Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 11/2010

01.11.2010 | Original Article

Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles

verfasst von: Sharmila Pejawar-Gaddy, Yogendra Rajawat, Zoe Hilioti, Jia Xue, Daniel F. Gaddy, Olivera J. Finn, Raphael P. Viscidi, Ioannis Bossis

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 11/2010

Einloggen, um Zugang zu erhalten

Abstract

Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Li Y, Cozzi PJ (2007) MUC1 is a promising therapeutic target for prostate cancer therapy. Curr Cancer Drug Targets 7:259–271CrossRefPubMed Li Y, Cozzi PJ (2007) MUC1 is a promising therapeutic target for prostate cancer therapy. Curr Cancer Drug Targets 7:259–271CrossRefPubMed
2.
Zurück zum Zitat Vlad AM, Kettel JC, Alajez NM et al (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293CrossRefPubMed Vlad AM, Kettel JC, Alajez NM et al (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293CrossRefPubMed
3.
Zurück zum Zitat North S, Butts C (2005) Vaccination with BLP25 liposome vaccine to treat non-small cell lung and prostate cancers. Expert Rev Vaccines 4:249–257CrossRefPubMed North S, Butts C (2005) Vaccination with BLP25 liposome vaccine to treat non-small cell lung and prostate cancers. Expert Rev Vaccines 4:249–257CrossRefPubMed
4.
Zurück zum Zitat Dorn DC, Lawatscheck R, Zvirbliene A et al (2008) Cellular and humoral immunogenicity of hamster polyomavirus-derived virus-like particles harboring a mucin 1 cytotoxic T-cell epitope. Viral Immunol 21:12–27CrossRefPubMed Dorn DC, Lawatscheck R, Zvirbliene A et al (2008) Cellular and humoral immunogenicity of hamster polyomavirus-derived virus-like particles harboring a mucin 1 cytotoxic T-cell epitope. Viral Immunol 21:12–27CrossRefPubMed
5.
Zurück zum Zitat Grgacic EV, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods 40:60–65CrossRefPubMed Grgacic EV, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods 40:60–65CrossRefPubMed
6.
Zurück zum Zitat Fifis T, Gamvrellis A, Crimeen-Irwin B et al (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154PubMed Fifis T, Gamvrellis A, Crimeen-Irwin B et al (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154PubMed
7.
Zurück zum Zitat Dickgreber N, Stoitzner P, Bai Y et al (2009) Targeting antigen to MHC class II molecules promotes efficient cross-presentation and enhances immunotherapy. J Immunol 182:1260–1269PubMed Dickgreber N, Stoitzner P, Bai Y et al (2009) Targeting antigen to MHC class II molecules promotes efficient cross-presentation and enhances immunotherapy. J Immunol 182:1260–1269PubMed
8.
Zurück zum Zitat Boisgérault F, Morón G, Leclerc C (2002) Virus-like particles: a new family of delivery systems. Expert Rev Vaccines 1:101–109CrossRefPubMed Boisgérault F, Morón G, Leclerc C (2002) Virus-like particles: a new family of delivery systems. Expert Rev Vaccines 1:101–109CrossRefPubMed
9.
Zurück zum Zitat Chackerian B, Lowy DR, Schiller JT (2001) Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J Clin Invest 108:415–423PubMed Chackerian B, Lowy DR, Schiller JT (2001) Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J Clin Invest 108:415–423PubMed
10.
Zurück zum Zitat Peacey M, Wilson S, Baird MA et al (2007) Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng 98:968–977CrossRefPubMed Peacey M, Wilson S, Baird MA et al (2007) Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng 98:968–977CrossRefPubMed
11.
Zurück zum Zitat Stubenrauch K, Gleiter S, Brinkmann U (2001) Conjugation of an antibody Fv fragment to a virus coat protein: cell-specific targeting of recombinant polyoma-virus-like particles. Biochem J 356:867–873CrossRefPubMed Stubenrauch K, Gleiter S, Brinkmann U (2001) Conjugation of an antibody Fv fragment to a virus coat protein: cell-specific targeting of recombinant polyoma-virus-like particles. Biochem J 356:867–873CrossRefPubMed
12.
Zurück zum Zitat Vlad AM, Muller S, Cudic M et al (2002) Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J Exp Med 196:1435–1446CrossRefPubMed Vlad AM, Muller S, Cudic M et al (2002) Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J Exp Med 196:1435–1446CrossRefPubMed
13.
Zurück zum Zitat Alajez NM, Schmielau J, Alter MD et al (2005) Therapeutic potential of a tumor-specific, MHC-unrestricted T-cell receptor expressed on effector cells of the innate and the adaptive immune system through bone marrow transduction and immune reconstitution. Blood 105:4583–4589CrossRefPubMed Alajez NM, Schmielau J, Alter MD et al (2005) Therapeutic potential of a tumor-specific, MHC-unrestricted T-cell receptor expressed on effector cells of the innate and the adaptive immune system through bone marrow transduction and immune reconstitution. Blood 105:4583–4589CrossRefPubMed
