Skip to main content
Erschienen in: BMC Medical Genetics 1/2015

Open Access 01.12.2015 | Research article

Genetic contribution of SCARB1 variants to lipid traits in African Blacks: a candidate gene association study

verfasst von: Vipavee Niemsiri, Xingbin Wang, Dilek Pirim, Zaheda H. Radwan, Clareann H. Bunker, M. Michael Barmada, M. Ilyas Kamboh, F. Yesim Demirci

Erschienen in: BMC Medical Genetics | Ausgabe 1/2015

Abstract

Background

High-density lipoprotein cholesterol (HDL-C) exerts many anti-atherogenic properties including its role in reverse cholesterol transport (RCT). Scavenger receptor class B member 1 (SCARB1) plays a key role in RCT by selective uptake of HDL cholesteryl esters. We aimed to explore the genetic contribution of SCARB1 to affecting lipid levels in African Blacks from Nigeria.

Methods

We resequenced 13 exons and exon-intron boundaries of SCARB1 in 95 individuals with extreme HDL-C levels using Sanger method. Then, we genotyped 147 selected variants (78 sequence variants, 69 HapMap tagSNPs, and 2 previously reported relevant variants) in the entire sample of 788 African Blacks using either the iPLEX Gold or TaqMan methods. A total of 137 successfully genotyped variants were further evaluated for association with major lipid traits.

Results

The initial gene-based analysis demonstrated evidence of association with HDL-C and apolipoprotein A-I (ApoA-I). The follow-up single-site analysis revealed nominal evidence of novel associations of nine common variants with HDL-C and/or ApoA-I (P < 0.05). The strongest association was between rs11057851 and HDL-C (P = 0.0043), which remained significant after controlling for multiple testing using false discovery rate. Rare variant association testing revealed a group of 23 rare variants (frequencies ≤1 %) associated with HDL-C (P = 0.0478). Haplotype analysis identified four SCARB1 regions associated with HDL-C (global P < 0.05).

Conclusions

To our knowledge, this is the first report of a comprehensive association study of SCARB1 variations with lipid traits in an African Black population. Our results showed the consistent association of SCARB1 variants with HDL-C across various association analyses, supporting the role of SCARB1 in lipoprotein-lipid regulatory mechanism.
Begleitmaterial
Additional file 5: Figure S1. Linkage disequilibrium (LD) plot of 83 SCARB1 sequence variants. Of 83 sequence variants (see the list in Additional file 3: Table S3), 78 were selected for genotyping. An enlarged view of the part of LD plot (A) shows the pairwise correlations (r2) between four variants including the two variants (shown in bold) in the same bin in our data, of which one selected for genotyping. This bin was not identified by Tagger analysis of common SCARB1 variants in the HapMap-YRI data (see Additional file 7: Table S5 and Additional file 8: Figure S3). The degree of shades and values (r2 × 100) in each square of LD plot represent the pairwise correlations: black indicating r2 = 1, white indicating r2 = 0, and shade intensity indicating r2 between 0 and 1. LD, linkage disequilibrium; MAF, minor allele frequency; YRI, Yoruba people of Ibadan from Nigeria. (PDF 920 kb)
Additional file 8: Figure S3. Linkage disequilibrium (LD) plot of 108 SCARB1 common HapMap-YRI tagSNPs. The list of 77 common HapMap-YRI tagSNPs identified by Tagger analysis of variants with minor allele frequency ≥5 % using an r2 cutoff of 0.80 is shown in Additional file 7: Table S5. The degree of shades and values (r2 × 100) in each square of LD plot represent the pairwise correlations: black indicating r2 = 1, white indicating r2 = 0, and shade intensity indicating r2 between 0 and 1.LD, linkage disequilibrium; SNP, single nucleotide polymorphism; YRI, Yoruba people of Ibadan from Nigeria. (TIFF 2642 kb)
Additional file 11: Figure S4. Linkage disequilibrium (LD) plot of 137 SCARB1 genotyped variants. The list of 87 genotyped common tagSNPs identified by Tagger analysis for variants with minor allele frequency ≥5 % using an r2 cutoff of 0.90 is shown in Additional file 10: Table S7. The degree of shades and values (r2 × 100) in each square of LD plot represent the pairwise correlations: black indicating r2 = 1, white indicating r2 = 0, and shade intensity indicating r2 between 0 and 1.LD, linkage disequilibrium; SNP, single nucleotide polymorphism. (TIFF 3095 kb)
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12881-015-0250-6) contains supplementary material, which is available to authorized users.
M. Ilyas Kamboh and F. Yesim Demirci contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceive and design the experiments: FYD, MIK Perform the experiments: VN, FYD Analyze the data: VN, XW, DP, ZHR, MMB, FYD, MIK Contribute reagents/materials/analysis tools: CHB, MIK Write the paper: VN, FYD, MIK Provide critical revisions: XW, DP, ZHR, CHB, MMB Interpret the results: VN, XW, DP, ZHR, CHB, MMB, FYD, MIK All authors read and approved the final manuscript.
Abkürzungen
ApoA-I
Apolipoprotein A-I
ApoB
Apolipoprotein B
BP
Base pair
CE
Cholesteryl esters
CHD
Coronary heart disease
FDR
False discovery rate
GWAS
Genome-wide association studies
HDL-C
High-density lipoprotein cholesterol
HWE
Hardy-Weinberg equilibrium
indel
Insertion and deletion variation
KB
Kilobase pair
LD
Linkage disequilibrium
LDL-C
Low-density lipoprotein cholesterol
LoF
Low-frequency
MAF
Minor allele frequency
NHW
Non-Hispanic White
PCR
Polymerase chain reaction
QC
Quality controls
RCT
Reverse cholesterol transport
SCARB1
Scavenger receptor class B member 1
SD
Standard deviation
SKAT-O
An optimal sequence kernel association test
SNP
Single nucleotide polymorphism
SNV
Singlenucleotide variation
TG
Triglycerides
UTR
Untranslated region
VEGAS
Versatile gene-based association study
VLDL-C
Very low-density lipoprotein cholesterol
YRI
Yoruba people of Ibadan from Nigeria

Background

Abnormal lipid and lipoprotein levels are a major risk factor for coronary heart disease (CHD) [1], the leading cause of death worldwide [2]. Elevated low-density lipoprotein cholesterol (LDL-C) levels and decreased high-density lipoprotein cholesterol (HDL-C) levels are correlated with the development of CHD. There is a strong genetic basis for lipoprotein-lipid levels with heritability estimates of 40–80 % [3]. A large number of genes and genetic variants associated with lipid traits have been discovered in genome-wide association studies (GWAS) [46]. Most of the common variants (minor allele frequency [MAF] ≥5 %) identified by GWAS have modest effects on lipid levels, and have overall a small contribution to total genetic variance of lipid traits (~25–30 % of the heritability) [48]. A portion of the missing heritability of lipid traits could be explained by low frequency (LoF)/rare variants (MAF <5 %) as suggested by recent studies [911].
HDL, the smallest and densest (d = 1.063–1.21 g/mL) class of lipoprotein particles, has a variety of antiatherogenic properties [12]. One of the HDL properties to protect against CHD is mediated by reverse cholesterol transport (RCT) from peripheral tissues back to the liver [13]. Scavenger receptor class B member 1 (SCARB1, protein; SCARB1, gene) serves as a HDL-C receptor in RCT that mediates selective uptake of HDL-C cholesteryl esters (CE) by the liver and free cholesterol efflux from cells to HDL-C [14]. SCARB1 is also implicated in the metabolism of apolipoprotein B (ApoB)-containing particles [1521].
The SCARB1 gene (Entrez Gene ID: 949) is located on human chromosome 12, and is abundantly expressed in liver and steroidogenic tissues [22, 23]. The role of SCARB1 in HDL-C and ApoB-containing lipoproteins metabolism has been established in animal studies. The disruption of SCARB1 is associated with increased HDL-C levels and decreased CE uptake [2426]. Whereas the overexpression of SCARB1 reduces levels of HDL-C, ApoA-I, very low-density lipoprotein cholesterol (VLDL-C), LDL-C, and ApoB [1517, 19] and promotes the hepatic uptake of CE as well as the biliary secretion of HDL-C [15, 27]. The SCARB1 expression is also significantly associated with hepatic VLDL-triglycerides (TG) and VLDL-ApoB production. Hepatic VLDL cholesterol production together with VLDL clearance is enhanced in response to SCARB1 overexpression [21]. In contrast, reduced hepatic VLDL-TG and VLDL-ApoB production is associated with SCARB1 knockout status [18, 20, 21].
In humans, three SCARB1 mutations (rs397514572 [p.Ser112Phe], rs187831231 [p.Thr175Ala], and rs387906791 [p.Pro297Ser]; MIM: 601040) have been reported to be associated with significantly increased HDL-C levels [28, 29]. Moreover, several genetic studies have demonstrated the association of common SCARB1 variation with lipoprotein-lipid levels [5, 2839] and subclinical atherosclerosis [40].
To our knowledge, no genetic study has exclusively investigated the association between SCARB1 and lipid traits in native African populations to date. The objective of this study was to resequence all 13 exons and exon-intron boundaries of SCARB1 in 95 African Blacks from Nigeria with extreme HDL-C levels for variant discovery and then to genotype selected variants in the entire sample of 788 African Blacks, followed by genotype-phenotype association analyses with five major lipid and apolipoprotein (Apo) traits (HDL-C, LDL-C, TG, ApoA-I and ApoB). Because our initial gene-based analysis demonstrated evidence of association with HDL-C and ApoA-I, our subsequent analyses focused on these two traits.

Methods

Study population

The present study was carried out on 788 African Black subjects from Benin City, Nigeria, who were recruited as part of a population-based epidemiological study on CHD risk factors. Detailed information on the study design and population description is provided elsewhere [41]. In brief, 788 recruited subjects were healthy civil servants (37.18 % females) from three government ministries of the Edo state in Benin City, Nigeria, aged between 19 and 70 years, including 464 junior staff (non-professional staff with salary grades 1–6), and 324 senior staff (professional and administrative staff with salary grades 7–16). The summary features, including biometric and quantitative data of the entire sample of 788 subjects are given in Table 1 and Additional file 1: Table S1.
Table 1
Characteristics and lipid profile of 95 individuals with extremea HDL-C levels and of the entire sample of 788 African Blacks
 
95 Individuals with Extremea HDL-C Levels
The Entire Sampleb
Variables
High HDL-C Group
Low HDL-C Group
P d
 
(HDL-C rangec: 68.30–99.00 mg/dL)
(HDL-C rangec: 10.30–35.00 mg/dL)
N (Females, n)
48 (24)
47 (24)
1.00
788 (293)
Age, years
41.29 ± 8.72
40.87 ± 7.12
0.80
40.95 ± 8.39
BMI, kg/m2
22.06 ± 4.70
23.91 ± 5.51
0.08
22.87 ± 4.04
Total Cholesterol, mg/dL
201.00 ± 39.68
141.68 ± 31.03
2.40E-12
172.01 ± 38.47
LDL-Cholesterol, mg/dL
112.55 ± 39.75
95.04 ± 28.28
0.02
109.25 ± 34.40
HDL-Cholesterol, mg/dL
76.05 ± 7.53
25.51 ± 5.66
2.20E-16
47.88 ± 12.87
Triglycerides, mg/dL
61.98 ± 19.85
95.79 ± 73.21
0.004
72.96 ± 39.32
Apolipoprotein A-I, mg/dL
166.04 ± 28.19
103.84 ± 27.23
2.20E-16
137.03 ± 28.46
Apolipoprotein B, mg/dL
66.00 ± 20.22
69.64 ± 21.46
0.40
66.98 ± 22.19
BMI body mass index, HDL-C/HDL-Cholesterol high-density lipoprotein cholesterol, LDL-Cholesterol low-density lipoprotein cholesterol
Values are presented as unadjusted means ± standard deviation (SD), unless otherwise mentioned
aDistribution of HDL-C was adjusted for sex and age: HDL-C levels ≥90th % tile defined as the “High HDL-C group”, and HDL-C levels ≤10th % tile defined as the “Low HDL-C group”
bAll data were unadjusted and included individuals with missing values or outliers (values beyond mean ± 3.5 SD)
cUnadjusted range values
dUnadjusted P-values were calculated with t-test or χ2 test depending on types of variables
For resequencing, 95 individuals with extreme HDL-C levels (within the upper and lower 10th percentiles of HDL-C distribution) were chosen from the entire sample of 788 African Blacks. Resequencing sample comprised of 48 individuals with high HDL-C levels (≥90th percentile, range 68.30–99.00 mg/dL; Table 1) and 47 individuals with low HDL-C levels (≤10th percentile, range 10.30–35.00 mg/dL; Table 1). The University of Pittsburgh Institutional Review Board approved the study protocol. All participants gave their informed consent.

Lipid and apolipoprotein measurements

At least 8-hour fasting blood samples were collected from all participants. Serum specimens were separated by centrifugation of blood samples and then stored at −70 °C for 6–12 months until ready for testing. Lipid and apolipoprotein measurements included total cholesterol, HDL-C, TG, ApoA-I, and ApoB and were done with standard assays at the Heinz Nutrition Laboratory, University of Pittsburgh under the Centers for Disease Control Lipid Standardization Program [41]. LDL-C was calculated with the Friedewald equation [42] when TG levels were less than 400 mg/dL.

PCR and sequencing

Genomic DNA was isolated from clotted blood using the standard DNA extraction procedure. All 13 SCARB1 exons (isoform 1, NM_005505), exon-intron boundaries, and 1 kb of each of 5′ and 3′ flanking regions on chromosome 12 (hg19, chr12: 125,262,175-125,348,519) were polymerase chain reaction (PCR) amplified and sequenced. Specific primers were designed using the Primer3 software (Whitehead Institute for Biomedical Research, http://​bioinfo.​ut.​ee/​primer3-0.​4.​0/​) to cover 13 target regions, resulting in 14 amplicons, including two overlapping amplicons for the largest last exon 13. PCR reaction and cycling conditions are available upon request. The primer sequences and amplicon sizes are given in Additional file 2: Table S2.
Automated DNA sequencing of PCR products was performed in a commercial lab (Beckman Coulter Genomics, Danvers, MA, USA) using Sanger method and ABI 3730XL DNA Analyzers (Applied Biosystems, Waltham, MA, USA). Variant analysis was performed using Variant Reporter (version 1.0, Applied Biosystems, Waltham, MA, USA) and Sequencher (version 4.8, Gene Codes Corporation, Ann Arbor, MI, USA) software in our laboratory.

Variant selection for genotyping

Of 83 variants identified in the discovery step (see Additional file 3: Table S3, Additional file 4: Table S4, Additional file 5: Figure S1, and Additional file 6: Figure S2), 78 (28 with MAF ≥5 % and 50 with MAF <5 %) were selected based on the pairwise linkage disequilibrium (LD) and Tagger analysis using an r 2 threshold of 0.90 (5 were excluded due to high LD) in Haploview (Broad Institute of MIT and Harvard, https://​www.​broadinstitute.​org/​scientific-community/​science/​programs/​medical-and-population-genetics/​haploview/​haploview) [43] for follow-up genotyping in the entire sample (n = 788). Since our sequencing was focused primarily on coding regions, in addition we selected 69 HapMap tag single nucleotide polymorphisms [SNPs] (out of total 108 HapMap tagSNPs; see Additional file 7: Table S5 and Additional file 8: Figure S3) based on Tagger analysis (MAF ≥5 % and r 2  ≥ 0.80) of HapMap data (Release #27) from the Yoruba people of Ibadan, Nigeria (YRI), in order to cover the entire gene for common genetic variation information. Moreover, we selected two SCARB1 variants previously reported to be significantly associated with lipid traits in the literature (Additional file 9: Table S6). Conclusively, a total of 149 variants, comprising of 78 sequence variants, 69 common HapMap-YRI tagSNPs, and two relevant associated variants, were selected for follow-up genotyping.

