Skip to main content
Erschienen in: BMC Public Health 1/2018

Open Access 01.12.2018 | Research article

Health worker knowledge of Integrated Disease Surveillance and Response standard case definitions: a cross-sectional survey at rural health facilities in Kenya

verfasst von: Mitsuru Toda, Dejan Zurovac, Ian Njeru, David Kareko, Matilu Mwau, Kouichi Morita

Erschienen in: BMC Public Health | Ausgabe 1/2018

Abstract

Background

The correct knowledge of standard case definition is necessary for frontline health workers to diagnose suspected diseases across Africa. However, surveillance evaluations commonly assume this prerequisite. This study assessed the knowledge of case definitions for health workers and their supervisors for disease surveillance activities in rural Kenya.

Methods

A cross-sectional survey including 131 health workers and their 11 supervisors was undertaken in two counties in Kenya. Descriptive analysis was conducted to classify the correctness of knowledge into four categories for three tracer diseases (dysentery, measles, and dengue). We conducted a univariate and multivariable logistic regression analyses to explore factors influencing knowledge of the case definition for dysentery.

Results

Among supervisors, 81.8% knew the correct definition for dysentery, 27.3% for measles, and no correct responses were provided for dengue. Correct knowledge was observed for 50.4% of the health workers for dysentery, only 12.2% for measles, and none for dengue. Of 10 examined factors, the following were significantly associated with health workers’ correct knowledge of the case definition for dysentery: health workers’ cadre (aOR 2.71; 95% CI 1.20–6.12; p = 0.017), and display of case definition poster (aOR 2.24; 95% CI 1.01–4.98; p = 0.048). Health workers’ exposure to the surveillance refresher training, supportive supervision and guidelines were not significantly associated with the knowledge.

Conclusion

The correct knowledge of standard case definitions was sub-optimal among health workers and their supervisors, which is likely to impact the reliability of routine surveillance reports generated from health facilities.

Background

The first step in disease surveillance for frontline health workers is to diagnose and identify cases at health facilities. Rural health facilities in sub-Saharan Africa lack capacities to diagnose diseases through laboratory confirmations and health workers rely on clinical signs and symptoms to diagnose suspected cases of priority diseases. Validated clinical standard case definitions help standardize diagnosis of suspected cases across health workers within and across nations, and it is crucial for implementing the International Health Regulations 2005 [13]. In addition, standard case definitions are important for managers at all levels to monitor epidemic trends across health facilities, investigate epidemic alerts, respond to potential outbreaks, and plan activities related to disease surveillance and control.
In Kenya as in other African countries, the World Health Organization regional office for Africa (WHO-Afro) implemented the Integrated Disease Surveillance and Response (IDSR) strategy [4, 5], which promotes the use of IDSR standard case definitions which are stipulated in technical guidelines, promoted through job aids, and included in the in-service training programs. In IDSR evaluation literature, processes of disease surveillance and activities supporting implementation have commonly been examined [617]. However, the knowledge of IDSR standard case definitions by health workers and their supervisors have been assumed and no study has examined the awareness and knowledge of case definitions as stipulated in the guidelines [18, 19]. We therefore conducted a cross-sectional study among frontline health workers and their disease surveillance supervisors in rural Kenya to assess their knowledge of IDSR standard case definitions.

Methods

A cross-sectional survey was conducted as part of the mSOS (mobile Short-message-service based disease Outbreak alert Systems) trial [20], which measured the effectiveness of an intervention using text-message disease outbreak alert system. The study took place at rural health facilities and sub-county management offices in Busia and Kajiado counties in Kenya.