14.
Zurück zum Zitat Turner MS, Cohen PA, Finn OJ (2007) Lack of effective MUC1 tumor antigen-specific immunity in MUC1-transgenic mice results from a Th/T regulatory cell imbalance that can be corrected by adoptive transfer of wild-type Th cells. J Immunol 178:2787–2793PubMed Turner MS, Cohen PA, Finn OJ (2007) Lack of effective MUC1 tumor antigen-specific immunity in MUC1-transgenic mice results from a Th/T regulatory cell imbalance that can be corrected by adoptive transfer of wild-type Th cells. J Immunol 178:2787–2793PubMed
15.
Zurück zum Zitat Soares MM, Mehta V, Finn OJ (2001) Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J Immunol 166:6555–6563PubMed Soares MM, Mehta V, Finn OJ (2001) Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J Immunol 166:6555–6563PubMed
16.
Zurück zum Zitat Devêvre E, Romero P, Mahnke YD (2006) LiveCount assay: concomitant measurement of cytolytic activity and phenotypic characterisation of CD8(+) T-cells by flow cytometry. J Immunol Methods 311:31–46CrossRefPubMed Devêvre E, Romero P, Mahnke YD (2006) LiveCount assay: concomitant measurement of cytolytic activity and phenotypic characterisation of CD8(+) T-cells by flow cytometry. J Immunol Methods 311:31–46CrossRefPubMed
17.
Zurück zum Zitat Goriely S, Goldman M (2008) Interleukin-12 family members and the balance between rejection and tolerance. Curr Opin Organ Transplant 13:4–9CrossRefPubMed Goriely S, Goldman M (2008) Interleukin-12 family members and the balance between rejection and tolerance. Curr Opin Organ Transplant 13:4–9CrossRefPubMed
18.
Zurück zum Zitat Aktas E, Kucuksezer UC, Bilgic S et al (2009) Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254:149–154CrossRefPubMed Aktas E, Kucuksezer UC, Bilgic S et al (2009) Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254:149–154CrossRefPubMed
19.
Zurück zum Zitat Acres B, Limacher JM (2005) MUC1 as a target antigen for cancer immunotherapy. Expert Rev Vaccines 4:493–502CrossRefPubMed Acres B, Limacher JM (2005) MUC1 as a target antigen for cancer immunotherapy. Expert Rev Vaccines 4:493–502CrossRefPubMed
20.
Zurück zum Zitat Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99CrossRefPubMed Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99CrossRefPubMed
21.
Zurück zum Zitat Karsten U, von Mensdorff-Pouilly S, Goletz S (2005) What makes MUC1 a tumor antigen? Tumour Biol 26:217–220CrossRefPubMed Karsten U, von Mensdorff-Pouilly S, Goletz S (2005) What makes MUC1 a tumor antigen? Tumour Biol 26:217–220CrossRefPubMed
22.
Zurück zum Zitat Brockhausen I, Yang JM, Burchell J et al (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233:607–617CrossRefPubMed Brockhausen I, Yang JM, Burchell J et al (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233:607–617CrossRefPubMed
23.
Zurück zum Zitat Kotera Y, Fontenot JD, Pecher G et al (1994) Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 54:2856–2860PubMed Kotera Y, Fontenot JD, Pecher G et al (1994) Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 54:2856–2860PubMed
24.
Zurück zum Zitat McKolanis JR, Finn OJ (2000) Analysis of the frequency of MHC-unrestricted MUC1-specific cytotoxic T-cells in peripheral blood by limiting dilution assay. Methods Mol Biol 125:463–470PubMed McKolanis JR, Finn OJ (2000) Analysis of the frequency of MHC-unrestricted MUC1-specific cytotoxic T-cells in peripheral blood by limiting dilution assay. Methods Mol Biol 125:463–470PubMed
25.
Zurück zum Zitat von Mensdorff-Pouilly S, Vennegoor C, Hilgers J (2002) Detection of humoral immune responses to mucins. Methods Mol Biol 125:495–500 von Mensdorff-Pouilly S, Vennegoor C, Hilgers J (2002) Detection of humoral immune responses to mucins. Methods Mol Biol 125:495–500
26.
Zurück zum Zitat Bontkes HJ, Ruizendaal JJ, Kramer D et al (2005) Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles. Gynecol Oncol 96:897–901CrossRefPubMed Bontkes HJ, Ruizendaal JJ, Kramer D et al (2005) Plasmacytoid dendritic cells are present in cervical carcinoma and become activated by human papillomavirus type 16 virus-like particles. Gynecol Oncol 96:897–901CrossRefPubMed
27.
Zurück zum Zitat Rudolf MP, Fausch SC, Da Silva DM et al (2001) Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol 166:5917–5924PubMed Rudolf MP, Fausch SC, Da Silva DM et al (2001) Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol 166:5917–5924PubMed
28.
Zurück zum Zitat Yang R, Murillo FM, Cui H et al (2004) Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J Virol 78:11152–11160CrossRefPubMed Yang R, Murillo FM, Cui H et al (2004) Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J Virol 78:11152–11160CrossRefPubMed
29.