Genotyping

Genotyping of selected variants in the total sample of 788 individuals was performed by using either iPLEX Gold (Sequenom, Inc., San Diego, CA, USA) or TaqMan (Applied Biosystems, Waltham, MA, USA) methods and following the manufacturers’ protocols.
Out of 149 selected variants, two failed assay designs and nine failed genotyping runs (see details in Additional file 3: Table S3, Additional file 7: Table S5, and Additional file 9: Table S6). Quality control (QC) measures for successfully genotyped variants were as follow: a genotype call rate of ≥90 %, a discrepancy rate of <1 in 10 % replicates, and no deviation from Hardy-Weinberg equilibrium [HWE] (P >3.62 × 10−4 after Bonferroni correction). Ultimately, a total of 137 QC-passed genotyped variants were included in genetic association analyses (see Additional file 9: Table S6, Additional file 10: Table S7, Additional file 11: Figure S4, and Additional file 12: Figure S5).

Statistical analysis

We used the Haploview program to determine allele frequencies, to test HWE for genotype distribution, and to evaluate the LD and pairwise correlations (r2) between variants [43].
The values of each lipid phenotype outside the mean ± 3.5 standard deviation (SD) were excluded from downstream gene-based, single-site, and haplotype analyses. However, the extreme phenotypic values associated with rare variants (MAF ≤1 %) were maintained during rare variant analysis, as was the case for the p70201/chr12:125279319 variant (see study workflow in Fig. 1). Values of the five lipid and apolipoprotein traits—HDL-C, LDL-C, TG, ApoA-I, and ApoB—were transformed using the Box-Cox transformation. For each trait, we used stepwise regression method to select the most parsimonious set of covariates from the following list: sex, age, body mass index, waist, current smoking (yes/no), minutes of walking or biking to work each day (jobmin), and occupational status (staff: junior [non-professional staff]/senior [professional and administrative staff]). Genetic association analyses, including gene-based, single-site, LoF/rare variant, and haplotype association tests, were performed using linear regression models that included significant covariates for each variable (Additional file 13: Table S8).
The gene-based association analysis was conducted under linear additive model for the combined evaluation of common and LoF/rare variants (n = 136, excluding p70201/chr12:125279319; see details above in paragraph two of this section) for five major lipid traits using the versatile gene-based association study [VEGAS] (http://​gump.​qimr.​edu.​au/​VEGAS/​) software [44]. The significance threshold for the gene-based test was set at P-value of 0.05.
Following gene-based analysis, which primarily implicated SCARB1 in regulation of HDL-C and ApoA-I levels, we further elucidated the association of SCARB1 variants with these two traits using additional tests. In single-site association analysis, P-values for each trait were adjusted for multiple testing using Benjamini-Hochberg procedure [45] to determine the false discovery rate [FDR] (q-value). For common variants (MAF ≥5 %), a nominal P-value of <0.05 was considered to be suggestive evidence of association, and an FDR cut-off of 0.20 was used to define statistical significance. For LoF/rare variants (MAF <5 %), the single-site association results were interpreted separately because of inadequate power of our study to detect individual statistical significance for these variants.
We conducted an optimal sequence kernel association test (SKAT-O) [46] to evaluate the association between a total of 43 LoF/rare variants (MAF <5 %) and the two lipid traits (HDL-C and ApoA-I) by using three different MAF thresholds: <5 % (n = 43), ≤2 % (n = 26), and ≤1 % (n = 23). A significant SKAT-O test was set at a P-value of <0.05.
Haplotype association analysis was performed using the generalized linear model. We applied a fixed sliding window approach that included four variants per window and sliding for one variant at a time. For each window, a global P-value was used to assess the association between the haplotypes with frequency >1 % and a given trait. A global P-value threshold of 0.05 was used to define significant haplotype association.
All analyses, except for VEGAS, were performed using the R statistical software (http://​www.​r-project.​org/​) and relevant R packages (i.e., Haplo.Stats for haplotype analysis and SKAT for SKAT-O analysis).

Results

Identification and distribution of SCARB1 sequence variants in 95 individuals with extreme HDL-C levels

Resequencing of SCARB1 exons and exon-intron boundaries plus flanking regions in 95 African Blacks with extreme HDL-C levels identified 83 variants, of which 51 had MAF <5 % (Additional file 3: Table S3 and Additional file 5: Figure S1). The majority of 83 variants (n = 73) were previously identified (dbSNP build 139: GRCh37.p10). Most variants (n = 80) were singlenucleotide variations [SNVs] (67 transitions and 13 transversions); the rest (n = 3) were short insertion and deletion variations (indels).
Tagger analysis using an r 2 cutoff of 0.9 identified 28 bins for 32 common variants (MAF ≥5 %), of which three included more than one variant (r2 ranging from 0.95 to 1.0) (Additional file 6: Figure S2). One of these three bins contained two variants (rs204901986 and rs34339961) in complete LD (r2 = 1.0). Of 51 LoF/rare variants (MAF between 1 and 5 %, n = 31; MAF ≤1 %, n = 20), 17 were present only in the high HDL-C group (MAF ranging between 0.010 and 0.042) and eight were observed only in the low HDL-C group (MAF ranging between 0.011 and 0.033). In the high HDL-C group, 29 of 48 (~60 %) individuals cumulatively carried at least one LoF/rare variant, ranging from 1 to 7 variants. Similarly, in the low HDL-C group, 27 of 47 (~57 %) individuals carried at least one LoF/rare variant, ranging from 1 to 9 variants.
Most variants (n = 60) from our sequencing were located in intronic regions, of which two (rs113910315, MAF = 0.005 and rs10396210, MAF = 0.138) were within splice sites (defined as ± 20 bp from the start or end of an exon). The former splice site variant was observed only in the low HDL-C group.
Of the total eight coding variants observed, four were common variants (rs2070242 [p.Ser4Ser], rs10396208 [p.Cys21Cys], and rs5888 [p.Ala350Ala], and rs701103 [p.Gly499Arg]—3′ untranslated region [UTR] in isoform 1 and exon 13 in isoform 2), and the remaining four were LoF/rare variants (rs4238001 [p.Gly2Ser], rs5891 [p.Val135Ile], rs5892 [p.Phe301Phe], and rs141545424 [p.Gly501Gly]). Of note, two LoF/rare coding variants, (rs5891 [p.Val135Ile] and rs141545424 [p.Gly501Gly]), were found only in the high HDL-C group.
Fifteen variants were located in either UTRs (n = 5) or flanking regions (n = 10). One 3′ UTR variant (rs150512235, MAF = 0.006) was very close to a predicted microRNA-145 (miR-145) target site (TargetScanHuman version 6.2, http://​www.​targetscan.​org/​). One 5′ flanking variant (rs181338950, MAF = 0.048) was located in the putative promoter region [47].
All 10 novel variants (9 SNVs and 1 insertion) identified in this study have been submitted to dbSNP database ([batch ID: SCARB1_AB]:
http://​www.​ncbi.​nlm.​nih.​gov/​SNP/​snp_​viewTable.​cgi?​handle=​KAMBOH) and were non-coding with MAF <5 % (ranging between 0.005 and 0.011; Additional file 4: Table S4). Of these novel variants, six and four were present only in the high and low HDL-C groups, respectively.

Genotyping of SCARB1 variants in the entire sample of 788 individuals

Since our sequencing was focused primarily on coding regions, we selected additional HapMap tagSNPs from the HapMap-YRI data in order to cover the entire SCARB1 gene for common genetic variation in SCARB1. Altogether we selected 149 variants for genotyping in our entire African Black sample as follows: 78 variants (28 common variants and 50 LoF/rare variants) discovered in the sequencing step (Additional file 3: Table S3, Additional file 5: Figure S1, and Additional file 6: Figure S2), 69 common HapMap-YRI tagSNPs (Additional file 7: Table S5), and two additional variants with reported association in the literature (Additional file 9: Table S6).
Of these 149 variants, 11 (10 from sequencing, including one promoter [rs181338950], one coding (rs4238001 [p.Gly2Ser]), and one novel [p87459/chr12:125262061], and 1 from HapMap tagSNPs [rs4765180]) failed genotyping, and one (rs866793 from HapMap tagSNPs) failed QC measures. Thus, a total of 137 variants (Additional file 9: Table S6 and Additional file 11: Figure S4) that passed QC were advanced into association analyses with five lipoprotein-lipid traits.
The majority of 137 genotyped variants (n = 120) were located in introns, 11 were in exons, and six were in 3′ flanking region (Table 2 and Additional file 12: Figure S5). Ninety-four of 137 variants had MAF ≥5 %, including four coding variants, one UTR variant, two deletions, and one splice site variant. The remaining 43 variants had MAF <5 % (MAF between 1 and 5 %, n = 20; MAF ≤1 %, n = 23), including three coding variants, three UTR variants, one insertion, and one splice variant.
Table 2
Distribution of 137 SCARB1 genotyped variants
 
Total
MAF ≥5 %
MAF between 1-5 %
MAF ≤1 %
N (%)
n (%)
n (%)
n (%)
Total variants
137 (100.00)
94 (68.61)
20 (14.60)
23 (16.79)
By known/novela
    
 Known
128 (93.43)
94 (68.61)
20 (14.60)
14 (10.22)
  Single-nucleotide variation
126
92
20
14
  Short indels
2
2
  
 Novel
9 (6.57)
  
9 (6.57)
  Single-nucleotide variation
8
  
8
  Short indels
1
  
1
By location
    
 Exons-codingc
7
4c
1
2
 Exons-UTRs
4
1
1
2
 Introns
118
85
16
17
 Introns-splice sitesb
2
1
 
1
 3′ flanking
6
3
2
1
By amino acid change
    
 Non-synonymousc
2
1c
 
1
 Synonymous
5
3
1
1
Indels insertion and deletion variations, MAF minor allele frequency, UTR untranslated region
The list of 137 genotyped variants is shown in Additional file 9: Table S6
The list of 10 novel variants is shown in Additional file 4: Table S4
adbSNP build 139: GRCh37.p10. All 10 novel variants identified in this study have been submitted to dbSNP (batch ID: SCARB1_AB): http://​www.​ncbi.​nlm.​nih.​gov/​SNP/​snp_​viewTable.​cgi?​handle=​KAMBOH
bSplice site, defined as ± 20 bp from the start or end of an exon
cIncluding rs701103 (p.Gly499Arg; MAF = 0.2451) that is located in exon 13-3′ UTR and translated only in isoform 2
Of the 10 novel variants discovered in the sequencing step, nine (8 SNVs and 1 insertion) with MAF <1 % were successfully genotyped (Additional file 4: Table S4). There was one individual with plasma HDL-C levels above the mean + 3.5 SD carrying one novel variant—p70201/chr12:125279319 (MAF = 0.0010). Although this extreme HDL-C value was excluded as outlier from the gene-based, single-site, and haplotype analyses, it was included in the SKAT-O rare variant analysis considering a possible large effect size of this variant (Fig. 1).

Gene-based association analyses

Gene-based tests revealed a nominally significant association (P = 0.0421; Table 3) of SCARB1 variants with HDL-C levels (best SNP: rs141545424 [p.Gly501Gly], exon 12, MAF = 0.0007, P = 0.0016). Additionally, a trend for association (P = 0.1016) was also observed for ApoA-I levels (best SNP: rs7134858, intron 6, MAF = 0.1560, P = 0.0052).
Table 3
Gene-based association analysis results
Trait
Variants
Test Statistics
P
Best SNP
(n)
SNP Namea-SNP IDb
MAF
P
HDL-C
136
207.5483
0.0421
p82264-rs141545424
0.0007
0.0016
LDL-C
136
134.1860
0.4640
p32777-rs11057841
0.2805
0.0047
TG
136
118.1598
0.6700
p86316-rs701104
0.0487
0.0357
ApoA-I
136
183.5565
0.1016
p55963-rs7134858
0.1560
0.0052
ApoB
136
143.7284
0.3760
p22116-rs12370382
0.0645
0.0153
ApoA-I apolipoprotein A-I, ApoB apolipoprotein B, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, MAF minor allele frequency, SNP single nucleotide polymorphism, TG triglycerides
All results were adjusted for covariates: sex, age, body mass index, waist, current smoking (yes/no), minutes of walking or biking to work each day (jobmin), and occupational status [staff: junior (non-professional staff)/senior (professional and administrative staff)]
Nominally significant gene-based P-values (P < 0.05) are shown in bold
aRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
bdbSNP build 139: GRCh37.p10
Since the gene-based tests showed evidence of associations with HDL-C and ApoA-I, we primarily focused on these two traits to further examine the SCARB1 variants in the entire sample of 788 African Blacks.

Single-site association analyses of common SCARB1 variants

Of 94 common SCARB1 variants with MAF ≥5 %, 10 showed nominal associations (P < 0.05) with HDL-C and/or ApoA-I (Table 4; see results for each trait in Additional file 14: Table S9 and Additional file 15: Table S10), of which three (rs11057851, rs4765615, and rs838895) exhibited associations with both HDL-C and ApoA-I.
Table 4
Nominally significant single-site associations (P < 0.05) of common SCARB1 variants
SNP Namea
SNP IDb
Chr12 Positionc
Location
Amino Acid Change
RegDB Scored
Major/Minor Alleles
MAF
β
SE
R2 (%)
P
FDR
Secondary Trait (Effect)
Top 3 Variants
HDL-C
              
 p20207
rs11057853
125329313
Intron 1
 
5
G/A
0.4484
0.4082
0.1925
1.0650
0.0343
0.4235
  
 p20741
rs11057851
125328779
Intron 1
 
5
C/T
0.3237
−0.5924
0.2067
1.3010
0.0043
0.1465
ApoA-I (↓)
Top 1
 p45516
rs1902569
125304004
Intron 1
 
5
G/A
0.1544
0.5447
0.2629
0.6390
0.0386
0.4375
  
 p49690
rs4765615
125299830
Intron 2
 
5
G/A
0.4426
−0.4646
0.1866
0.9330
0.0130
0.2526
ApoA-I (↓)
 
 p79828
rs838895
125269692
Intron 11
 
5
C/G
0.3171
0.4961
0.2059
0.8220
0.0162
0.2756
ApoA-I (↑)
 
ApoA-I
              
 p20741
rs11057851
125328779
Intron 1
 
5
C/T
0.3237
−1.2331
0.5117
0.8600
0.0162
0.3186
HDL-C (↓)
 
 p49690
rs4765615
125299830
Intron 2
 
5
G/A
0.4426
−0.9139
0.4614
0.6770
0.0480
0.5022
HDL-C (↓)
 
 p55963
rs7134858
125293557
Intron 6
 
6
C/T
0.1560
1.7537
0.6260
1.0710
0.0052
0.2918
 
Top 2
 p63483
rs838912
125286037
Intron 7
 
7
G/A
0.0867
1.8700
0.8230
0.6880
0.0234
0.3972
  
 p64772
rs5888
125284748
Exon 8
Ala350Ala
3a
C/T
0.0961
2.0962
0.7888
0.9460
0.0080
0.2918
 
Top 3
 p79721
rs838896
125269799
Intron 11
 
5
G/C
0.3104
1.1147
0.5056
0.7270
0.0278
0.4197
  
 p79828
rs838895
125269692
Intron 11
 
5
C/G
0.3171
1.2206
0.5074
0.7800
0.0164
0.3186
HDL-C (↑)
 
 p83884
rs701106
125265636
Intron 12
 
5
C/T
0.2597
1.2967
0.5352
0.7770
0.0156
0.3186
  
ApoA-I apolipoprotein A-I, FDR false discovery rate, HDL-C high-density lipoprotein cholesterol, MAF minor allele frequency, RegDB RegulomeDB, SE standard error, SNP single nucleotide polymorphism, UTR untranslated region, R 2 , the proportion of the phenotypic variance explained by the variant; ↓, decreased; ↑, increased
Alleles on reverse strand. HDL-C and ApoA-I variables were in mg/dL and Box-Cox transformed
Results were adjusted for covariates: sex, age, waist, current smoking (yes/no), and minutes of walking or biking to work each day (jobmin) for HDL-C; sex and age for ApoA-I
The most significant P-value for each trait is shown in bold, see the single-site association (−log10 P) plot and pairwise correlations (r 2 ) in Fig. 2
FDR that reached a threshold of <0.20 is shown in bold
a, cRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
bdbSNP build 139: GRCh37.p10
dDetailed RegulomeDB (version 1.0) scoring scheme is described in Additional file 17: Table S12 or at http://​regulome.​stanford.​edu/​help, see functional assignments in Additional file 18: Table S13
The most significant association was found between rs11057851 and HDL-C (β = −0.5924, P = 0.0043, FDR = 0.1465). The second best association was between rs7134858 and ApoA-I (β = 1.7537, P = 0.0052, FDR = 0.2918), followed by the association of rs5888 (p.Ala350Ala) with ApoA-I (β = 2.0962, P = 0.0080, FDR = 0.2918).
Of 10 variants that showed nominal associations, high LD (r2 > 0.80) was observed for two pairs of variants (Fig. 2), between rs8388912 and rs5888 (p.Ala350Ala; r2 = 0.86), and between rs838896 and rs838895 (r2 = 0.84).