Description of study area

Busia County is by the Victoria Lake basin and borders Uganda, and Kajiado County borders Tanzania. In the two counties, there are 143 functional health facilities belonging to 11 sub-counties. All health facilities are expected to report priority diseases through IDSR strategy to disease surveillance coordinators at the sub-county level. IDSR strategy was introduced to health workers in the two counties in 2005. Health facility in-charges, or IDSR focal persons at each health facility are required to send routine paper-based reports on priority diseases to sub-county office on immediate and weekly basis. Sub-county level disease surveillance coordinators are expected to monitor disease trends, respond to alerts of disease surveillance activities, and provide support supervision to the health facilities. Use of standard case definition has been promoted through the IDSR strategy in the area for over a decade. In addition, in September and October 2013, health facility in-charges in the study area attended an IDSR refresher training organized by the Ministry of Health. During the 1-day training, IDSR case definitions and reporting requirements were highlighted. Each participant was given the IDSR technical guidelines for use at their health facility, and participants were expected to have refreshed their knowledge on IDSR standard case definitions.

Participants and data collection

Of 143 health facilities, 12 health facilities were excluded from the study because the facilities were closed on the day of the survey. Participants included 131 health facility in-charges and 11 sub-county disease surveillance coordinators who were interviewed by the study team in April 2014, which was 6 months after the IDSR refresher training took place in the study area. Open-ended questionnaires were self-administered by health facility in-charge and their sub-county supervisors at their respective workstations on their knowledge of IDSR standard case definitions. The questionnaires were pre-tested in Nairobi prior to study collection. National level Ministry of Health staff members at the Disease Surveillance and Response Unit, who are well experienced and trained in IDSR strategy, supervised the collection of data at each study facility. The responses were recorded in English because it is the language for pre- and in- service trainings in Kenya.

Selection of tracer diseases and study definition

Three tracer diseases, dysentery, measles and dengue, were selected for analysis based on the epidemiological interest [21] and the complexity of the IDSR standard case definitions (Table 1). Dysentery was selected because the disease occurs frequently [2224] and has only 2 simple key components in the case definition. Measles was selected because there are sporadic outbreaks in the country [25, 26] and has slightly more complex case definition than dysentery containing 5 key components. Dengue was selected because the disease is reported frequently in the research setting [2734] and has a complex case definition containing 8 key components. All of the three tracer diseases require weekly reporting according to the national IDSR guidelines, while measles and dengue are also required to be reported immediately through the case-based reports as suspected cases are detected. Table 1 presents study definitions for each of the three tracer diseases by four categorization of the correctness: correct, partially correct, incorrect, and “do not know”. Responses were classified as correct when all key components were stated without other signs or symptoms. Partial correctness was defined as mentioning all of the key components, or mentioning some of key components with additional disease related symptoms. Incorrect responses were defined as mentioning only one or none of the key components. Finally, the last category “do not know” included answers where respondents did not mention any signs or symptoms.
Table 1
Standard case definitions according to IDSR national guidelines and study classifications
 
Standard case definitions (suspected case) in the IDSR technical guidelines
Study definitions based on key words
Dysentery (Shigella)
A person with diarrhoea with visible blood in stool
Correct
Diarrhea and blood
Partially correct
Diarrhea, blood, and other related symptoms1
Incorrect
No mention of diarrhea or blood
Do not know
No mention of signs and symptoms
Measles
Any person with fever and maculopapular (non-vesicular) generalized rash and any one of the following: cough, coryza (irritation and inflammation of the mucosal membrane of the nose), conjunctivitis (red eyes), any person in whom a clinician suspects measles
Correct
Fever, rash, cough, coryza, and conjunctivitis
Partially correct
Fever, rash, and at least one of the following symptoms: cough, coryza, and conjunctivitis; with or without related symptoms
Incorrect
No mention of rash or fever
Do not know
No mention of signs and symptoms
Dengue fever
Any person with acute febrile illness of 2–7 days duration with 2 or more of the following: headache, retro-orbital pain (pain behind the eyes), myalgia (muscle pain), arthralgia (joint pain), rash, haemorrhagic manifestations, leukopenia (low white blood cells)
Correct
Fever, headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations, and leukopenia
Partially correct
Fever and at least two of the following symptoms: headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations, and leukopenia
Incorrect
No mention of fever; or mention of fever with less than two of the following symptoms: headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations, and leukopenia
Do not know
No mention of signs and symptoms
1Other related symptoms include: abdominal pain/cramps, fever, and frequency of diarrhea in a day

