed Oliver CL, Daskalogiannakis J, Tompson BD (2011) Archwire depth is a significant parameter in the frictional resistance of active and interactive, but not passive, self-ligating brackets. Angle Orthod 81:1036–1044CrossRefPubMed
26.
Zurück zum Zitat Paduano S, Cioffi I, Iodice G et al (2008) Time efficiency of self-ligating vs conventional brackets in orthodontics: effect of appliances and ligating systems. Prog Orthod 9:74–80PubMed Paduano S, Cioffi I, Iodice G et al (2008) Time efficiency of self-ligating vs conventional brackets in orthodontics: effect of appliances and ligating systems. Prog Orthod 9:74–80PubMed
27.
Zurück zum Zitat Read-Ward GE, Jones SP, Davies EH (1997) A comparsion of self-ligating and conventional orthodontic bracket systems. Br J Orthod 24:309–317CrossRefPubMed Read-Ward GE, Jones SP, Davies EH (1997) A comparsion of self-ligating and conventional orthodontic bracket systems. Br J Orthod 24:309–317CrossRefPubMed
28.
Zurück zum Zitat Reddy VB, Kumar TA, Prasad M et al (2014) A comparative in vivo evaluation of the alignment efficiency of 5 ligation methods: a prospective randomized clinical trial. Eur J Dent 8:23–31CrossRefPubMedPubMedCentral Reddy VB, Kumar TA, Prasad M et al (2014) A comparative in vivo evaluation of the alignment efficiency of 5 ligation methods: a prospective randomized clinical trial. Eur J Dent 8:23–31CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Schumacher HA, Bourauel C, Drescher D (1990) Der Einfluß der Ligatur auf die Friktion zwischen Bracket und Bogen. Fortschr Kieferorthop 51:106–116CrossRefPubMed Schumacher HA, Bourauel C, Drescher D (1990) Der Einfluß der Ligatur auf die Friktion zwischen Bracket und Bogen. Fortschr Kieferorthop 51:106–116CrossRefPubMed
30.
Zurück zum Zitat Schumacher HA, Bourauel C, Drescher D (1991) Bogengeführte Zahnbewegung, Dynamik, Effektivität und Nebenwirkungen. Fortschr Kieferorthop 52:141–152CrossRefPubMed Schumacher HA, Bourauel C, Drescher D (1991) Bogengeführte Zahnbewegung, Dynamik, Effektivität und Nebenwirkungen. Fortschr Kieferorthop 52:141–152CrossRefPubMed
31.
Zurück zum Zitat Schumacher HA, Bourauel C, Drescher D (1999) The influence of bracket design on frictional losses in the bracket/arch wire system. J Orofac Orthop 60:335–347CrossRefPubMed Schumacher HA, Bourauel C, Drescher D (1999) The influence of bracket design on frictional losses in the bracket/arch wire system. J Orofac Orthop 60:335–347CrossRefPubMed
32.
Zurück zum Zitat Shivapuja PK, Berger J (1994) A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop 106:472–480CrossRefPubMed Shivapuja PK, Berger J (1994) A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop 106:472–480CrossRefPubMed
33.
Zurück zum Zitat Sukh R, Singh GK, Tandon P et al (2013) A comparative study of frictional resistance during simulated canine retraction on typodont model. J Orthod Sci 2:61–66CrossRefPubMedPubMedCentral Sukh R, Singh GK, Tandon P et al (2013) A comparative study of frictional resistance during simulated canine retraction on typodont model. J Orthod Sci 2:61–66CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Tidy DC, Orth D (1989) Frictional force in fixed appliances. Am J Orthod Dentofac Orthop 96:249–254CrossRef Tidy DC, Orth D (1989) Frictional force in fixed appliances. Am J Orthod Dentofac Orthop 96:249–254CrossRef
Metadaten
Titel
Friction behavior of self-ligating and conventional brackets with different ligature systems
verfasst von
Alexandra Szczupakowski
Susanne Reimann
Cornelius Dirk
Ludger Keilig
Anna Weber
Andreas Jäger
Christoph Bourauel
Publikationsdatum
24.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Ausgabe 4/2016
Print ISSN: 1434-5293
Elektronische ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-016-0035-3

Weitere Artikel der Ausgabe 4/2016

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 4/2016 Zur Ausgabe

Mitteilungen DGKFO

Mitteilungen der DGKFO

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.