Skip to main content
Erschienen in: Journal of Medical Systems 5/2011

01.10.2011 | Original Paper

Functional and Mechanical Evaluation of Nerve Stretch Injury

verfasst von: Todd Rickett, Sean Connell, Jennifer Bastijanic, Satya Hegde, Riyi Shi

Erschienen in: Journal of Medical Systems | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

Peripheral nerves undergo tensile loading in common physiological conditions, but stretch can also induce nerve pathology, impairing electrophysiological conduction. The level of strain nerves can tolerate and the functional deficits which result from exceeding this threshold are not thoroughly understood. To examine these phenomena, a novel system for tensile electrophysiology was created using a grease gap-recording chamber paired with a computerized micromanipulator and load cell. Guinea pig sciatic nerves were stretched beyond their maximum physiologic length to examine the effects of tension on signal conduction. Mechanical and electrophysiological data such as load, position, compound action potential amplitude, and signal latency were recorded in real-time. While 5% strain did not affect conduction, further elongation decreased amplitude approximately linearly with strain. These experiments verify the findings of prior studies into nerve stretch, and demonstrate the utility of this apparatus for investigating the mechanical and electrophysiological properties of nerves undergoing strain.
Literatur
1.
Zurück zum Zitat Bain, A., Rahupathi, R., and Meaney, D., Dynamic stretch correlates to both morphological abnormalities and electrophysiological impairment in a model of traumatic axonal injury. J. Neurotrauma 18:499–511, 2001.CrossRef Bain, A., Rahupathi, R., and Meaney, D., Dynamic stretch correlates to both morphological abnormalities and electrophysiological impairment in a model of traumatic axonal injury. J. Neurotrauma 18:499–511, 2001.CrossRef
2.
Zurück zum Zitat Li, J., and Shi, R., Stretch-induced nerve conduction deficits in guinea pig ex vivo nerve. J. Biomech. 40:569–578, 2007.CrossRef Li, J., and Shi, R., Stretch-induced nerve conduction deficits in guinea pig ex vivo nerve. J. Biomech. 40:569–578, 2007.CrossRef
3.
Zurück zum Zitat Sunderland, S., The anatomy and physiology of nerve injury. Muscle Nerve 13:771–784, 1990.CrossRef Sunderland, S., The anatomy and physiology of nerve injury. Muscle Nerve 13:771–784, 1990.CrossRef
4.
Zurück zum Zitat Campbell, W., Evaluation and management of peripheral nerve injury. Clin. Neurophysiol. 119:1951–1965, 2008.CrossRef Campbell, W., Evaluation and management of peripheral nerve injury. Clin. Neurophysiol. 119:1951–1965, 2008.CrossRef
5.
Zurück zum Zitat Rydevik, B., Kwan, M., Myers, R., Brown, R., Triggs, K., Woo, S., and Garfin, S., An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. J. Orthop. Res. 8:694–701, 1990.CrossRef Rydevik, B., Kwan, M., Myers, R., Brown, R., Triggs, K., Woo, S., and Garfin, S., An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. J. Orthop. Res. 8:694–701, 1990.CrossRef
6.
Zurück zum Zitat Juo, I., Lai, K., Shen, C., and Yamano, Y., Changes in conduction, blood flow, histology, and neurological status following acute nerve-stretch injury induced by femoral lengthening. J. Orthop. Res. 18:149–155, 2000.CrossRef Juo, I., Lai, K., Shen, C., and Yamano, Y., Changes in conduction, blood flow, histology, and neurological status following acute nerve-stretch injury induced by femoral lengthening. J. Orthop. Res. 18:149–155, 2000.CrossRef
7.
Zurück zum Zitat Li, J., and Shi, R., A device for the electrophysiological recording of peripheral nerves in response to stretch. J. Neurosci. Methods 154:102–108, 2006.CrossRef Li, J., and Shi, R., A device for the electrophysiological recording of peripheral nerves in response to stretch. J. Neurosci. Methods 154:102–108, 2006.CrossRef