Data analysis

Data were double entered using Base (LibreOffice 5, The Document Foundation, Berlin, Germany). Study investigators verified data manually comparing paper based questionnaires. During the coding process, we classified key words of signs and symptoms according to our study definitions for the three tracer diseases. Certain key words were included as synonyms, such as diarrhea and watery stool; eye discharge, red eyes and conjunctivitis; funny nose and coryza; pain in the eyes and retro-orbital pain; general pain, muscle pain and myalgia; joint pain and arthralgia; and low blood cells and leukopenia.
Descriptive analysis of IDSR standard case definition was conducted to categorize the correctness of knowledge of three tracer diseases. To explore factors influencing the knowledge of IDSR standard case definition, we focused on dysentery because the variability of correct responses was observed only for this tracer disease. We first conducted a univariate analysis and estimated odds ratios (OR), p-values, and 95% confidence intervals (CIs) for the association between 10 broad factors and correct dysentery knowledge outcome. The 10 factors included health worker and health facility characteristics. In specific, location and size of facility (dispensaries: government funded health facility that provides primary healthcare services, maternity homes: private or NGO funded health facility that cares for pregnant women, medical clinics: private health facility that provides primary healthcare services, and nursing homes: private or NGO funded health facility that cares for the elderly), availability of IDSR focal person at facility, age, gender, qualification (nurses: licensed medical practitioner with 3–4 years of pre-service training, clinical officer: licensed medical practitioner with 3–4 years of pre-service training, and medical doctor: licensed medical practitioner with 6 years of pre-service training), and exposure to IDSR interventions by health workers. Factors with p-value <0.2 were then entered into multivariable model. We also explored two-way interaction terms of 4 variables related to disease surveillance interventions. The variables were: exposure to training, availability of guidelines, availability of poster, and support supervision. None of these 4 factors in the interaction terms were statistically significant at 0.05 level and we did not include the interaction terms in the model. Analysis was performed using Stata version 14 (StataCorp, College Station, TX, USA). Hypothesis testing and CI estimation were completed with alpha level of 0.05.

Results

Characteristics of health workers and their supervisors

Of 11 supervisors interviewed, 7 were from Busia (64.6%). All were public health officers. Nearly all disease surveillance coordinators were male (90.9%) and the median age of the coordinators was 44 years [IQR 38–46]. Of 131 respondents (Table 2), nearly 40 % were from Busia (36.6%). Most commonly, they worked at dispensaries (70.2%). Nearly two-thirds (64.1%) worked at government-owned public facilities, and over two-thirds (69.5%) worked at health facilities with an IDSR focal person. Half of the respondents were female (51.9%) and the median age of the respondents was 36 years [IQR 30–48]. The majority were nurses (70.2%). Around 20 % were clinical officers, who are clinicians with 3 years of pre-service training (20.6%). Regarding the surveillance related interventions, over two-thirds (68.7%) had IDSR case definition poster displayed, observed by study data collectors. Most of the respondents (74.1%) had received at least one support supervision visit on surveillance related matters in the past 6 months. Finally, only 15.3% had access to IDSR technical guidelines at their facility, while the majority (61.1%) attended the IDSR refresher training conducted by the study team 6 months earlier (Table 2).
Table 2
General characteristics of health facility workers
N = 131
n (%)
County
 Busia
48 (36.6)
 Kajiado
83 (63.4)
Health facility level
 Hospital
10 (7.6)
 Health centre
29 (22.1)
 Dispensarya
92 (70.2)
Health facility ownership
 Public
84 (64.1)
 Private
28 (21.4)
 NGO/FBO
19 (14.5)
Working at health facility with IDSR focal person
91 (69.5)
Age; median [IQR]b
36 [30–48]
Gender
 Female
68 (51.9)
 Male
63 (48.1)
Qualification
 Nurse
92 (70.2)
 Clinical officer
27 (20.6)
 Medical doctor
2 (1.5)
 Other cadrec
10 (7.6)
Exposure to disease surveillance interventions
 Availability of poster
90 (68.7)
 Availability of guidelines
20 (15.3)
 Received support supervision in the last 6 months
97 (74.1)
 Attended training in 2013
80 (61.1)
aIncludes: 18 medical clinics, 3 maternity homes, and 6 nursing homes
bExcludes 2 health worker with missing age information
cOther includes: 1 Community Health Extension Worker, 1 health records officer, 1 public health officer, 1 Prevention of Mother to Child Transmission worker, and 6 laboratory technician/technologist
Abbreviations
CO clinical officer, FBO faith-based organization, IDSR integrated disease surveillance and response, IQR interquartile range, MD medical doctor, NGO non-governmental organization