Association analyses of low-frequency/rare SCARB1 variants

The LoF/rare variants (n = 43) were categorized into three groups based on their frequencies for association analysis with HDL-C and ApoA-I using SKAT-O: MAF <5 % (n = 43), MAF ≤2 % (n = 26), and MAF ≤1 % (n = 23). Although no association between LoF/rare variants and ApoA-I was detected, the group of 23 variants with MAF ≤1 % yielded nominal association with HDL-C levels (P = 0.0478; Table 5).
Table 5
Association results for low-frequency and rare SCARB1 variants (MAF <5 %)
MAF
No of Variants
No of Samples with/without Variants
HDL-C
ApoA-I
Stat
P
Stat
P
≤0.01
23a
93/694
126653.8207
0.0478
60151.0985
0.3707
≤0.02
26
134/653
123009.0805
0.1324
48439.6697
0.5166
<0.05
43
442/346
135697.1974
0.0737
298813.0544
0.1517
ApoA-I apolipoprotein A-I, HDL-C high-density lipoprotein cholesterol, MAF minor allele frequency, SD standard deviation, SNP single nucleotide polymorphism
Results were adjusted for covariates: sex, age, waist, current smoking (yes/no), and minutes of walking or biking to work each day (jobmin) for HDL-C; sex and age for ApoA-I
Nominally significant P-values (P < 0.05) are shown in bold
aIncluding p70201/chr12:125279319 that was observed in one individual with an outlier value (above the mean + 3.5 SD). See details in Result Section 3.5
We then individually examined the association of 23 variants with MAF ≤1 % with HDL-C and ApoA-I. Six of these rare variants showed association with either HDL-C levels or both HDL-C and ApoA-I levels (Table 6). While three of them are known variants (rs115604379, rs377124254, and rs141545424 [p.Gly501Gly]), the other three are novel (p52919/chr12:125296601, p54611/chr12:125294909, and p54856/chr12:125294664). Moreover, four of these six rare variants (rs377124254, rs141545424 [p.Gly501Gly], p54611/chr12:125294909, and p54856/chr12:125294664) were present in individuals with extreme phenotypic values (above or below the 3rd percentile). Two of these variants (rs377124254: β = 11.5518, P = 0.0016; rs141545424 [p.Gly501Gly]: β = 11.585, P = 0.0016) were found in a single subject who had very high HDL-C level. Whereas the other two were observed in one individual each, who had extremely low HDL-C levels (p54611/chr12:125294909: β = −9.5243, P = 0.0097; p54856/chr12:125294664: β = −8.4305, P = 0.0215) and ApoA-I levels (p54611/chr12:125294909: β = −19.3821, P = 0.0344; p54856/chr12:125294664: β = −24.0757, P = 0.0082). This rare variant group also included a novel variant (p70201/chr12:125279319) that was observed in one individual with an unusually high plasma HDL-C level (above the mean + 3.5 SD).
Table 6
Characteristics and effects of 6 SCARB1 rare variants of interest
SNP Namea
SNP IDb
Chr12 Positionc
Location
Amino Acid Change
RegDB Scored
Major/Minor Alleles
MAF
GT
GT Count (Carrier Freq)
Adjusted Mean ± SD (mg/dL)
β
SE
R2 (%)
P
FDR
Second Assoc Trait (Effect)
HDL-C
                
 p52919
 
125296601
Intron 4
 
5
G/T
0.0013
GG
734
47.87 ± 12.71
−7.4063
2.5863
1.1050
0.0043
0.1465
ApoA-I (↓)
        
GT
2 (0.27)
24.67 ± 9.26
      
 p53372
rs115604379
125296148
Intron 5
 
5
C/T
0.0066
CC
729
47.68 ± 12.64
3.0372
1.1642
0.9140
0.0093
0.2190
 
        
CT
10 (1.35)
58.2 ± 13.03
      
 p54611
 
125294909
Intron 5
 
4
T/C
0.0007
TT
742
47.86 ± 12.68
−9.5243
3.6710
0.8920
0.0097
0.2190
ApoA-I (↓)
        
TC
1 (0.13)
19.59 ± NA
      
 p54856
 
125294664
Intron 6
 
4
C/T
0.0007
CC
742
47.85 ± 12.70
−8.4305
3.6579
0.7130
0.0215
0.3243
ApoA-I (↓)
        
CT
1 (0.13)
21.48 ± NA
      
 p77620
rs377124254
125271900
Intron 10
5
G/A
0.0007
GG
735
47.77 ± 12.67
11.5518
3.6514
1.3500
0.0016
0.1104
 
        
GA
1 (0.14)
90.2 ± NA
      
 p82264
rs141545424
125267256
Exon 12
Gly501Gly
5
C/A
0.0007
CC
739
47.77 ± 12.66
11.5850
3.6469
1.3530
0.0016
0.1104
 
        
CA
1 (0.14)
90.31 ± NA
      
ApoA-I
                
 p52919
 
125296601
Intron 4
 
5
G/T
0.0013
GG
741
136.81 ± 27.74
−13.4137
6.4689
0.5750
0.0385
0.4359
HDL-C (↓)
        
GT
2 (0.27)
97.42 ± 18.38
      
 p54611
 
125294909
Intron 5
 
4
T/C
0.0007
TT
748
136.83 ± 27.66
−19.2831
9.0970
0.5980
0.0344
0.4359
HDL-C (↓)
        
TC
1 (0.13)
80.62 ± NA
      
 p54856
 
125294664
Intron 6
 
4
C/T
0.0007
CC
748
136.87 ± 27.61
−24.0757
9.0781
0.9330
0.0082
0.2918
HDL-C (↓)
        
CT
1 (0.13)
67.98 ± NA
      
ApoA-I apolipoprotein A-I, FDR false discovery rate, GT genotype, HDL-C high-density lipoprotein cholesterol, MAF minor allele frequency, RegDB RegulomeDB, SD standard deviation, SE standard error, SNP single nucleotide polymorphism; R 2 , the proportion of the phenotypic variance explained by the variant; ↓, decreased
All alleles were on reverse stand. HDL-C and ApoA-I variables were in mg/dL and Box-Cox transformed
Results were adjusted for covariates: sex, age, waist, current smoking (yes/no), and minutes of walking or biking to work each day (jobmin) for HDL-C; sex and age for ApoA-I.
Detailed single-site association results are shown in Additional file 14: Table S9 and Additional file 15: Table S10.
a, cRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
bdbSNP build 139: GRCh37.p10. All 10 novel variants identified in this study have been submitted to dbSNP (batch ID: SCARB1_AB): http://​www.​ncbi.​nlm.​nih.​gov/​SNP/​snp_​viewTable.​cgi?​handle=​KAMBOH
dThe RegulomeDB (version 1.0) scoring scheme and functional assignments are described in Additional file 17: Table S12 and Additional file 18: Table S13, respectively

Haplotype association analyses

The 4-SNP sliding window haplotype analyses revealed associations of 32 haplotype windows with HDL-C and/or ApoA-I (global P < 0.05; Table 7; see results for each trait in Additional file 16: Table S11), of which five (windows #47, #72, #111, #112, and #123) were associated with both.
Table 7
Significant haplotype association (global P < 0.05) of 136 SCARB1 genotyped variants with HDL-C and ApoA-I
Wind #
SNP 1 - SNP 4
Chr12 Positionc
Location
Amino Acid Change
Major/ Minor Alleles
MAF
β
Single-site P
Haplotype #
Hap Seq
Hap Freq
Coef
SE
t.stat
Hap P
Global P
(SNP Namea-SNP IDb/Chr12 Posc)
HDL-C
               
39
p41632-rs6488943
125307888
Intron 1
 
A/C
0.2954
−0.2195
0.3244
h39.1
CCGG
0.0315
0.4305
0.6471
0.6654
0.5060
0.0207
39
p42467-rs11057830
125307053
Intron 1
 
C/T
0.1523
−0.2810
0.3015
h39.2
CCGA
0.2508
−0.5918
0.2725
−2.1713
0.0302
 
39
p45516-rs1902569
125304004
Intron 1
 
G/A
0.1544
0.5447
0.0386
h39.3
ATGA
0.1414
−0.6841
0.3192
−2.1433
0.0324
 
39
p45627-rs12297372
125303893
Intron 1
 
A/G
0.0487
−0.0483
0.9156
h39.4
ACAA
0.1514
0.1991
0.2963
0.6720
0.5018
 
         
h39.5
ACGG
0.0155
−1.7144
0.9080
−1.8880
0.0594
 
         
h39.6 (rare)
****
0.0148
2.5239
1.0902
2.3151
0.0209
 
         
hap.base39
ACGA
0.3946
NA
NA
NA
NA
 
44
p48969-rs2343394
125300551
Intron 2
 
C/T
0.1898
0.3165
0.1788
h44.1
TCWG
0.1855
0.5292
0.2523
2.0977
0.0363
0.0271
44
p49537-rs7305310
125299983
Intron 2
 
C/T
0.1007
−0.3396
0.2566
h44.2
CCDG
0.2244
0.4676
0.2429
1.9249
0.0546
 
44
p49570delC-rs145376237
125299950
Intron 2
 
W/D
0.2276
0.3121
0.1773
h44.3
CCWG
0.0446
1.0491
0.4882
2.1489
0.0320
 
44
p49690-rs4765615
125299830
Intron 2
 
G/A
0.4426
−0.4646
0.0130
h44.4
CTWG
0.1018
−0.1197
0.3121
−0.3835
0.7015
 
         
h44.5 (rare)
****
0.0089
−0.9887
1.0998
−0.8990
0.3689
 
         
hap.base44
CCWA
0.4348
NA
NA
NA
NA
 
45
p49537-rs7305310
125299983
Intron 2
 
C/T
0.1007
−0.3396
0.2566
h45.1
CDGC
0.2282
0.4661
0.2393
1.9473
0.0519
0.0155
45
p49570delC-rs145376237
125299950
Intron 2
 
W/D
0.2276
0.3121
0.1773
h45.2
CWGC
0.2302
0.6926
0.2376
2.9146
0.0037
 
45
p49690-rs4765615
125299830
Intron 2
 
G/A
0.4426
−0.4646
0.0130
h45.3
TWGC
0.1020
−0.0653
0.3085
−0.2115
0.8325
 
45
p49759-rs146272788
125299761
Intron 2
 
C/T
0.0020
2.5988
0.2219
h45.4 (rare)
****
0.0030
2.0667
2.0848
0.9913
0.3219
 
         
hap.base45
CWAC
0.4366
NA
NA
NA
NA
 
46
p49570delC-rs145376237
125299950
Intron 2
 
W/D
0.2276
0.3121
0.1773
h46.1
DGCG
0.2228
0.4373
0.2413
1.8123
0.0703
0.0278
46
p49690-rs4765615
125299830
Intron 2
 
G/A
0.4426
−0.4646
0.0130
h46.2
WGCG
0.3311
0.4910
0.2105
2.3326
0.0199
 
46
p49759-rs146272788
125299761
Intron 2
 
C/T
0.0020
2.5988
0.2219
h46.3 (rare)
****
0.0080
1.9089
1.0569
1.8061
0.0713
 
46
p49978-rs5891
125299542
Exon 3
Val135lle
G/A
0.0058
1.3374
0.2791
hap.base46
WACG
0.4381
NA
NA
NA
NA
 
47
p49690-rs4765615
125299830
Intron 2
 
G/A
0.4426
−0.4646
0.0130
h47.1
ACGG
0.4346
−0.4701
0.1824
−2.5777
0.0101
0.0079
47
p49759-rs146272788
125299761
Intron 2
 
C/T
0.0020
2.5988
0.2219
h47.2 (rare)
****
0.0101
1.4683
0.9441
1.5552
0.1203
 
47
p49978-rs5891
125299542
Exon 3
Val135lle
G/A
0.0058
1.3374
0.2791
hap.base47
GCGG
0.5553
NA
NA
NA
NA
 
47
p50024-rs368880622
125299496
Intron 3
 
G/T
0.0026
1.6506
0.4362
        
63
p53359-rs112371713
125296161
Intron 5
 
G/A
0.1243
0.4193
0.1651
h63.1
ACGA
0.1237
0.3273
0.3011
1.0871
0.2773
0.0394
63
p53372-rs115604379
125296148
Intron 5
 
C/T
0.0066
3.0372
0.0093
h63.2
GCGG
0.0427
−0.1630
0.4738
−0.3441
0.7309
 
63
p53790-rs4765614
125295730
Intron 5
 
G/A
0.2653
−0.3281
0.1218
h63.3
GCAA
0.2678
−0.2408
0.2194
−1.0975
0.2728
 
63
p54445-rs60910935
125295075
Intron 5
 
A/G
0.0418
−0.1247
0.7963
h63.4 (rare)
****
0.0068
2.9428
1.2559
2.3432
0.0194
 
         
hap.base63
GCGA
0.5591
NA
NA
NA
NA
 
72
p55923-rs838900
125293597
Intron 6
 
G/A
0.3921
0.2787
0.1549
h72.1
ACAG
0.2725
0.4039
0.2520
1.6024
0.1095
0.0315
72
p55963-rs7134858
125293557
Intron 6
 