8.
Zurück zum Zitat Shi, R., The dynamics of axolemmal disruption in guinea pig spinal cord following compression. J. Neurocytol. 33:203–211, 2004.CrossRef Shi, R., The dynamics of axolemmal disruption in guinea pig spinal cord following compression. J. Neurocytol. 33:203–211, 2004.CrossRef
9.
Zurück zum Zitat Brown, R., Pedowitz, R., Rydevik, B., Woo, S., Hargens, A., Massie, J., Kwan, M., and Garfin, S., Effects of acute graded strain on efferent conduction properties in the rabbit tibial nerve. Clin. Orthop. 296:288–294, 1993. Brown, R., Pedowitz, R., Rydevik, B., Woo, S., Hargens, A., Massie, J., Kwan, M., and Garfin, S., Effects of acute graded strain on efferent conduction properties in the rabbit tibial nerve. Clin. Orthop. 296:288–294, 1993.
10.
Zurück zum Zitat Driscoll, P., Glasby, M., and Lawson, G., An in vivo study of peripheral nerves in continuity: Biomechanical and physiological responses to elongation. J. Orthop. Res. 20:370–375, 2002.CrossRef Driscoll, P., Glasby, M., and Lawson, G., An in vivo study of peripheral nerves in continuity: Biomechanical and physiological responses to elongation. J. Orthop. Res. 20:370–375, 2002.CrossRef
11.
Zurück zum Zitat Lundborg, G., and Rydevik, B., Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J. Bone Joint Surg. Br. 55:390–401, 1973. Lundborg, G., and Rydevik, B., Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J. Bone Joint Surg. Br. 55:390–401, 1973.
12.
Zurück zum Zitat Kwan, M., Wall, E., Massie, J., and Garfin, S., Strain, stress and stretch of peripheral nerve. Rabbit experiments in vitro and in vivo. Acta Orthop. Scand. 63:267–72, 1992.CrossRef Kwan, M., Wall, E., Massie, J., and Garfin, S., Strain, stress and stretch of peripheral nerve. Rabbit experiments in vitro and in vivo. Acta Orthop. Scand. 63:267–72, 1992.CrossRef
13.
Zurück zum Zitat Bueno, F., and Shah, S., Implications of tensile loading for the tissue engineering of nerves. Tissue Eng. Part B Reviews 14:219–233, 2008.CrossRef Bueno, F., and Shah, S., Implications of tensile loading for the tissue engineering of nerves. Tissue Eng. Part B Reviews 14:219–233, 2008.CrossRef
14.
Zurück zum Zitat Rickett, T., Li, J., Patel, M., Sun, W., Leung, G., and Shi, R., Ethyl-cyanoacrylate is acutely nontoxic and provides sufficient bond strength for anastomosis of peripheral nerves. J. Biomed. Materi. Res. Part A. 90A:750–754, 2009.CrossRef Rickett, T., Li, J., Patel, M., Sun, W., Leung, G., and Shi, R., Ethyl-cyanoacrylate is acutely nontoxic and provides sufficient bond strength for anastomosis of peripheral nerves. J. Biomed. Materi. Res. Part A. 90A:750–754, 2009.CrossRef
15.
Zurück zum Zitat Franceschini, G., Bigoni, D., Rgitnig, P., and Holzapfel, G., Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 52:2592–2620, 2006.CrossRef Franceschini, G., Bigoni, D., Rgitnig, P., and Holzapfel, G., Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 52:2592–2620, 2006.CrossRef
16.
Zurück zum Zitat Ntim, M., Bembey, A., Ferguson, V., and Bushby, A., Hydration effects on the viscoelastic properties of collagen. Mater. Res. Soc. Symp. Proc. 898:39–43, 2005.CrossRef Ntim, M., Bembey, A., Ferguson, V., and Bushby, A., Hydration effects on the viscoelastic properties of collagen. Mater. Res. Soc. Symp. Proc. 898:39–43, 2005.CrossRef
Metadaten
Titel
Functional and Mechanical Evaluation of Nerve Stretch Injury
verfasst von
Todd Rickett
Sean Connell
Jennifer Bastijanic
Satya Hegde
Riyi Shi
Publikationsdatum
01.10.2011
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2011
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-010-9468-1

Weitere Artikel der Ausgabe 5/2011

Journal of Medical Systems 5/2011 Zur Ausgabe