Knowledge of IDSR case definitions

Table 3 describes the knowledge of three tracer diseases by health workers and their supervisors. Of 11 supervisors, 81.8% knew the correct definition for dysentery, 27.3% for measles, and no correct responses were provided for dengue. For measles, 36.4% responded partially correctly and 27.3% incorrectly. For dengue, only one supervisor provided partially correct response (9.1%), nearly half responded incorrectly (45.5%), and the remaining 45.5% did not know the definition (Table 3).
Table 3
Respondents’ knowledge of IDSR standard case definitions
 
Dysentery
Measles
Dengue
n (%)
n (%)
n (%)
Sub-county disease surveillance coordinator
N = 11
 Correct
9 (81.8)
3 (27.3)
0
 Partially correct
1 (9.1)
4 (36.4)
1 (9.1)
 Incorrect
1 (9.1)
3 (27.3)
5 (45.5)
 Do not know
0
1 (9.1)
5 (45.5)
Health facility in-charges
N = 131
 Correct
66 (50.4)
16 (12.2)
0
 Partially correct
23 (17.6)
54 (41.2)
5 (3.8)
 Incorrect
22 (16.8)
36 (27.5)
41 (31.3)
 Do not know
20 (15.3)
25 (19.1)
85 (64.9)
Health workers displayed similar patterns as their supervisors across the three tracer diseases. Correct knowledge was observed for 50.4% of the health workers for dysentery, for only 12.2% for measles, and none of the health workers provided correct case definition for dengue. For dysentery, 17.6% responded partially correctly where bloody diarrhea was mentioned but also additional dysentery related signs and symptoms such as pain or cramps (11/23) and fever (3/23). Furthermore, twenty-two health workers (16.8%) provided incorrect case definitions by either omitting diarrhea (16/22) or blood (6/22). Finally, the remaining 20 health workers (15.3%) did not know the definition for dysentery (Table 3).
For measles, less than half of health workers responded partially correctly (41.2%) where health workers were able to mention fever and rash, but not all of the additional three components (cough, coryza, and conjunctivitis). Most commonly omitted symptoms were cough (37/54), followed by coryza (29/54), and conjunctivitis (12/54). Over one-quarter of health workers responded incorrectly (27.5%) by omitting fever (29/36) followed by rash (12/36). The remaining 19.1% of the health workers did not know the case definition for measles (Table 3).
Nearly all (96.2%) health workers either incorrectly stated or did not know the case definition for dengue. Among the incorrect responses, three did not mention fever (3/41), while other dengue criteria were rarely mentioned: headache (9/41), arthralgia (8/41), hemorrhagic manifestations (6/41), retro-orbital pain (2/41), and rash (2/41), myalgia (0/41), and leukopenia (0/41).