Zurück zum Zitat Andreasson K, Tegerstedt K, Eriksson M et al (2009) Murine pneumotropic virus chimeric Her2/neu virus-like particles as prophylactic and therapeutic vaccines against Her2/neu expressing tumors. Int J Cancer 124:150–156CrossRefPubMed Andreasson K, Tegerstedt K, Eriksson M et al (2009) Murine pneumotropic virus chimeric Her2/neu virus-like particles as prophylactic and therapeutic vaccines against Her2/neu expressing tumors. Int J Cancer 124:150–156CrossRefPubMed
30.
Zurück zum Zitat Tegerstedt K, Franzén A, Ramqvist T, Dalianis T (2007) Dendritic cells loaded with polyomavirus VP1/VP2Her2 virus-like particles efficiently prevent outgrowth of a Her2/neu expressing tumor. Cancer Immunol Immunother 56:1335–1344CrossRefPubMed Tegerstedt K, Franzén A, Ramqvist T, Dalianis T (2007) Dendritic cells loaded with polyomavirus VP1/VP2Her2 virus-like particles efficiently prevent outgrowth of a Her2/neu expressing tumor. Cancer Immunol Immunother 56:1335–1344CrossRefPubMed
31.
Zurück zum Zitat Gedvilaite A, Dorn DC, Sasnauskas K et al (2006) Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology 354:252–260CrossRefPubMed Gedvilaite A, Dorn DC, Sasnauskas K et al (2006) Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology 354:252–260CrossRefPubMed
32.
Zurück zum Zitat Yan M, Peng J, Jabbar IA et al (2004) Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology 324:297–310CrossRefPubMed Yan M, Peng J, Jabbar IA et al (2004) Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology 324:297–310CrossRefPubMed
33.
Zurück zum Zitat Schiller JT, Castellsagué X, Villa LL et al (2008) An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine (Suppl) 10:K53–K61 Schiller JT, Castellsagué X, Villa LL et al (2008) An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine (Suppl) 10:K53–K61
34.
Zurück zum Zitat Trus BL, Roden RB, Greenstone HL et al (1997) Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 Å resolution. Nat Struct Biol 4:413–420CrossRefPubMed Trus BL, Roden RB, Greenstone HL et al (1997) Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 Å resolution. Nat Struct Biol 4:413–420CrossRefPubMed
35.
Zurück zum Zitat Buck CB, Cheng N, Thompson CD et al (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197CrossRefPubMed Buck CB, Cheng N, Thompson CD et al (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197CrossRefPubMed
36.
Zurück zum Zitat Roy P, Noad R (2008) Virus-like particles as a vaccine delivery system: myths and facts. Hum Vaccin 4:5–12PubMed Roy P, Noad R (2008) Virus-like particles as a vaccine delivery system: myths and facts. Hum Vaccin 4:5–12PubMed
37.
Zurück zum Zitat Miyamura K, Kajigaya S, Momoeda M et al (1994) Parvovirus particles as platforms for protein presentation. Proc Natl Acad Sci USA 91:8507–8511CrossRefPubMed Miyamura K, Kajigaya S, Momoeda M et al (1994) Parvovirus particles as platforms for protein presentation. Proc Natl Acad Sci USA 91:8507–8511CrossRefPubMed
38.
Zurück zum Zitat Müller M, Zhou J, Reed TD et al (1997) Chimeric papillomavirus-like particles. Virology 234:93–111CrossRefPubMed Müller M, Zhou J, Reed TD et al (1997) Chimeric papillomavirus-like particles. Virology 234:93–111CrossRefPubMed
39.
Zurück zum Zitat Tindle RW, Herd K, Londoño P et al (1994) Chimeric hepatitis B core antigen particles containing B- and Th-epitopes of human papillomavirus type 16 E7 protein induce specific antibody and T-helper responses in immunised mice. Virology 200:547–557CrossRefPubMed Tindle RW, Herd K, Londoño P et al (1994) Chimeric hepatitis B core antigen particles containing B- and Th-epitopes of human papillomavirus type 16 E7 protein induce specific antibody and T-helper responses in immunised mice. Virology 200:547–557CrossRefPubMed
40.
Zurück zum Zitat Wagner R, Deml L, Schirmbeck R et al (1996) Construction, expression, and immunogenicity of chimeric HIV-1 virus-like particles. Virology 220:128–140CrossRefPubMed Wagner R, Deml L, Schirmbeck R et al (1996) Construction, expression, and immunogenicity of chimeric HIV-1 virus-like particles. Virology 220:128–140CrossRefPubMed
41.
Zurück zum Zitat Chen XS, Garcea RL (2000) Goldberg I et al. (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5:557–567CrossRefPubMed Chen XS, Garcea RL (2000) Goldberg I et al. (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5:557–567CrossRefPubMed
Metadaten
Titel
Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles
verfasst von
Sharmila Pejawar-Gaddy
Yogendra Rajawat
Zoe Hilioti
Jia Xue
Daniel F. Gaddy
Olivera J. Finn
Raphael P. Viscidi
Ioannis Bossis
Publikationsdatum
01.11.2010
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 11/2010
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-010-0895-0

Weitere Artikel der Ausgabe 11/2010

Cancer Immunology, Immunotherapy 11/2010 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.