C/T
0.1560
0.4418
0.0799
h72.2
ACGG
0.1086
−0.1763
0.3929
−0.4486
0.6538
 
72
p56845-rs838902
125292675
Intron 6
 
A/G
0.4249
−0.0786
0.6801
h72.3
GTAG
0.1284
0.3877
0.3170
1.2228
0.2218
 
72
p57004-rs187562853
125292516
Intron 6
 
G/A
0.0098
1.6474
0.0872
h72.4
GTGG
0.0297
0.8722
0.6546
1.3323
0.1832
 
         
h72.5
GCAG
0.1716
−0.4913
0.3344
−1.4690
0.1422
 
         
h72.6 (rare)
****
0.0101
1.7731
0.9506
1.8653
0.0625
 
         
hap.base72
GCGG
0.2791
NA
NA
NA
NA
 
111
p78747-rs2293440
125270773
Intron 11
T/C
0.4112
−0.1684
0.3806
h111.1
CCCG
0.0306
0.7458
0.5599
1.3321
0.1832
0.0040
111
p78791-rs75289200
125270729
Intron 11
T/C
0.0321
0.7037
0.2078
h111.2
CTGC
0.1534
−0.5556
0.2830
−1.9629
0.0500
 
111
p79721-rs838896
125269799
Intron 11
G/C
0.3104
0.3565
0.0817
h111.3
CTCG
0.2269
0.1234
0.2391
0.5162
0.6058
 
111
p79828-rs838895
125269692
Intron 11
C/G
0.3171
0.4961
0.0162
h111.4
TTGG
0.0180
2.3022
0.7617
3.0225
0.0026
 
         
h111.5
TTCG
0.0439
0.5755
0.5317
1.0823
0.2795
 
         
h111.6
TTCC
0.0145
0.9606
0.8068
1.1907
0.2342
 
         
h111.7 (rare)
****
0.0033
0.7755
2.1917
0.3538
0.7236
 
         
hap.base111
TTGC
0.5094
NA
NA
NA
NA
 
112
p78791-rs75289200
125270729
Intron 11
T/C
0.0321
0.7037
0.2078
h112.1
CCGA
0.0311
0.7440
0.5559
1.3384
0.1812
0.0055
112
p79721-rs838896
125269799
Intron 11
G/C
0.3104
0.3565
0.0817
h112.2
TGGA
0.0171
2.3734
0.7506
3.1621
0.0016
 
112
p79828-rs838895
125269692
Intron 11
C/G
0.3171
0.4961
0.0162
h112.3
TGCA
0.0112
−1.2672
0.9074
−1.3964
0.1630
 
112
p80045-rs838893
125269475
Intron 11
G/A
0.3244
0.3127
0.1224
h112.4
TCGA
0.2704
0.2488
0.2164
1.1501
0.2505
 
         
h112.5
TCCG
0.0139
1.1219
0.8186
1.3704
0.1710
 
         
h112.6 (rare)
****
0.0068
1.6244
1.2691
1.2800
0.2009
 
         
hap.base112
TGCG
0.6493
NA
NA
NA
NA
 
113
p79721-rs838896
125269799
Intron 11
G/C
0.3104
0.3565
0.0817
h113.1
GGAG
0.0171
2.3949
0.7509
3.1895
0.0015
0.0048
113
p79828-rs838895
125269692
Intron 11
C/G
0.3171
0.4961
0.0162
h113.2
GCAG
0.0120
−1.1963
0.8784
−1.3619
0.1736
 
113
p80045-rs838893
125269475
Intron 11
G/A
0.3244
0.3127
0.1224
h113.3
CGAG
0.2996
0.3071
0.2067
1.4861
0.1377
 
113
p81863-rs185445624
125267657
Intron 11
G/A
0.0020
−0.9612
0.6510
h113.4
CCGG
0.0139
1.1509
0.8168
1.4090
0.1592
 
         
h113.5 (rare)
****
0.0081
1.1622
1.0896
1.0666
0.2865
 
         
hap.base113
GCGG
0.6493
NA
NA
NA
NA
 
114
p79828-rs838895
125269692
Intron 11
C/G
0.3171
0.4961
0.0162
h114.1
GAGC
0.3173
0.3755
0.2023
1.8559
0.0639
0.0447
114
p80045-rs838893
125269475
Intron 11
G/A
0.3244
0.3127
0.1224
h114.2
CGGT
0.0306
−0.8840
0.5344
−1.6541
0.0985
 
114
p81863-rs185445624
125267657
Intron 11
G/A
0.0020
−0.9612
0.6510
h114.3
CAGC
0.0111
−1.2612
0.9170
−1.3754
0.1694
 
114
p82019-rs838890
125267501
Intron 11
C/T
0.0320
−1.0051
0.0618
h114.4 (rare)
****
0.0086
0.9073
1.0936
0.8296
0.4070
 
         
hap.base114
CGGC
0.6325
NA
NA
NA
NA
 
117
p82019-rs838890
125267501
Intron 11
C/T
0.0320
−1.0051
0.0618
h117.1
CCAG
0.0238
−1.0596
0.6275
−1.6884
0.0917
0.0433
117
p82264-rs141545424
125267256
Exon 12
Gly501Gly
C/A
0.0007
11.5850
0.0016
h117.2
TCGG
0.0311
−0.9657
0.5302
−1.8215
0.0689
 
117
p82340-rs77483223
125267180
Intron 12
G/A
0.0231
−1.0458
0.1012
h117.3 (rare)
****
0.0067
1.6191
1.2946
1.2507
0.2114
 
117
p82369-rs75446635
125267151
Intron 12
G/A
0.0059
0.5896
0.6322
hap.base117
CCGG
0.9383
NA
NA
NA
NA
 
118
p82264-rs141545424
125267256
Exon 12
Gly501Gly
C/A
0.0007
11.5850
0.0016
h118.1
CAGT
0.0238
−1.0621
0.6274
−1.6929
0.0909
0.0375
118
p82340-rs77483223
125267180
Intron 12
G/A
0.0231
−1.0458
0.1012
h118.2
CGGC
0.0307
−1.0134
0.5313
−1.9073
0.0569
 
118
p82369-rs75446635
125267151
Intron 12
G/A
0.0059
0.5896
0.6322
h118.3 (rare)
****
0.0067
1.6189
1.2762
1.2685
0.2050
 
118
p82434-rs838889
125267086
Intron 12
T/C
0.0315
−1.0389
0.0526
hap.base118
CGGT
0.9387
NA
NA
NA
NA
 
123
p83884-rs701106
125265636
Intron 12
C/T
0.2597
0.2471
0.2601
h123.1
TCCT
0.0256
−1.2114
0.6218
−1.9483
0.0518
0.0386
123
p86245-rs188375019
125263275
Intron 12
C/T
0.0341
0.7447
0.1639
h123.2
TCCG
0.2327
0.5306
0.2403
2.2085
0.0275
 
123
p86276-rs747155
125263244
Intron 12
C/T
0.1495
0.2793
0.2980
h123.3
CCTG
0.1476
0.3955
0.2811
1.4071
0.1598
 
123
p86316-rs701104
125263204
Intron 12
G/T
0.0487
−0.9838
0.0286
h123.4
CCCT
0.0233
−0.2329
0.7038
−0.3309
0.7408
 
         
h123.5
CTCG
0.0330
0.8888
0.5458
1.6283
0.1039
 
         
h123.6 (rare)
****
0.0029
1.1191
3.2961
0.3395
0.7343
 
         
hap.base123
CCCG
0.5348
NA
NA
NA
NA
 
124
p86245-rs188375019
125263275
Intron 12
C/T
0.0341
0.7447
0.1639
h124.1
CTGA
0.1476
0.1530
0.2692
0.5683
0.5700
0.0368
124
p86276-rs747155
125263244
Intron 12
C/T
0.1495
0.2793
0.2980
h124.2
CCTG
0.0465
−1.1879
0.4699
−2.5281
0.0117
 
124
p86316-rs701104
125263204
Intron 12
G/T
0.0487
−0.9838
0.0286
h124.3
CCGA
0.0915
0.1086
0.3376
0.3218
0.7477
 
124
p86481-rs701103
125263039
Exon 13-3' UTR
Gly499Arg (isoform 2)
G/A
0.2451
0.1642
0.4492
h124.4
TCGG
0.0337
0.7348
0.5362
1.3702
0.1710
 
         
h124.5 (rare)
****
0.0045
4.0859
2.1131
1.9336
0.0535
 
         
hap.base124
CCGG
0.6761
NA
NA
NA
NA
 
125
p86276-rs747155
125263244
Intron 12
C/T
0.1495
0.2793
0.2980
h125.1
TGAA
0.1476
0.1543
0.2689
0.5737
0.5664
0.0307
125
p86316-rs701104
125263204
Intron 12
G/T
0.0487
−0.9838
0.0286
h125.2
CTGA
0.0465
−1.1980
0.4691
−2.5535
0.0109
 
125
p86481-rs701103
125263039
Exon 13-l3' UTR
Gly499Arg (isoform 2)
G/A
0.2451
0.1642
0.4492
h125.3
CGAA
0.0915
0.1139
0.3375
0.3375
0.7359
 
125
p86967-rs187492239
125262553
Exon 13-3' UTR
 
A/G
0.0355
0.7743
0.1412
h125.4
CGGG
0.0352
0.7974
0.5241
1.5216
0.1285
 
         
h125.5 (rare)
****
0.0045
4.0989
2.1134
1.9394
0.0528
 
         
hap.base125
CGGA
0.6747
NA
NA
NA
NA
 
ApoA-I
               
47
p49690-rs4765615
125299830
Intron 2
 
G/A
0.4426
−0.9139
0.0480
h47.1
ACGG
0.4351
−0.8907
0.4584
−1.9432
0.0524
0.0343
47
p49759-rs146272788
125299761
Intron 2
 
C/T
0.0020
1.5883
0.7630
h47.2 (rare)
****
0.0106
3.5858
2.2998
1.5592
0.1194
 
47
p49978-rs5891
125299542
Exon 3
Val135lle
G/A
0.0058
5.6762
0.0628
hap.base47
GCGG
0.5543
NA
NA
NA
NA
 
47
p50024-rs368880622
125299496
Intron 3
 
G/T
0.0026
1.6012
0.7255
        
48
p49759-rs146272788
125299761
Intron 2
 
C/T
0.0020
1.5883
0.7630
h48.1
CGGT
0.0206
3.3555
1.6564
2.0258
0.0431
0.0293
48
p49978-rs5891
125299542
Exon 3
Val135lle
G/A
0.0058
5.6762
0.0628
h48.2 (rare)
****
0.0106
4.0750
2.3644
1.7235
0.0852
 
48
p50024-rs368880622
125299496
Intron 3
 
G/T
0.0026
1.6012
0.7255
hap.base48
CGGC
0.9688
NA
NA
NA
NA
 
48
p50118-rs58710319
125299402
Intron 3
 
C/T
0.0208
3.1376
0.0571
        
49
p49978-rs5891
125299542
Exon 3
Val135lle
G/A
0.0058
5.6762
0.0628
h49.1
GGTT
0.0213
3.3792
1.6416
2.0584
0.0399
0.0289
49
p50024-rs368880622
125299496
Intron 3
 
G/T
0.0026
1.6012
0.7255
h49.2
GGCC
0.1928
0.8864
0.5841
1.5176
0.1295
 
49
p50118-rs58710319
125299402
Intron 3
 
C/T
0.0208
3.1376
0.0571
h49.3 (rare)
****
0.0086
4.7388
3.1873
1.4868
0.1375
 
49
p50151-rs2278986
125299369
Intron 3
 
T/C
0.1933
0.8568
0.1419
hap.base49
GGCT
0.7774
NA
NA
NA
NA
 
70
p54627-chr12_125294893
125294893
Intron 5
 
G/C
0.0020
3.6910
0.4850
h70.1
GCAC
0.3873
0.8579
0.5090
1.6854
0.0923
0.0140
70
p54856-chr12_125294664
125294664
Intron 6
 
C/T
0.0007
−24.0757
0.0082
h70.2
GCGT
0.1568
2.0940
0.6700
3.1254
0.0018
 
70
p55923-rs838900
125293597
Intron 6
 
G/A
0.3921
0.3606
0.4549
h70.3 (rare)
****
0.0027
−2.5567
5.2200
−0.4898
0.6244
 
70
p55963-rs7134858
125293557
Intron 6
 
C/T
0.1560
1.7537
0.0052
hap.base70
GCGC
0.4532
NA
NA
NA
NA
 
71
p54856-chr12_125294664
125294664
Intron 6
 
C/T
0.0007
−24.0757
0.0082
h71.1
CACA
0.2736
0.7883
0.6210
1.2694
0.2047
0.0488
71
p55923-rs838900
125293597
Intron 6
 
G/A
0.3921
0.3606
0.4549
h71.2
CACG
0.1134
1.1284
0.9724
1.1604
0.2462
 
71
p55963-rs7134858
125293557
Intron 6
 
C/T
0.1560
1.7537
0.0052
h71.3
CGTA
0.1296
2.1103
0.7906
2.6691
0.0078
 
71
p56845-rs838902
125292675
Intron 6
 
A/G
0.4249
−0.3052
0.5129
h71.4
CGTG
0.0300
2.1358
1.6772
1.2734
0.2032
 
         
h71.5
CGCA
0.1706
−0.1013
0.8355
−0.1212
0.9035
 
         
hap.base71
CGCG
0.2822
NA
NA
NA
NA
 
72
p55923-rs838900
125293597
Intron 6
 
G/A
0.3921
0.3606
0.4549
h72.1
ACAG
0.2733
0.7471
0.6218
1.2016
0.2299
0.0463
72
p55963-rs7134858
125293557
Intron 6
 
C/T
0.1560
1.7537
0.0052
h72.2
ACGG
0.1057
0.7094
0.9850
0.7202
0.4716
 
72
p56845-rs838902
125292675
Intron 6
 
A/G
0.4249
−0.3052
0.5129
h72.3
GTAG
0.1297
2.0304
0.7898
2.5707
0.0103
 
72
p57004-rs187562853
125292516
Intron 6
 
G/A
0.0098
3.2853
0.1690
h72.4
GTGG
0.0299
2.1741
1.6857
1.2897
0.1975
 
         
h72.5
GCAG
0.1712
−0.3122
0.8263
−0.3778
0.7057
 
         
h72.6 (rare)
****
0.0100
3.9105
2.4373
1.6044
0.1090
 
         
hap.base72
GCGG
0.2801
NA
NA
NA
NA
 
78
p57592-rs838903
125291928
Intron 7
 
G/A
0.3763
−0.7661
0.1109
h78.1
GCAC
0.0559
1.8913
1.0469
1.8067
0.0712
0.0326
78
p58514-rs838905
125291006
Intron 7
 
T/C
0.4329
−0.4213
0.3646
h78.2
GTAC
0.0367
1.0784
1.2814
0.8415
0.4003
 
78
p58664-rs865716
125290856
Intron 7
 
A/T
0.2708
0.5369
0.3008
h78.3
GTAT
0.2557
0.3365
0.6035
0.5576
0.5773
 
78
p60255-rs3782287
125289265
Intron 7
 
C/T
0.2831
0.3715
0.4856
h78.4
GTTC
0.2463
0.4962
0.5864
0.8462
0.3977
 
         
h78.5
GTTT
0.0238
5.5715
1.6643
3.3477
0.0009
 
         
h78.6 (rare)
****
0.0075
0.6333
2.9303
0.2161
0.8289
 
         
hap.base78
ACAC
0.3740
NA
NA
NA
NA
 
79
p58514-rs838905
125291006
Intron 7
 
T/C
0.4329
−0.4213
0.3646
h79.1
CACT
0.1270
0.3290
0.8318
0.3955
0.6926
0.0256
79
p58664-rs865716
125290856
Intron 7
 