Predictors influencing knowledge of dysentery

We examined 10 factors that may influence the health facility in-charges’ knowledge of dysentery. The following variables did not meet entrance criteria (p < 0.2) for the multivariable analysis: county (OR 1.11; 95% CI 0.55–2.27; p = 0.767), smaller facilities (OR 1.47; 95% CI 0.69–3.13, p = 0.313), age (OR 1.23; 95% CI 0.62–2.47; p = 0.553), gender (OR 1.09; 95% CI 0.55–2.17; p = 0.796), training (OR 1.41; 95% CI 0.70–2.86; p = 0.335), presence of IDSR technical guidelines (OR 0.61; 95% CI 0.23–1.61; p = 0.316), and support supervision (OR 0.87; 95% CI 0.40–1.90; p = 0.729) (Table 4). The following factors were significantly associated with correct dysentery IDSR standard case definition knowledge in the multivariable analysis: health workers’ cadre (aOR 2.71; 95% CI 1.20–6.12; p = 0.017), and display of case definition poster (aOR 2.24; 95% CI 1.01–4.98; p = 0.048). Although meeting the inclusion criteria for multivariable model, the presence of IDSR focal person at the health facility (aOR 1.83; 95% CI 0.82–4.09; p = 0.139) was not significantly associated with correct dysentery knowledge (Table 4).
Table 4
Predictors influencing knowledge of dysentery: univariate and multivariable regression results
 
N
n (%)
OR
[95% CI]
p-value
aOR
[95% CI]
p-value
General characteristics
County
 Busia
48
25 (52.1)
1.11 [0.55–2.27]
0.767
 Kajiado
83
41 (49.4)
1.0 (Ref)
 
 
Size of facility
 Smallera
92
49 (53.3)
1.47 [0.69–3.13]
0.313
 Largerb
39
17 (43.6)
1.0 (Ref)
 
 
IDSR focal person at facility
 Available
91
50 (55.0)
1.83 [0.86–3.89]
0.117
1.83 [0.82–4.09]
0.139
 Not available
40
16 (40.0)
1.0 (Ref)
 
1.0 (Ref)
 
Agec
 35+ years old
71
38 (53.5)
1.23 [0.62–2.47]
0.553
 20–34 years old
58
28 (48.3)
1.0 (Ref)
 
 
Gender
 Female
68
35 (51.5)
1.09 [0.55–2.17]
0.796
 Male
63
31 (49.2)
1.0 (Ref)
 
 
Qualification
 Nurse
92
53 (57.6)
2.72 [1.24–5.95]
0.012
2.71 [1.20–6.12]
0.017
 MD/CO/otherd
39
13 (33.3)
1.0 (Ref)
 
1.0 (Ref)
 
Exposure to IDSR interventions
Training
 Attended
80
43 (53.8)
1.41 [0.70–2.86]
0.335
 Did not attend
51
23 (45.1)
1.0 (Ref)
 
 
Case definition poster
 Displayed
90
52 (57.8)
2.64 [1.22–5.70]
0.013
2.24 [1.01–4.98]
0.048
 Not displayed
41
14 (34.2)
1.0 (Ref)
 
1.0 (Ref)
 
Technical guidelines
 Available
20
8 (40.0)
0.61 [0.23–1.61]
0.316
 Not available
111
58 (52.3)
1.0 (Ref)
 
 
Supervision in past 6 months
 Received
97
48 (49.5)
0.87 [0.40–1.90]
0.729
 Not received
34
18 (52.9)
1.0 (Ref)
 
 
aIncludes 65 dispensaries, 3 maternity homes, 18 medical clinics, and 6 nursing homes
bIncludes 29 health centers and 4 hospitals
cThe denominator excludes 2 health worker with missing age information
dOther includes: 1 Community Health Extension Worker, 1 health records officer, 1 public health officer, 1 Prevention of Mother to Child Transmission worker, and 6 laboratory technician/technologist
Abbreviations
aOR adjusted odds ratio, CO clinical officer, IDSR integrated disease surveillance and response, MD medical doctor

Discussion

Correct knowledge of standard case definitions is an important first step for successful implementation of any disease surveillance strategy. Our study, one of the first that examined and quantified the knowledge of IDSR standard case definitions in sub-Saharan Africa, revealed alarmingly low levels of knowledge in Kenya. Patient registers at health facilities are used as source document for evaluating disease surveillance reporting practices and health systems in general [35], and our study findings imply that the validity of the source documents may be overlooked. First, we found that knowledge of dengue is practically non-existent among health workers and their disease surveillance supervisors. We speculate that the relatively complex case definitions, lack of routine laboratory diagnosis to confirm dengue in rural health facilities, similarities with other mosquito-borne diseases such as malaria, and the possibility of perceived non-lethal nature of the disease may contribute to low knowledge. The findings are however not unique to our study sites since suboptimal knowledge of dengue has also been reported among health workers in high-income countries [36]. Similarly to dengue but even more surprising finding was found with respect to measles. Despite simple case definitions, only a quarter of supervisors and just one in ten health workers could state five clinical criteria, which have been promoted in Kenya over a decade. It should also be acknowledged that surveillance guidelines in Kenya include an ambiguous and unnecessary wording, “any person in whom a clinician suspects measles”, which undermines the validity of promoted case definitions and itself precludes standardization. Similar sentiments were expressed in an evaluation conducted in South Sudan [37]. The most unexpected finding was observed on dysentery where only half of the health workers were able to correctly state the simple criteria of “bloody diarrhea.” Health workers responses of other dysentery related symptoms such as “abdominal cramps and pains” may suggest the health workers are knowledgeable of the text book clinical features [38], but disregarding the IDSR guidelines.
Our predictor analysis examining factors for correct knowledge added further light on what may influence knowledge of dysentery. First, we found that nurses are significantly more knowledgeable compared to other cadres of health workers. One of the possible explanations is that health workers with greater pre-service clinical training are more likely to overrule guidelines, which has been shown in previous studies [39, 40]. Second, the presence of a simple job aid in the form of a case definition poster at a health facility was significantly associated with better knowledge. Reminders are shown to be effective intervention in other studies [41], and policy makers should prioritize such seemingly simple intervention. In addition, this study was conducted in the context of evaluating a text message intervention to enhance disease surveillance reporting [20] and reminder interventions through such channels but targeting health workers should also be explored in the future. Finally, exposure to either refresher training or supervision was not associated with greater knowledge of case definition. We do not think that these interventions are ineffective per se, but perhaps the sub-optimal quality of the training and supervision intervention may have contributed to the analysis results. The study did not have a component to measure the quality of training or resources to follow-up supervision mechanisms after training, but we speculate that these factors may have contributed to low knowledge levels. Moreover, the low knowledge levels of disease surveillance supervisors found in this study further elevates the levels of challenges faced in the field to promote adherence to IDSR standard case definitions.
Several study limitations should be acknowledged. First, the knowledge levels were self-reported by health workers and the study did not examine whether the health workers’ knowledge was translated into practice. We also did not examine the duration of professional experience that may have influenced the level of knowledge. Knowledge is however a prerequisite for correct practice and it is unlikely that health workers would adhere to guidelines. We also cannot confidently assume uniformity in diagnosis of suspected cases when knowledge of the standard case definition is not present. Second, we limited the analysis to three tracer diseases and applied a rather relaxed approach to interpreting the definitions. Given the low knowledge levels found overall in the study, stricter case definitions would have however yielded even lower knowledge results, and likely without changes to the interpretation of the findings. Third, the small sample size used in this study may have precluded showing significant associations when associations were truly present, and results should be interpreted with caution. Finally, while the study included a number of health workers from two areas in Kenya, the results are not nationally representative and cannot be generalized across the country.

Conclusion

Overall, the IDSR case definition knowledge needs to be further improved among both health workers and their supervisors, and the findings are likely to impact the reliability of routine surveillance reports generated from health facilities. The findings also suggest that simple intervention such as reminders are more effective than ad hoc trainings and routine supervision to ensure uniformed knowledge of case definitions. Further studies on examining effective methods of enhancing knowledge of IDSR standard case definitions are justified.

Acknowledgements

We thank the Disease Surveillance and Response Unit at the Ministry of Health in Kenya for their support on this study. We also thank the Kajiado and Busia County governments and the disease surveillance coordinators in the sub counties for their support. We are also grateful for the field interviewers and research assistants for their tireless work. This study is published with the permission of the Director of KEMRI.