A/T
0.2708
0.5369
0.3008
h79.2
TACC
0.0379
0.6384
1.2921
0.4941
0.6214
 
79
p60255-rs3782287
125289265
Intron 7
 
C/T
0.2831
0.3715
0.4856
h79.3
TATC
0.2563
0.1851
0.6336
0.2921
0.7703
 
79
p61872-rs838909
125287648
Intron 7
 
C/T
0.2199
0.9232
0.1056
h79.4
TTCC
0.1587
−0.6020
0.7769
−0.7749
0.4386
 
         
h79.5
TTCT
0.0880
1.8902
0.8856
2.1342
0.0331
 
         
h79.6
TTTC
0.0238
5.1755
1.6851
3.0714
0.0022
 
         
h79.7 (rare)
****
0.0059
1.2466
3.1079
0.4011
0.6885
 
         
hap.base79
CACC
0.3024
NA
NA
NA
NA
 
80
p58664-rs865716
125290856
Intron 7
 
A/T
0.2708
0.5369
0.3008
h80.1
ACCG
0.0389
−0.3521
1.2793
−0.2753
0.7832
0.0030
80
p60255-rs3782287
125289265
Intron 7
 
C/T
0.2831
0.3715
0.4856
h80.2
ACTG
0.1274
−0.1816
0.7909
−0.2297
0.8184
 
80
p61872-rs838909
125287648
Intron 7
 
C/T
0.2199
0.9232
0.1056
h80.3
ATCG
0.2611
−0.1400
0.6323
−0.2213
0.8249
 
80
p62140-rs838910
125287380
Intron 7
 
G/T
0.3047
−0.0755
0.8821
h80.4
TCCG
0.1549
−1.3614
0.7489
−1.8178
0.0695
 
         
h80.5
TCTG
0.0901
2.0511
0.8921
2.2992
0.0218
 
         
h80.6
TTCG
0.0224
4.7307
1.8842
2.5107
0.0123
 
         
h80.7 (rare)
****
0.0083
3.1429
3.4362
0.9147
0.3607
 
         
hap.base80
ACCT
0.2970
NA
NA
NA
NA
 
81
p60255-rs3782287
125289265
Intron 7
 
C/T
0.2831
0.3715
0.4856
h81.1
CCGC
0.1740
−1.5355
0.7276
−2.1103
0.0352
0.0050
81
p61872-rs838909
125287648
Intron 7
 
C/T
0.2199
0.9232
0.1056
h81.2
CCGT
0.0215
−0.5623
1.6155
−0.3481
0.7279
 
81
p62140-rs838910
125287380
Intron 7
 
G/T
0.3047
−0.0755
0.8821
h81.3
CCTC
0.0352
3.6130
1.4518
2.4886
0.0130
 
81
p62409-rs838911
125287111
Intron 7
 
C/T
0.4211
−0.6245
0.1888
h81.4
CCTT
0.2683
−0.7498
0.6337
−1.1832
0.2371
 
         
h81.5
CTGC
0.0886
1.4787
0.9259
1.5970
0.1107
 
         
h81.6
CTGT
0.1287
−0.2477
0.7967
−0.3109
0.7560
 
         
h81.7 (rare)
****
0.0017
4.9120
8.4190
0.5834
0.5598
 
         
hap.base81
TCGC
0.2819
NA
NA
NA
NA
 
82
p61872-rs838909
125287648
Intron 7
 
C/T
0.2199
0.9232
0.1056
h82.1
CGTT
0.0214
0.3707
1.6055
0.2309
0.8175
0.0137
82
p62140-rs838910
125287380
Intron 7
 
G/T
0.3047
−0.0755
0.8821
h82.2
CTCT
0.0364
3.8641
1.3703
2.8199
0.0049
 
82
p62409-rs838911
125287111
Intron 7
 
C/T
0.4211
−0.6245
0.1888
h82.3
CTTT
0.2692
−0.2007
0.5674
−0.3537
0.7237
 
82
p62615-rs7138386
125286905
Intron 7
 
T/C
0.1137
−0.6495
0.3851
h82.4
TGCT
0.0869
2.1488
0.8777
2.4481
0.0146
 
         
h82.5
TGTT
0.0179
3.0085
1.9599
1.5351
0.1252
 
         
h82.6
TGTC
0.1116
−0.1961
0.7815
−0.2510
0.8019
 
         
h82.7 (rare)
****
0.0020
−4.7635
9.0097
−0.5287
0.5972
 
         
hap.base82
CGCT
0.4546
NA
NA
NA
NA
 
83
p62140-rs838910
125287380
Intron 7
 
G/T
0.3047
−0.0755
0.8821
h83.1
GCTA
0.0854
2.0624
0.8886
2.3211
0.0205
0.0187
83
p62409-rs838911
125287111
Intron 7
 
C/T
0.4211
−0.6245
0.1888
h83.2
GTTG
0.0389
1.3667
1.2527
1.0910
0.2756
 
83
p62615-rs7138386
125286905
Intron 7
 
T/C
0.1137
−0.6495
0.3851
h83.3
GTCG
0.1129
−0.3143
0.7855
−0.4002
0.6891
 
83
p63483-rs838912
125286037
Intron 7
 
G/A
0.0867
1.8700
0.0234
h83.4
TCTG
0.0368
3.8488
1.3757
2.7977
0.0053
 
         
h83.5
TTTG
0.2675
−0.1681
0.5759
−0.2918
0.7705
 
         
h83.6 (rare)
****
0.0031
−0.5696
5.5038
−0.1035
0.9176
 
         
hap.base83
GCTG
0.4554
NA
NA
NA
NA
 
86
p63483-rs838912
125286037
Intron 7
 
G/A
0.0867
1.8700
0.0234
h86.1
ATCG
0.0871
2.5431
0.8550
2.9743
0.0030
0.0290
86
p64772-rs5888
125284748
Exon 8
Ala350Ala
C/T
0.0961
2.0962
0.0080
h86.2
GCAG
0.1457
0.3613
0.6957
0.5194
0.6037
 
86
p64923-rs838915
125284597
Intron 8
 
C/A
0.1435
−0.3684
0.5766
h86.3
GCCA
0.2814
1.0972
0.5782
1.8976
0.0581
 
86
p65999-rs12819677
125283521
Intron 8
 
G/A
0.2813
0.6769
0.2052
h86.4
GTCG
0.0116
1.6563
2.1240
0.7798
0.4357
 
         
hap.base86
GCCG
0.4736
NA
NA
NA
NA
 
95
p71867-rs7954022
125277653
Intron 9
 
C/T
0.1323
0.8502
0.2241
h95.1
TACT
0.1311
0.8202
0.7688
1.0669
0.2864
0.0131
95
p72197-rs838861
125277323
Intron 9
 
A/G
0.3777
−0.1507
0.7464
h95.2
CACC
0.0507
0.3188
1.2809
0.2489
0.8035
 
95
p72777-rs838862
125276743
Intron 9
 
C/T
0.0887
0.7012
0.3938
h95.3
CGCT
0.1846
−0.7832
0.6960
−1.1253
0.2608
 
95
p75766-rs838866
125273754
Intron 9
 
T/C
0.2116
−0.0497
0.9306
h95.4
CGCC
0.1022
0.7176
0.8581
0.8362
0.4033
 
         
h95.5
CGTT
0.0324
4.7525
1.5071
3.1534
0.0017
 
         
h95.6
CGTC
0.0582
−1.3987
1.0854
−1.2887
0.1979
 
         
h95.7 (rare)
****
0.0009
18.2723
NA
NA
NA
 
         
hap.base95
CACT
0.4399
NA
NA
NA
NA
 
96
p72197-rs838861
125277323
Intron 9
 
A/G
0.3777
−0.1507
0.7464
h96.1
ACCT
0.0443
1.0796
1.2832
0.8413
0.4004
0.0484
96
p72777-rs838862
125276743
Intron 9
 
C/T
0.0887
0.7012
0.3938
h96.2
GCTC
0.1849
−0.7979
0.6554
−1.2176
0.2238
 
96
p75766-rs838866
125273754
Intron 9
 
T/C
0.2116
−0.0497
0.9306
h96.3
GCCT
0.0727
−0.3866
0.9478
−0.4079
0.6835
 
96
p75778-rs7301120
125273742
Intron 9
 
C/T
0.1135
0.3767
0.6174
h96.4
GCCC
0.0282
1.9372
1.6107
1.2027
0.2295
 
         
h96.5
GTTC
0.0319
4.2363
1.4400
2.9419
0.0034
 
         
h96.6
GTCC
0.0595
−1.3421
1.0101
−1.3286
0.1844
 
         
h96.7 (rare)
****
0.0058
−3.2342
3.8265
−0.8452
0.3983
 
         
hap.base96
ACTC
0.5728
NA
NA
NA
NA
 
97
p72777-rs838862
125276743
Intron 9
 
C/T
0.0887
0.7012
0.3938
h97.1
CTCT
0.1997
−1.0781
0.6237
−1.7287
0.0843
0.0098
97
p75766-rs838866
125273754
Intron 9
 
T/C
0.2116
−0.0497
0.9306
h97.2
CCTT
0.1141
0.2005
0.7597
0.2639
0.7919
 
97
p75778-rs7301120
125273742
Intron 9
 
C/T
0.1135
0.3767
0.6174
h97.3
CCCT
0.0336
0.7963
1.3894
0.5731
0.5667
 
97
p76757-rs9919713
125272763
Intron 9
 
A/T
0.4390
−0.1860
0.6921
h97.4
TTCT
0.0301
4.3773
1.4494
3.0201
0.0026
 
         
h97.5
TCCT
0.0588
−1.4125
1.0117
−1.3961
0.1631
 
         
h97.6 (rare)
****
0.0050
−6.5869
3.6167
−1.8213
0.0690
 
         
hap.base97
CTCA
0.5587
NA
NA
NA
NA
 
109
p78402-rs838898
125271118
Intron 10
G/A
0.0714
−0.9806
0.2889
h109.1
AGCT
0.0288
−1.4134
1.6436
−0.8600
0.3901
0.0195
109
p78430-rs838897
125271090
Intron 10
C/G
0.3830
−0.1887
0.6887
h109.2
AGTT
0.0451
−1.5093
1.2496
−1.2078
0.2275
 
109
p78747-rs2293440
125270773
Intron 11
T/C
0.4112
−0.2984
0.5352
h109.3
GGCC
0.0317
3.0784
1.3763
2.2366
0.0256
 
109
p78791-rs75289200
125270729
Intron 11
T/C
0.0321
3.6568
0.0086
h109.4
GGCT
0.1633
−0.4126
0.6911
−0.5971
0.5506
 
         
h109.5
GGTT
0.1088
−1.6537
0.8639
−1.9142
0.0560
 
         
h109.6
GCCT
0.1851
−1.8104
0.7168
−2.5256
0.0118
 
         
hap.base109
GCTT
0.4363
NA
NA
NA
NA
 
110
p78430-rs838897
125271090
Intron 10
C/G
0.3830
−0.1887
0.6887
h110.1
GCCC
0.0305
3.0357
1.4224
2.1342
0.0331
0.0012
110
p78747-rs2293440
125270773
Intron 11
T/C
0.4112
−0.2984
0.5352
h110.2
GCTG
0.0189
−3.0973
2.2833
−1.3565
0.1753
 
110
p78791-rs75289200
125270729
Intron 11
T/C
0.0321
3.6568
0.0086
h110.3
GCTC
0.1696
−0.0290
0.6830
−0.0424
0.9662
 
110
p79721-rs838896
125269799
Intron 11
G/C
0.3104
1.1147
0.0278
h110.4
GTTG
0.1400
−2.3158
0.7741
−2.9914
0.0029
 
         
h110.5
GTTC
0.0189
1.3536
2.3385
0.5788
0.5629
 
         
h110.6
CCTG
0.1379
−2.4014
0.7888
−3.0443
0.0024
 
         
h110.7
CCTC
0.0514
−0.8677
1.2628
−0.6871
0.4922
 
         
h110.8
CTTC
0.0398
−0.1892
1.4963
−0.1264
0.8994
 
         
h110.9 (rare)
****
0.0012
7.8235
8.0313
0.9741
0.3303
 
         
hap.base110
CTTG
0.3918
NA
NA
NA
NA
 
111
p78747-rs2293440
125270773
Intron 11
T/C
0.4112
−0.2984
0.5352
h111.1
CCCG
0.0305
3.5704
1.4077
2.5364
0.0114
0.0038
111
p78791-rs75289200
125270729
Intron 11
T/C
0.0321
3.6568
0.0086
h111.2
CTGC
0.1514
−2.1697
0.7058
−3.0742
0.0022
 
111
p79721-rs838896
125269799
Intron 11
G/C
0.3104
1.1147
0.0278
h111.3
CTCG
0.2233
0.3086
0.5985
0.5157
0.6062
 
111
p79828-rs838895
125269692
Intron 11
C/G
0.3171
1.2206
0.0164
h111.4
TTGG
0.0173
1.0502
1.9388
0.5417
0.5882
 
         
h111.5
TTGC
0.0431
0.3464
1.3140
0.2637
0.7921
 
         
h111.6
TTCC
0.0150
0.6429
1.9745
0.3256
0.7448
 
         
h111.7 (rare)
****
0.0047
3.8853
4.0634
0.9562
0.3393
 
         
hap.base111
TTGC
0.5147
NA
NA
NA
NA
 
112
p78791-rs75289200
125270729
Intron 11
T/C
0.0321
3.6568
0.0086
h112.1
CCGA
0.0309
3.7315
1.3947
2.6755
0.0076
0.0412
112
p79721-rs838896
125269799
Intron 11
G/C
0.3104
1.1147
0.0278
h112.2
TGGA
0.0179
1.8646
1.8467
1.0097
0.3130
 
112
p79828-rs838895
125269692
Intron 11
C/G
0.3171
1.2206
0.0164
h112.3
TGCA
0.0109
−3.3720
2.3180
−1.4547
0.1462
 
112
p80045-rs838893
125269475
Intron 11
G/A
0.3244
0.8859
0.0774
h112.4
TCGA
0.2661
0.7087
0.5428
1.3056
0.1921
 
         
h112.5
TCCG
0.0144
1.0316
2.0147
0.5120
0.6088
 
         
h112.6 (rare)
****
0.0068
2.8715
3.2105
0.8944
0.3714
 
         
hap.base112
TGCG
0.6530
NA
NA
NA
NA
 
123
p83884-rs701106
125265636
Intron 12
C/T
0.2597
1.2967
0.0156
h123.1
TCCT
0.0235
−1.7638
1.7393
−1.0141
0.3109
0.0468
123
p86245-rs188375019
125263275
Intron 12
C/T
0.0341
1.8399
0.1674
h123.2
TCCG
0.2351
1.8726
0.6006
3.1179
0.0019
 
123
p86276-rs747155
125263244
Intron 12
C/T
0.1495
−0.2164
0.7433
h123.3
CCTG
0.1485
0.3912
0.6981
0.5604
0.5754
 