Funding

The Japan International Cooperation Agency (JICA) and the Japan Agency for Medical Research and Development (AMED) supported this study under the Science and Technology Research Partnerships (SATREPS) project in Kenya (2012–2017). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
The Kenya Medical Research Institute (KEMRI) Ethical Review Committee (SSC 2523) provided ethical approval. Written informed consent was obtained from all participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Fidler DP, Gostin LO. The new international health regulations: an historic development for international law and public health. J Law Med Ethics. 2006;34(85–94):84. Fidler DP, Gostin LO. The new international health regulations: an historic development for international law and public health. J Law Med Ethics. 2006;34(85–94):84.
3.
Zurück zum Zitat Kasolo F, Yoti Z, Bakyaita N, Gaturuku P, Katz R, et al. IDSR as a platform for implementing IHR in African countries. Biosecur Bioterror. 2013;11:163–9.CrossRefPubMedPubMedCentral Kasolo F, Yoti Z, Bakyaita N, Gaturuku P, Katz R, et al. IDSR as a platform for implementing IHR in African countries. Biosecur Bioterror. 2013;11:163–9.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Ministry of Public Health and Sanitation (2012) Integrated disease surveillance and response in Kenya: technical guidelines 2012. Ministry of Public Health and Sanitation (2012) Integrated disease surveillance and response in Kenya: technical guidelines 2012.
5.
Zurück zum Zitat Perry HN, McDonnell SM, Alemu W, Nsubuga P, Chungong S, et al. Planning an integrated disease surveillance and response system: a matrix of skills and activities. BMC Med. 2007;5:24.CrossRefPubMedPubMedCentral Perry HN, McDonnell SM, Alemu W, Nsubuga P, Chungong S, et al. Planning an integrated disease surveillance and response system: a matrix of skills and activities. BMC Med. 2007;5:24.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Sow I, Alemu W, Nanyunja M, Duale S, Perry HN, et al. Trained district health personnel and the performance of integrated disease surveillance in the WHO African region. East Afr J Public Health. 2010;7:16–9.PubMed Sow I, Alemu W, Nanyunja M, Duale S, Perry HN, et al. Trained district health personnel and the performance of integrated disease surveillance in the WHO African region. East Afr J Public Health. 2010;7:16–9.PubMed
7.
Zurück zum Zitat Adokiya MN, Awoonor-Williams JK, Barau IY, Beiersmann C, Mueller O. Evaluation of the integrated disease surveillance and response system for infectious diseases control in northern Ghana. BMC Public Health. 2015;15:75.CrossRefPubMedPubMedCentral Adokiya MN, Awoonor-Williams JK, Barau IY, Beiersmann C, Mueller O. Evaluation of the integrated disease surveillance and response system for infectious diseases control in northern Ghana. BMC Public Health. 2015;15:75.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Adokiya MN, Awoonor-Williams JK, Beiersmann C, Muller O. The integrated disease surveillance and response system in northern Ghana: challenges to the core and support functions. BMC Health Serv Res. 2015;15:288.CrossRefPubMedPubMedCentral Adokiya MN, Awoonor-Williams JK, Beiersmann C, Muller O. The integrated disease surveillance and response system in northern Ghana: challenges to the core and support functions. BMC Health Serv Res. 2015;15:288.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Adokiya MN, Awoonor-Williams JK, Beiersmann C, Muller O. Evaluation of the reporting completeness and timeliness of the integrated disease surveillance and response system in northern Ghana. Ghana Med J. 2016;50:3–8.CrossRefPubMedPubMedCentral Adokiya MN, Awoonor-Williams JK, Beiersmann C, Muller O. Evaluation of the reporting completeness and timeliness of the integrated disease surveillance and response system in northern Ghana. Ghana Med J. 2016;50:3–8.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Lukwago L, Nanyunja M, Ndayimirije N, Wamala J, Malimbo M, et al. The implementation of integrated disease surveillance and response in Uganda: a review of progress and challenges between 2001 and 2007. Health Policy Plan. 2013;28:30–40.CrossRefPubMed Lukwago L, Nanyunja M, Ndayimirije N, Wamala J, Malimbo M, et al. The implementation of integrated disease surveillance and response in Uganda: a review of progress and challenges between 2001 and 2007. Health Policy Plan. 2013;28:30–40.CrossRefPubMed