123
p86316-rs701104
125263204
Intron 12
G/T
0.0487
−0.6627
0.5579
h123.4
CCCT
0.0238
1.6476
1.7546
0.9390
0.3480
 
         
h123.5
CTCG
0.0328
2.3144
1.3655
1.6949
0.0905
 
         
h123.6 (rare)
****
0.0024
1.2704
8.8153
0.1441
0.8855
 
         
hap.base123
CCCG
0.5340
NA
NA
NA
NA
 
ApoA-I apolipoprotein A-I, Coef coefficient, del/D deletion, HDL-C high-density lipoprotein cholesterol, MAF minor allele frequency, NA not analyzed, SE standard error, SNP single nucleotide polymorphism, UTR untranslated region, W wild type allele for deletion on RefSeq
All alleles on the reverse strand. HDL-C and ApoA-I variables were in mg/dL and Box-Cox transformed
Results were adjusted for covariates: sex, age, waist, current smoking (yes/no), and minutes of daily walking or biking to work (jobmin) for HDL-C; sex and age for ApoA-I
SNP 1-SNP 4 for each window are shown as “SNP name-SNP ID/Chromosome 12 Position (for novel variants)”. All 10 novel variants identified in this study have been submitted to dbSNP database (batch ID: SCARB1_AB): http://​www.​ncbi.​nlm.​nih.​gov/​SNP/​snp_​viewTable.​cgi?​handle=​KAMBOH.
Nominally significant P-values (P < 0.05) for SNPs with MAF ≥5 % in single-site analysis are shown in bold
Haplotype sequences corresponding to SNP 1-SNP 4 in the 5′ to 3′ direction, respectively
Haplotype association results for all haplotype windows are shown in Additional file 16: Table S11, see haplotype association plots in Fig. 3
a, cRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
bdbSNP build 139: GRCh37.p10
Overall, a total of 21 haplotype windows showed significant associations with ApoA-I, of which 10 contained seven variants associated with ApoA-I in single-site analysis. Haplotype window #110 spanning introns 10–11 showed the best association signal (global P = 0.0012) and contained the rs838896 variant with a nominal evidence of association with ApoA-I (P = 0.0278) in single-site analysis.
A total of 16 haplotype windows yielded significant associations with HDL-C, of which seven contained three HDL-C-associated variants detected in single-site analysis. The most significant association was found with window #111 (global P = 0.0040) spanning intron 11, which contained the rs838895 variant nominally associated with HDL-C (P = 0.0162) in single-site analysis.
We observed nine regions (5 regions for ApoA-I and 4 regions for HDL-C) harboring consecutive significant haplotype windows (global P < 0.05; ranging from 2 to 6 windows per region; Table 8 and Fig. 3). Seven of those regions contained at least one of the six variants that exhibited nominal associations (P < 0.05) with HDL-C and/or ApoA-I (rs4765615, rs7134858, rs838912, rs838896, rs838895, and rs701106) in single-site analysis.
Table 8
Significantly associated haplotype regions (global P < 0.05) with HDL-C and ApoA-I
Region #
Trait
Consecutive Significantly Associated Haplotype Windows (global P < 0.05)
  
Haplotype Windows #
Chr12 Positiona
The Composited Variants in the Region, 5′ to 3′ Direction
Most Relevant Haplotype
(Location)
   
Start (5′)
End (3′)
SNP Nameb-SNP IDc/Chr12 Positiona
Major/Minor Alleles
Haplotype #
Sequence
β (Min-Max)
1
HDL-C
44
125300551
125299542
p48969-rs2343394
C/T
h44.3
CCWGCGG
0.4910–1.0491
 
45
(intron 2)
(exon 3)
p49537-rs7305310
C/T
h45.2
  
 
46
  
p49570delC-rs145376237
W/D
h46.2
  
 
47
  
p49690-rs4765615
G/A
hap.base47
  
    
p49759-rs146272788
C/T
hap.base44
CCWACGG
−0.4701
    
p49978-rs5891 (p.Val135Ile)
G/A
hap.base45
  
    
p50024-rs368880622
G/T
hap.base46
  
      
h47.1
  
2
ApoA-I
47
125299830
125299369
p49690-rs4765615
G/A
h47.1
ACGGTT
(−0.8907)–3.3792
 
48
(intron 2)
(intron 3)
p49759-rs146272788
C/T
h48.1
  
 
49
  
p49978-rs5891 (p.Val135Ile)
G/A
h49.1
  
    
p50024-rs368880622
G/T
   
    
p50118-rs58710319
C/T
   
    
p50151-rs2278986
T/C
   
3
ApoA-I
70
125294893
125292516
p54627-chr12_125294893
G/C
h70.2
GCGTAG
2.0304–2.1103
 
71
(intron 5)
(intron 6)
p54856-chr12_125294664d
C/T
h71.3
  
 
72
  
p55923-rs838900
G/A
h72.3
  
    
p55963-rs7134858
C/T
   
    
p56845-rs838902
A/G
   
    
p57004-rs187562853
G/A
   
4
ApoA-I
78
125291928
125286037
p57592-rs838903
G/A
h78.5
GTTTCGCTG
4.7307–5.5715
 
79
(intron 7)
(intron 7)
p58514-rs838905
T/C
h79.6
  
 
80
  
p58664-rs865716
A/T
h80.6
  
 
81
  
p60255-rs3782287
C/T
hap.base81
  
 
82
  
p61872-rs838909
C/T
hap.base82
  
 
83
  
p62140-rs838910
G/T
hap.base83
  
    
p62409-rs838911
C/T
h78.2
GTACCTCTG
0.6384–3.8641
    
p62615-rs7138386
T/C
h79.2
  
    
p63483-rs838912
G/A
hap.base80
  
      
h81.3
  
      
h82.2
  
      
h83.4
  
5
ApoA-I
95
125277653
125272763
p71867-rs7954022
C/T
h95.5
CGTTCT
4.2363-4.7525
 
96
(intron 9)
(intron 9)
p72197-rs838861
A/G
h96.5
  
 
97
  
p72777-rs838862
C/T
h97.4
  
    
p75766-rs838866
T/C
   
    
p75778-rs7301120
C/T
   
    
p76757-rs9919713
A/T
   
6*
ApoA-I
109
125271118
125269475
p78402-rs838898
G/A
h109.6
GCCTGCA
(−3.3720)─(−1.8104)
 
110
(intron 10)
(intron 11)
p78430-rs838897
C/G
h110.6
  
 
111
  
p78747-rs2293440
T/C
h111.2
  
 
112
  
p78791-rs75289200
T/C
h112.3
  
    
p79721-rs838896
G/C
   
    
p79828-rs838895
C/G
   
    
p80045-rs838893
G/A
   
7*
HDL-C
111
125270773
125267501
p78747-rs2293440
T/C
h111.4
TTGGAGC
0.3755–2.3949
 
112
(intron 11)
(intron 11)
p78791-rs75289200
T/C
h112.2
  
 
113
  
p79721-rs838896
G/C
h113.1
  
 
114
  
p79828-rs838895
C/G
h114.1
  
    
p80045-rs838893
G/A
   
    
p81863-rs185445624
G/A
   
    
p82019-rs838890
C/T
   
8
HDL-C
117
125267501
125267086
p82019-rs838890
C/T
h117.2
TCGGC
(−1.0134)–(−0.9657)
 
118
(intron 11)
(intron 12)
p82264-rs141545424 (p.Gly501Gly)d
C/A
h118.2
  
    
p82340-rs77483223
G/A
   
    
p82369-rs75446635
G/A
   
    
p82434-rs838889
T/C
   
9
HDL-C
123
125265636
125262553
p83884-rs701106
C/T
h123.4
CCCTGA
(−1.180)–(−0.2329)
 
124
(intron 12)
(exon 13-3′ UTR)
p86245-rs188375019
C/T
h124.2
  
 
125
  
p86276-rs747155
C/T
h125.2
  
    
p86316-rs701104
G/T
   
    
p86481-rs701103 (p.Gly499Arg, isoform 2)
G/A
   
    
p86967-rs187492239
A/G
   
ApoA-I apolipoprotein A-I, del/D deletion, HDL-C high-density lipoprotein cholesterol, SNP single nucleotide polymorphism, UTR untranslated region, W wild type allele for deletion on the RefSeq
All alleles on the reverse strand. HDL-C and ApoA-I variables were in mg/dL and Box-Cox transformed
Results were adjusted for covariates: sex, age, waist, current smoking (yes/no), and minutes of daily walking or biking to work (jobmin) for HDL-C; sex and age for ApoA-I
All nine haplotype regions are shown in Fig. 3
Detailed single-site associations are shown in Additional file 14: Table S9 and Additional file 15: Table S10
Detailed haplotype associations are shown in Table 7 and Additional file 16: Table S11
Regions with asterisk (*) indicate regions that included the haplotype window exhibiting the most significant association signal (the smallest global P) for the associated trait
For each region, the most significant associated haplotype window is shown in bold
SNPs with significant evidence of association with the same trait in both single-site and haplotype analyses (single-site P < 0.05 and global P < 0.05) are shown in bold
SNPs with significant evidence of association with different trait in single-site and haplotype analyses (single-site P < 0.05 and global P < 0.05) are shown in italic bold
a, bRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
cdbSNP build 139: GRCh37.p10
dRare variants of interest with potential effects on lipid traits; see details in Table 6

Functional evaluation of identified variants

In order to examine the possible regulatory function of all 153 SCARB1 variants (83 variants identified by our sequencing, 68 common HapMap tagSNPs [excluding rs4765180 due to genotyping failure; see Additional file 7: Table S5], and two relevant variants from the literature), we used the RegulomeDB database (version 1.0, Stanford University, http://​www.​regulomedb.​org/​) [48]. Although most of 153 variants (n = 132) revealed scores ranging from 1 to 6, only 11 were supported by strong evidence for regulatory function (scores of 1f -2b): one promoter, one 5′ UTR, two coding (rs2070242 [p.Ser4Ser] and rs10396208 [p.Cys21Cys]), five intronic, one 3′ UTR, and one 3′ flanking variants. Summary and detailed regulatory functions are provided in Additional file 17: Table S12 and Additional file 18: Table S13.
Of 10 variants associated with HDL-C and/or ApoA-I, only one ApoA-I associated variant (rs5888 [p.Ala350Ala] in exon 8) showed suggestive evidence of regulatory function with a score of 3a (Table 4).
Of 10 novel variants, one insertion variant (p1048insC/chr12:125348472) located in 5′ UTR-exon 1 had a strong potential for regulatory function with a score of 2a (Additional file 4: Table S4).

Comparison of SCARB1 single-site and haplotype association analysis results between African Blacks (this study) and US Non-Hispanic Whites (previous study [49])

We compared SCARB1 single-site and haplotype association results in African Blacks reported in this study to those in US Non-Hispanic Whites (NHWs) reported in our previously published study [49]. In the sequencing stage, the number of variants identified in African Blacks (n = 83) was greater than that in US NHWs (n = 44). Notably, most (~90 %) of the 22 sequence variants that were shared between the two populations differed in minor alleles and/or MAFs. Although our major findings included the associations with HDL-C and ApoA-I in African Blacks, we also sought to replicate four associations observed with ApoB levels in US NHWs [49] (Table 9); the association between rs11057820 and ApoB (P < 0.05) that we previously reported in US NHWs [49] was also observed in African Blacks (US NHWs [G allele]: β = 0.8700, P = 0.0436; African Blacks [A allele]: β = 1.8661, P = 0.0292). In addition, we observed two variants (rs4765615 and rs701106) exhibiting nominal associations (P < 0.05) in both populations, albeit with different lipid traits (US NHWs| rs4765615 [G allele]: β = 1.2493, P = 0.0059 for ApoB; rs701106 [T allele]: β = 0.0394, P = 0.0066 for HDL-C; African Blacks| rs4765615 [A allele]: β = −0.4646, P = 0.013 for HDL-C and β = −0.9139, P = 0.048 for ApoA-I; rs701106 [T allele]: β = 1.2967, P = 0.0156 for ApoA-I). Moreover, we noticed that two regions associated with HDL-C or ApoA-I (global P < 0.05; Table 10) in African Blacks spanning intron 2 and intron 3 overlapped with the ApoB-associated region (Region I in Fig. 4) previously reported in US NHWs [49]. Three haplotype regions associated with HDL-C (global P < 0.05) spanning intron 11 and exon 13-3′ UTR in African Blacks also overlapped with a large HDL-C-associated region (Region II in Fig. 4) previously reported in US NHWs [49].
Table 9
Results for 7 SCARB1 lipid-associated variants in US Non-Hispanic Whites (previous studya) and in African Blacks (this study)
SNP Nameb
SNP IDc
Chr12 Positiond
Location
RegDB Scoree
Alleles
US Non-Hispanic Whitesa (n = 623)
African Blacks (n = 788)
MA, MAF
β
P
MA, MAF
β
P
Other Assoc Trait(s)f
(SE)
(SE)
HDL-C
            
 p28957
rs11057844
125320563
Intron 1
5
G/A
A, 0.1839
−0.0395
0.0035
A, 0.2362
0.3671
0.1075
 
       
(0.0135)
  
(0.2278)
  
 p83884
rs701106
125265636
Intron 12
5
C/T
T, 0.1527
0.0394
0.0066
T, 0.2597
0.2471
0.2601
ApoA-I
       
(0.0144)
  
(0.2192)
  
 p87927
rs838880
125261593
3′ flanking
5
G/A
G, 0.3237
0.0257
0.0250
A, 0.2414
0.0198
0.9314
 
       
(0.0114)
  
(0.2302)
  
ApoB
            
 p48969
rs2343394
125300551
Intron 2
5
C/T
T, 0.2850
1.2544
0.0082
T, 0.1898
0.0383
0.9544
 
       
(0.4721)
  
(0.6696)
  
 p49690
rs4765615
125299830
Intron 2
5
G/A
G, 0.4497
1.2493
0.0059
A, 0.4426
0.7771
0.1338
HDL-C, ApoA-I
       
(0.4518)
  
(0.5178)
  
 p50151
rs2278986
125299369
Intron 3
5
T/C
C, 0.2890
1.1926
0.0122
C, 0.1933
0.1308
0.8434
 
       
(0.4735)
  
(0.6619)
  
 p52556
rs11057820
125296964
Intron 4
5
G/A
G, 0.4871
0.8700
0.0436
A, 0.1000
1.8661
0.0292
 
       
(0.4300)
  
(0.8542)
  
ApoB apolipoprotein B, HDL-C high-density lipoprotein cholesterol, MA minor allele, MAF minor allele frequency, RegDB RegulomeDB, SE standard error, SNP single nucleotide polymorphism
All alleles on the reverse strand
HDL-C and ApoB values for US Non-Hispanic Whites were in mg/dL, Box-Cox transformed, and adjusted for covariates: sex, age, body mass index, and smoking (past/current/never) for HDL-C; age and smoking for ApoB
HDL-C and ApoB values for African Blacks were in mg/dL, Box-Cox transformed, and adjusted for covariates: sex, age, waist, current smoking (yes/no), and daily walking or biking to work (jobmin) for HDL-C; body mass index and staff status for ApoB
Nominally significant P-values (P < 0.05) are shown in bold
aData from Niemsiri V, et al. Circ Cardiovasc Genet 2014, 7(6):838–847 (Ref [49])
b, dRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
cdbSNP version 139: GRCh37.p10
eThe RegulomeDB (version 1.0) scoring scheme is described at the footnote of Additional file 17: Table S12 or at http://​regulome.​stanford.​edu/​help
fEvidence is based on SNPs with MAF ≥5 % exhibiting nominally significant association with either HDL-C or ApoA-I (P < 0.05; Additional file 14: Table S9 and Additional file 15: Table S10) in single-site association results in the current study
Table 10
Significant lipid-associated regions (global P < 0.05) that were observed in US Non-Hispanic Whites (previous studya) and African Blacks (this study)
Region #
Consecutive Haplotype Windows in 623 US Non-Hispanic Whitesa
Consecutive Haplotype Windows in 788 African Blacks
 
Trait
Chr12 Positionb (Location)
Length (bp)
The Composited Variants, 5′ to 3′ Direction
Trait
Chr12 Positionb (Location)
Length (bp)
The Composited Variants, 5′ to 3′ Direction
  
Start (5′)
End (3′)
 
SNP Namec-SNP IDd
Major/Minor Alleles
 
Start (5′)
End (3′)
 
SNP Namec-SNP IDd
Major/Minor Alleles
I
ApoB
125300551
125299369
1183
p48969-rs2343394
C/T
HDL-C
125300551
125299496
1056
p48969-rs2343394
C/T
  
(intron 2)
(intron 3)
 
p49518-rs144194221
G/A
 
(intron 2)
(intron 3)
 
p49537-rs7305310
C/T
     
p49690-rs4765615
A/G
    
p49570delC-rs145376237
W/D
     
p49978-rs5891
G/A
    
p49690-rs4765615
G/A
(p.Val135Ile)
     
p50151-rs2278986
T/C
    
p49759-rs146272788
C/T
           
p49978-rs5891
G/A
(p.Val135Ile)
           
p50024-rs368880622
G/T
       
ApoA-I
125299830
125299369
462
p49690-rs4765615
G/A
        
(intron 2)
(intron 3)
 
p49759-rs146272788
C/T
           
p49978-rs5891
G/A
(p.Val135Ile)
           
p50024-rs368880622
G/T
           
p50118-rs58710319
C/T
           
p50151-rs2278986
T/C
II
HDL-C
125269692
125262516
7177
p79828-rs838895
C/G
HDL-C
125269692
125267501
2192
p79828-rs838895
C/G
  
(intron 11)
(exon 13- 3′ UTR)
 
p80045-rs838893
G/A
 
(intron 11)
(intron 11)
 
p80045-rs838893
G/A
     
p83088-rs797729
A/G
    
p81863-rs185445624
G/A
     
p83884-rs701106
C/T
    
p82019-rs838890
C/T
     
p86436-rs10396214
C/T
HDL-C
125267501
125267086
416
p82019-rs838890
C/T
(p.Arg484Trp, isoform 2)
     
p87004-rs184715678
C/A
 
(intron 11)
(intron 12)
 
p82264-rs141545424
C/A
(p.Gly501Gly)
           
p82340-rs77483223
G/A
           
p82369-rs75446635
G/A
           
p82434-rs838889
T/C
       
HDL-C
125265636
125262553
3084
p83884-rs701106
C/T
        
(intron 12)
(exon 13- 3′ UTR)
 
p86245-rs188375019
C/T
           
p86276-rs747155
C/T
           
p86316-rs701104
G/T
           
p86481-rs701103
G/A
(p.Gly499Arg, isoform 2)
           
p86967-rs187492239
A/G
ApoA-I apolipoprotein A-I, ApoB apolipoprotein B, del/D deletion, HDL-C high-density lipoprotein cholesterol, SNP single nucleotide polymorphism, UTR untranslated region, W wild type allele for deletion on RefSeq
All alleles on the reverse strand
Results for a US Non-Hispanic White sample were Box-Cox transformed, and adjusted for covariates: sex, age, body mass index, and smoking (past/current/never) for HDL-C; age and smoking for ApoB
Results for an African Black sample were Box-Cox transformed, and adjusted for covariates: sex, age, waist, current smoking (yes/no), and minutes of walking or biking to work each day (jobmin) for HDL-C; sex and age for ApoA-I
Location of each region on SCARB1 gene is shown in Fig. 4
SNPs with significant evidence with the same trait in both single-site and haplotype associations (single-site P and global P < 0.05) observed in each population are shown in bold
SNPs with significant evidence with the different trait in single-site and haplotype associations (single-site P and global P < 0.05) in each population are shown in italic bold
aData from Niemsiri V, et al. Circ Cardiovasc Genet 2014, 7(6):838–847 (Ref [49])
b, cRefSeq of SCARB1: hg19, NM_005505 (CHIP Bioinformatics)
ddbSNP version 139: GRCh37.p10

Discussion

Our sequencing identified 83 variants, of which 78 were selected for follow-up genotyping in the total sample of 788 African Blacks. Additional 69 tagSNPs from the HapMap-YRI data along with two previously reported lipid-associated SCARB1 variants were also genotyped in the total sample. Of 149 genotyped SCARB1 variants, 137 that passed QC were examined for association with major lipid traits (Table 2). The initial gene-based analyses revealed a nominal association with HDL-C (P = 0.0421) as well as a trend for association with ApoA-I (P = 0.1016; Table 3). Consistent with the gene-based results, single-site association analyses also revealed 10 common variants nominally associated (P < 0.05) with HDL-C (n = 5) and/or ApoA-I (n = 8; Table 4 and Fig. 2). The best association signal was between rs11057851 in intron 1 and HDL-C (P = 0.0043, FDR = 0.1465) followed by two associations with ApoA-I including rs7134858 in intron 6 (P = 0.0052, FDR = 0.2918) and rs5888 (p.Ala350Ala) in exon 8 (P = 0.0080, FDR = 0.2918). Moreover, three variants (rs11057851, rs4765615, and rs838895) exhibited evidence of associations (P < 0.05) with both HDL-C and ApoA-I. These findings are supported by the fact that SCARB1 appears to influence ApoA-I in addition to HDL-C [15, 17]. In our data, there was a moderate correlation between ApoA-I and HDL-C levels (r2 = 0.61).
Except for previously reported association of rs5888 (p.Ala350Ala) with lipid traits (HDL-C or LDL-C) in non-African populations [3034, 36, 37, 39], the remaining nine associations observed in this study with the lipid traits (HDL-C and/or ApoA-I levels) in general population are novel and await replication in independent African or African-derived populations. Two of these nine SNPs have previously been shown to have differential effects on cholesterol levels in response to statin (rs4765615) [50] or on HDL-C/TG levels in response to estradiol in post-menopausal women (rs838895) [51]. Another variant (rs838896) was found to be associated with decreased SCARB1 expression in liver [51]. Although the latter SNP was not associated with a low RegulomeDB score (<3), we cannot rule out the possibility that it might be affecting the SCARB1 expression in a tissue-specific manner.
The haplotype analysis revealed evidence of significant association (global P < 0.05) of 32 haplotype windows with HDL-C (n = 16) and/or ApoA-I (n = 21; Table 7) and nine regions harboring consecutive overlapping haplotype windows significantly associated with either HDL-C (4 regions) or ApoA-I (5 regions; Table 8 and Fig. 3). In addition, six variants with nominal association (P < 0.05) in single-site analysis were contained in seven of these nine significantly associated regions, indicating the presence of functional variants in these regions. Our findings demonstrate that haplotype analysis may provide more information than single-site analysis.
Our comparison of the single-site and haplotype association results between in African Blacks (this study) and US NHWs (previous study [49]) has revealed three variants (rs11057820, rs4765615, and rs701106; Table 9) and two regions (Regions I and II; Table 10 and Fig. 4) showing evidence of lipid-associations in both ethnic groups. However, there were differences in associated traits, and/or associated alleles or their directional effects between the two ethnic groups, which reflects the genetic heterogeneity of complex phenotypes like lipid traits among diverse populations. This phenomenon can be explained by different ancestry backgrounds associated with differences in LD structure and genetic architecture, as well as by differences in SNP-SNP, gene-gene, and gene-environment interactions. Nonetheless, the lipid associations observed across different ethnic populations provide convincing evidence that causal/functional variants are present in SCARB1 gene that deserves comprehensive sequencing and functional studies in order to confirm and further characterize the effects of its variants on lipid metabolism.
Rare variant analysis showed significant evidence of association between a group of 23 rare variants (MAF ≤1 %) and HDL-C (P = 0.0478; Table 5). Single-site analysis of these rare variants revealed six (including three novel ones) with effects on HDL-C, of which three also had effects on ApoA-I (Table 6). In addition, four of these six rare variants appeared to be carried by individuals with extreme HDL-C and/or ApoA-I levels (above or under the 3rd percentile). This HDL-C-associated rare variant group also included a novel variant (p70201/chr12:125279319) that was observed in one individual with an unusually high plasma HDL-C level (above the mean + 3.5 SD). Our findings suggest that these rare variants might have functional relevance, thus screening of additional large African samples for these rare variants may help to establish their role in HDL-C and ApoA-I metabolism.
To date, there has been limited information concerning possible functional effects of lipid-associated SCARB1 variants, particularly for those located in non-coding regions. In fact, most of common and rare HDL-C/ApoA-I-associated variants observed in the current study are non-coding and do not show strong evidence of regulatory function based on RegulomeDB database. Nonetheless, three of these HDL-C/ApoA-I-associated SCARB1 variants (rs5888 [p.Ala350Ala], rs838885, and rs838886) have been previously demonstrated to influence the SCARB1 expression [5153]. Therefore, additional functional studies are needed and may help to determine the functional nature of the SCARB1-associated variants and those in LD with them.
Our study has revealed a number of novel findings, although we also acknowledge some limitations. SCARB1 is a large gene and we sequenced only its coding regions and exon-intron junctions and also our sequencing sample size was small. Thus, we may have missed some functional LoF/rare variants due to small sample size and those located in uncovered intronic regions. Moreover, consistent with generally small effect sizes of lipid-associated variants reported in the literature, most of our single-site associations reached nominal significance (P < 0.05) but did not survive multiple testing corrections. Only the top variant (rs11057851) associated with HDL-C yielded an FDR cut-off of <0.20 (FDR = 0.1465; Table 4). Therefore, future larger studies in independent African or African-derived populations are necessary to validate all nominal associations observed in this study.

Conclusions

In conclusion, we report the first comprehensive association study of SCARB1 variants with lipid traits in a native African population, which revealed a number of novel associations in single-site and haplotype analyses. In addition, resequencing allowed us to identify 10 novel rare variants, of which four were in the group of 23 rare variants that has showed association with HDL-C levels. The SCARB1 associated common and rare variants observed in our study explained ~11.09 % of the variation in HDL-C levels and ~8.63 % of the variation in ApoA-I levels. Our findings indicate the genetic contribution of SCARB1, both common and LoF/rare variants, to inter-individual lipid variation in the general African Black population, which warrants further follow-up in independent studies. Insights into the HDL-C and related lipid traits may also lead to new potential targets for CHD treatment.

Acknowledgements

This study was supported by the National Heart, Lung and Blood Institute [NHLBI] (grant numbers HL044413 to C.H.B. and HL084613 to M.I.K.).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceive and design the experiments: FYD, MIK Perform the experiments: VN, FYD Analyze the data: VN, XW, DP, ZHR, MMB, FYD, MIK Contribute reagents/materials/analysis tools: CHB, MIK Write the paper: VN, FYD, MIK Provide critical revisions: XW, DP, ZHR, CHB, MMB Interpret the results: VN, XW, DP, ZHR, CHB, MMB, FYD, MIK All authors read and approved the final manuscript.
Anhänge

Additional files

Additional file 5: Figure S1. Linkage disequilibrium (LD) plot of 83 SCARB1 sequence variants. Of 83 sequence variants (see the list in Additional file 3: Table S3), 78 were selected for genotyping. An enlarged view of the part of LD plot (A) shows the pairwise correlations (r2) between four variants including the two variants (shown in bold) in the same bin in our data, of which one selected for genotyping. This bin was not identified by Tagger analysis of common SCARB1 variants in the HapMap-YRI data (see Additional file 7: Table S5 and Additional file 8: Figure S3). The degree of shades and values (r2 × 100) in each square of LD plot represent the pairwise correlations: black indicating r2 = 1, white indicating r2 = 0, and shade intensity indicating r2 between 0 and 1. LD, linkage disequilibrium; MAF, minor allele frequency; YRI, Yoruba people of Ibadan from Nigeria. (PDF 920 kb)
Additional file 8: Figure S3. Linkage disequilibrium (LD) plot of 108 SCARB1 common HapMap-YRI tagSNPs. The list of 77 common HapMap-YRI tagSNPs identified by Tagger analysis of variants with minor allele frequency ≥5 % using an r2 cutoff of 0.80 is shown in Additional file 7: Table S5. The degree of shades and values (r2 × 100) in each square of LD plot represent the pairwise correlations: black indicating r2 = 1, white indicating r2 = 0, and shade intensity indicating r2 between 0 and 1.LD, linkage disequilibrium; SNP, single nucleotide polymorphism; YRI, Yoruba people of Ibadan from Nigeria. (TIFF 2642 kb)
Additional file 11: Figure S4. Linkage disequilibrium (LD) plot of 137 SCARB1 genotyped variants. The list of 87 genotyped common tagSNPs identified by Tagger analysis for variants with minor allele frequency ≥5 % using an r2 cutoff of 0.90 is shown in Additional file 10: Table S7. The degree of shades and values (r2 × 100) in each square of LD plot represent the pairwise correlations: black indicating r2 = 1, white indicating r2 = 0, and shade intensity indicating r2 between 0 and 1.LD, linkage disequilibrium; SNP, single nucleotide polymorphism. (TIFF 3095 kb)
Literatur
1.
Zurück zum Zitat National Cholesterol Education Program. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–421. National Cholesterol Education Program. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–421.
2.
Zurück zum Zitat World Health Organization. The 10 leading causes of death in the world, 2000 and 2012. In: The top 10 causes of death. Media centre, World Health Organization, 2014. Available from http://www.who.int/mediacentre/factsheets/fs310/en/. (accessed 30 April 2015). World Health Organization. The 10 leading causes of death in the world, 2000 and 2012. In: The top 10 causes of death. Media centre, World Health Organization, 2014. Available from http://​www.​who.​int/​mediacentre/​factsheets/​fs310/​en/​.​ (accessed 30 April 2015).
3.
Zurück zum Zitat O’Connell DL, Heller RF, Roberts DC, Allen JR, Knapp JC, Steele PL, et al. Twin study of genetic and environmental effects on lipid levels. Genet Epidemiol. 1988;5(5):323–41.PubMedCrossRef O’Connell DL, Heller RF, Roberts DC, Allen JR, Knapp JC, Steele PL, et al. Twin study of genetic and environmental effects on lipid levels. Genet Epidemiol. 1988;5(5):323–41.PubMedCrossRef
4.
Zurück zum Zitat Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65.PubMedCrossRef Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65.PubMedCrossRef
5.
Zurück zum Zitat Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.PubMedPubMedCentralCrossRef Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Consortium GLG, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.CrossRef Consortium GLG, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.CrossRef
9.
Zurück zum Zitat Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305(5685):869–72.PubMedCrossRef Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305(5685):869–72.PubMedCrossRef
10.
Zurück zum Zitat Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest. 2004;114(9):1343–53.PubMedPubMedCentralCrossRef Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest. 2004;114(9):1343–53.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94(2):223–32.PubMedPubMedCentralCrossRef Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet. 2014;94(2):223–32.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Rosenson RS, Brewer Jr HB, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.PubMedPubMedCentralCrossRef Rosenson RS, Brewer Jr HB, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Trigatti BL, Krieger M, Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(10):1732–8.PubMedCrossRef Trigatti BL, Krieger M, Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(10):1732–8.PubMedCrossRef
15.
Zurück zum Zitat Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997;387(6631):414–7.PubMedCrossRef Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature. 1997;387(6631):414–7.PubMedCrossRef
16.
Zurück zum Zitat Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem. 1998;273(49):32920–6.PubMedCrossRef Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem. 1998;273(49):32920–6.PubMedCrossRef
17.
Zurück zum Zitat Ueda Y, Royer L, Gong E, Zhang J, Cooper PN, Francone O, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem. 1999;274(11):7165–71.PubMedCrossRef Ueda Y, Royer L, Gong E, Zhang J, Cooper PN, Francone O, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem. 1999;274(11):7165–71.PubMedCrossRef
18.
Zurück zum Zitat Out R, Kruijt JK, Rensen PC, Hildebrand RB, de Vos P, Van Eck M, et al. Scavenger receptor BI plays a role in facilitating chylomicron metabolism. J Biol Chem. 2004;279(18):18401–6.PubMedCrossRef Out R, Kruijt JK, Rensen PC, Hildebrand RB, de Vos P, Van Eck M, et al. Scavenger receptor BI plays a role in facilitating chylomicron metabolism. J Biol Chem. 2004;279(18):18401–6.PubMedCrossRef
19.
Zurück zum Zitat Out R, Hoekstra M, de Jager SC, de Vos P, van der Westhuyzen DR, Webb NR, et al. Adenovirus-mediated hepatic overexpression of scavenger receptor class B type I accelerates chylomicron metabolism in C57BL/6 J mice. J Lipid Res. 2005;46(6):1172–81.PubMedCrossRef Out R, Hoekstra M, de Jager SC, de Vos P, van der Westhuyzen DR, Webb NR, et al. Adenovirus-mediated hepatic overexpression of scavenger receptor class B type I accelerates chylomicron metabolism in C57BL/6 J mice. J Lipid Res. 2005;46(6):1172–81.PubMedCrossRef
20.
Zurück zum Zitat Van Eck M, Hoekstra M, Out R, Bos IS, Kruijt JK, Hildebrand RB, et al. Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo. J Lipid Res. 2008;49(1):136–46.PubMedCrossRef Van Eck M, Hoekstra M, Out R, Bos IS, Kruijt JK, Hildebrand RB, et al. Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo. J Lipid Res. 2008;49(1):136–46.PubMedCrossRef
21.
Zurück zum Zitat Wiersma H, Nijstad N, Gautier T, Iqbal J, Kuipers F, Hussain MM, et al. Scavenger receptor BI facilitates hepatic very low density lipoprotein production in mice. J Lipid Res. 2010;51(3):544–53.PubMedPubMedCentralCrossRef Wiersma H, Nijstad N, Gautier T, Iqbal J, Kuipers F, Hussain MM, et al. Scavenger receptor BI facilitates hepatic very low density lipoprotein production in mice. J Lipid Res. 2010;51(3):544–53.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol. 2000;11(2):123–31.PubMedCrossRef Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol. 2000;11(2):123–31.PubMedCrossRef
23.
Zurück zum Zitat Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. defining the rules for lipid traders. Int J Biochem Cell Biol. 2004;36(1):39–77.PubMedCrossRef Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. defining the rules for lipid traders. Int J Biochem Cell Biol. 2004;36(1):39–77.PubMedCrossRef
24.
Zurück zum Zitat Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94(23):12610–5.PubMedPubMedCentralCrossRef Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94(23):12610–5.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Varban ML, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1998;95(8):4619–24.PubMedPubMedCentralCrossRef Varban ML, Rinninger F, Wang N, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1998;95(8):4619–24.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Trigatti B, Rayburn H, Vinals M, Braun A, Miettinen H, Penman M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96(16):9322–7.PubMedPubMedCentralCrossRef Trigatti B, Rayburn H, Vinals M, Braun A, Miettinen H, Penman M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96(16):9322–7.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Ji Y, Wang N, Ramakrishnan R, Sehayek E, Huszar D, Breslow JL, et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem. 1999;274(47):33398–402.PubMedCrossRef Ji Y, Wang N, Ramakrishnan R, Sehayek E, Huszar D, Breslow JL, et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem. 1999;274(47):33398–402.PubMedCrossRef
28.
Zurück zum Zitat Brunham LR, Tietjen I, Bochem AE, Singaraja RR, Franchini PL, Radomski C, et al. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans. Clin Genet. 2011;79(6):575–81.PubMedCrossRef Brunham LR, Tietjen I, Bochem AE, Singaraja RR, Franchini PL, Radomski C, et al. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans. Clin Genet. 2011;79(6):575–81.PubMedCrossRef
29.
Zurück zum Zitat Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136–45.PubMedCrossRef Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136–45.PubMedCrossRef
30.
Zurück zum Zitat Acton S, Osgood D, Donoghue M, Corella D, Pocovi M, Cenarro A, et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol. 1999;19(7):1734–43.PubMedCrossRef Acton S, Osgood D, Donoghue M, Corella D, Pocovi M, Cenarro A, et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler Thromb Vasc Biol. 1999;19(7):1734–43.PubMedCrossRef
31.
Zurück zum Zitat Hong SH, Kim YR, Yoon YM, Min WK, Chun SI, Kim JQ. Association between HaeIII polymorphism of scavenger receptor class B type I gene and plasma HDL-cholesterol concentration. Ann Clin Biochem. 2002;39(Pt 5):478–81.PubMedCrossRef Hong SH, Kim YR, Yoon YM, Min WK, Chun SI, Kim JQ. Association between HaeIII polymorphism of scavenger receptor class B type I gene and plasma HDL-cholesterol concentration. Ann Clin Biochem. 2002;39(Pt 5):478–81.PubMedCrossRef
32.
Zurück zum Zitat Osgood D, Corella D, Demissie S, Cupples LA, Wilson PW, Meigs JB, et al. Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the framingham study. J Clin Endocrinol Metab. 2003;88(6):2869–79.PubMedCrossRef Osgood D, Corella D, Demissie S, Cupples LA, Wilson PW, Meigs JB, et al. Genetic variation at the scavenger receptor class B type I gene locus determines plasma lipoprotein concentrations and particle size and interacts with type 2 diabetes: the framingham study. J Clin Endocrinol Metab. 2003;88(6):2869–79.PubMedCrossRef
33.
Zurück zum Zitat Tai ES, Adiconis X, Ordovas JM, Carmena-Ramon R, Real J, Corella D, et al. Polymorphisms at the SRBI locus are associated with lipoprotein levels in subjects with heterozygous familial hypercholesterolemia. Clin Genet. 2003;63(1):53–8.PubMedCrossRef Tai ES, Adiconis X, Ordovas JM, Carmena-Ramon R, Real J, Corella D, et al. Polymorphisms at the SRBI locus are associated with lipoprotein levels in subjects with heterozygous familial hypercholesterolemia. Clin Genet. 2003;63(1):53–8.PubMedCrossRef
34.
Zurück zum Zitat Morabia A, Ross BM, Costanza MC, Cayanis E, Flaherty MS, Alvin GB, et al. Population-based study of SR-BI genetic variation and lipid profile. Atherosclerosis. 2004;175(1):159–68.PubMedCrossRef Morabia A, Ross BM, Costanza MC, Cayanis E, Flaherty MS, Alvin GB, et al. Population-based study of SR-BI genetic variation and lipid profile. Atherosclerosis. 2004;175(1):159–68.PubMedCrossRef
35.
Zurück zum Zitat Richard E, von Muhlen D, Barrett-Connor E, Alcaraz J, Davis R, McCarthy JJ. Modification of the effects of estrogen therapy on HDL cholesterol levels by polymorphisms of the HDL-C receptor, SR-BI: the Rancho Bernardo Study. Atherosclerosis. 2005;180(2):255–62.PubMedCrossRef Richard E, von Muhlen D, Barrett-Connor E, Alcaraz J, Davis R, McCarthy JJ. Modification of the effects of estrogen therapy on HDL cholesterol levels by polymorphisms of the HDL-C receptor, SR-BI: the Rancho Bernardo Study. Atherosclerosis. 2005;180(2):255–62.PubMedCrossRef
36.
Zurück zum Zitat Boekholdt SM, Souverein OW, Tanck MW, Hovingh GK, Kuivenhoven JA, Peters RI, et al. Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cholesterol levels. Clin Genet. 2006;69(3):263–70.PubMedCrossRef Boekholdt SM, Souverein OW, Tanck MW, Hovingh GK, Kuivenhoven JA, Peters RI, et al. Common variants of multiple genes that control reverse cholesterol transport together explain only a minor part of the variation of HDL cholesterol levels. Clin Genet. 2006;69(3):263–70.PubMedCrossRef
37.
Zurück zum Zitat Roberts CG, Shen H, Mitchell BD, Damcott CM, Shuldiner AR, Rodriguez A. Variants in scavenger receptor class B type I gene are associated with HDL cholesterol levels in younger women. Hum Hered. 2007;64(2):107–13.PubMedPubMedCentralCrossRef Roberts CG, Shen H, Mitchell BD, Damcott CM, Shuldiner AR, Rodriguez A. Variants in scavenger receptor class B type I gene are associated with HDL cholesterol levels in younger women. Hum Hered. 2007;64(2):107–13.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Tanaka T, Delgado-Lista J, Lopez-Miranda J, Perez-Jimenez F, Marin C, Perez-Martinez P, et al. Scavenger receptor class B type I (SCARB1) c.1119C > T polymorphism affects postprandial triglyceride metabolism in men. J Nutr. 2007;137(3):578–82.PubMed Tanaka T, Delgado-Lista J, Lopez-Miranda J, Perez-Jimenez F, Marin C, Perez-Martinez P, et al. Scavenger receptor class B type I (SCARB1) c.1119C > T polymorphism affects postprandial triglyceride metabolism in men. J Nutr. 2007;137(3):578–82.PubMed
39.
Zurück zum Zitat Cerda A, Genvigir FD, Arazi SS, Hirata MH, Dorea EL, Bernik MM, et al. Influence of SCARB1 polymorphisms on serum lipids of hypercholesterolemic individuals treated with atorvastatin. Clin Chim Acta. 2010;411(9–10):631–7.PubMedCrossRef Cerda A, Genvigir FD, Arazi SS, Hirata MH, Dorea EL, Bernik MM, et al. Influence of SCARB1 polymorphisms on serum lipids of hypercholesterolemic individuals treated with atorvastatin. Clin Chim Acta. 2010;411(9–10):631–7.PubMedCrossRef
40.
Zurück zum Zitat Manichaikul A, Naj AC, Herrington D, Post W, Rich SS, Rodriguez A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(8):1991–9.PubMedCrossRef Manichaikul A, Naj AC, Herrington D, Post W, Rich SS, Rodriguez A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(8):1991–9.PubMedCrossRef
41.
Zurück zum Zitat Bunker CH, Ukoli FA, Okoro FI, Olomu AB, Kriska AM, Huston SL, et al. Correlates of serum lipids in a lean black population. Atherosclerosis. 1996;123(1–2):215–25.PubMedCrossRef Bunker CH, Ukoli FA, Okoro FI, Olomu AB, Kriska AM, Huston SL, et al. Correlates of serum lipids in a lean black population. Atherosclerosis. 1996;123(1–2):215–25.PubMedCrossRef
42.
Zurück zum Zitat Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMed Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMed
43.
Zurück zum Zitat Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.PubMedCrossRef Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.PubMedCrossRef
44.
Zurück zum Zitat Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87(1):139–45.PubMedPubMedCentralCrossRef Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87(1):139–45.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Stat Methodol). 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Stat Methodol). 1995;57:289–300.
47.
Zurück zum Zitat Cao G, Garcia CK, Wyne KL, Schultz RA, Parker KL, Hobbs HH. Structure and localization of the human gene encoding SR-BI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1. J Biol Chem. 1997;272(52):33068–76.PubMedCrossRef Cao G, Garcia CK, Wyne KL, Schultz RA, Parker KL, Hobbs HH. Structure and localization of the human gene encoding SR-BI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1. J Biol Chem. 1997;272(52):33068–76.PubMedCrossRef
48.
Zurück zum Zitat Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–7.PubMedPubMedCentralCrossRef Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–7.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Niemsiri V, Wang X, Pirim D, Radwan ZH, Hokanson JE, Hamman RF, et al. Impact of genetic variants in human scavenger receptor class B type I (SCARB1) on plasma lipid traits. Circ Cardiovasc Genet. 2014;7(6):838–47.PubMedPubMedCentralCrossRef Niemsiri V, Wang X, Pirim D, Radwan ZH, Hokanson JE, Hamman RF, et al. Impact of genetic variants in human scavenger receptor class B type I (SCARB1) on plasma lipid traits. Circ Cardiovasc Genet. 2014;7(6):838–47.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Peters BJ, Pett H, Klungel OH, Stricker BH, Psaty BM, Glazer NL, et al. Genetic variability within the cholesterol lowering pathway and the effectiveness of statins in reducing the risk of MI. Atherosclerosis. 2011;217(2):458–64.PubMedPubMedCentralCrossRef Peters BJ, Pett H, Klungel OH, Stricker BH, Psaty BM, Glazer NL, et al. Genetic variability within the cholesterol lowering pathway and the effectiveness of statins in reducing the risk of MI. Atherosclerosis. 2011;217(2):458–64.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Chiba-Falek O, Nichols M, Suchindran S, Guyton J, Ginsburg GS, Barrett-Connor E, et al. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC Med Genet. 2010;11:9.PubMedPubMedCentralCrossRef Chiba-Falek O, Nichols M, Suchindran S, Guyton J, Ginsburg GS, Barrett-Connor E, et al. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC Med Genet. 2010;11:9.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Constantineau J, Greason E, West M, Filbin M, Kieft JS, Carletti MZ, et al. A synonymous variant in scavenger receptor, class B, type I gene is associated with lower SR-BI protein expression and function. Atherosclerosis. 2010;210(1):177–82.PubMedCrossRef Constantineau J, Greason E, West M, Filbin M, Kieft JS, Carletti MZ, et al. A synonymous variant in scavenger receptor, class B, type I gene is associated with lower SR-BI protein expression and function. Atherosclerosis. 2010;210(1):177–82.PubMedCrossRef
53.
Zurück zum Zitat Cerda A, Genvigir FD, Rodrigues AC, Willrich MA, Dorea EL, Bernik MM, et al. Influence of polymorphisms and cholesterol-lowering treatment on SCARB1 mRNA expression. J Atheroscler Thromb. 2011;18(8):640–51.PubMedCrossRef Cerda A, Genvigir FD, Rodrigues AC, Willrich MA, Dorea EL, Bernik MM, et al. Influence of polymorphisms and cholesterol-lowering treatment on SCARB1 mRNA expression. J Atheroscler Thromb. 2011;18(8):640–51.PubMedCrossRef
Metadaten
Titel
Genetic contribution of SCARB1 variants to lipid traits in African Blacks: a candidate gene association study
verfasst von
Vipavee Niemsiri
Xingbin Wang
Dilek Pirim
Zaheda H. Radwan
Clareann H. Bunker
M. Michael Barmada
M. Ilyas Kamboh
F. Yesim Demirci
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2015
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-015-0250-6

Weitere Artikel der Ausgabe 1/2015

BMC Medical Genetics 1/2015 Zur Ausgabe