11.
Zurück zum Zitat Phalkey RK, Kroll M, Dutta S, Shukla S, Butsch C, et al. Knowledge, attitude, and practices with respect to disease surveillance among urban private practitioners in Pune, India. Glob Health Action. 2015;8:28413.CrossRefPubMed Phalkey RK, Kroll M, Dutta S, Shukla S, Butsch C, et al. Knowledge, attitude, and practices with respect to disease surveillance among urban private practitioners in Pune, India. Glob Health Action. 2015;8:28413.CrossRefPubMed
12.
Zurück zum Zitat McDonnell SM, Perry HN, McLaughlin B, McCurdy B, Parrish RG. Information for disasters, information disasters, and disastrous information. Prehosp Disaster Med. 2007;22:406–13.CrossRefPubMed McDonnell SM, Perry HN, McLaughlin B, McCurdy B, Parrish RG. Information for disasters, information disasters, and disastrous information. Prehosp Disaster Med. 2007;22:406–13.CrossRefPubMed
13.
Zurück zum Zitat Mwatondo AJ, Ng'ang'a Z, Maina C, Makayotto L, Mwangi M, et al. Factors associated with adequate weekly reporting for disease surveillance data among health facilities in Nairobi County, Kenya, 2013. Pan Afr Med J. 2016;23:165.CrossRefPubMedPubMedCentral Mwatondo AJ, Ng'ang'a Z, Maina C, Makayotto L, Mwangi M, et al. Factors associated with adequate weekly reporting for disease surveillance data among health facilities in Nairobi County, Kenya, 2013. Pan Afr Med J. 2016;23:165.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Nnebue CC, Onwasigwe CN, Adogu PO, Onyeonoro UU. Awareness and knowledge of disease surveillance and notification by health-care workers and availability of facility records in Anambra state, Nigeria. Niger Med J. 2012;53:220–5.CrossRefPubMedPubMedCentral Nnebue CC, Onwasigwe CN, Adogu PO, Onyeonoro UU. Awareness and knowledge of disease surveillance and notification by health-care workers and availability of facility records in Anambra state, Nigeria. Niger Med J. 2012;53:220–5.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Nnebue CC, Onwasigwe CN, Ibeh CC, Adogu PO. Effectiveness of data collection and information transmission process for disease notification in Anambra state, Nigeria. Niger J Clin Pract. 2013;16:483–9.CrossRefPubMed Nnebue CC, Onwasigwe CN, Ibeh CC, Adogu PO. Effectiveness of data collection and information transmission process for disease notification in Anambra state, Nigeria. Niger J Clin Pract. 2013;16:483–9.CrossRefPubMed
16.
Zurück zum Zitat Nsubuga P, Brown WG, Groseclose SL, Ahadzie L, Talisuna AO, et al. Implementing integrated disease surveillance and response: four African countries’ experience, 1998-2005. Glob Public Health. 2010;5:364–80.CrossRefPubMed Nsubuga P, Brown WG, Groseclose SL, Ahadzie L, Talisuna AO, et al. Implementing integrated disease surveillance and response: four African countries’ experience, 1998-2005. Glob Public Health. 2010;5:364–80.CrossRefPubMed
17.
Zurück zum Zitat Nsubuga P, Eseko N, Tadesse W, Ndayimirije N, Stella C, et al. Structure and performance of infectious disease surveillance and response, United Republic of Tanzania, 1998. Bull World Health Organ. 2002;80:196–203.PubMedPubMedCentral Nsubuga P, Eseko N, Tadesse W, Ndayimirije N, Stella C, et al. Structure and performance of infectious disease surveillance and response, United Republic of Tanzania, 1998. Bull World Health Organ. 2002;80:196–203.PubMedPubMedCentral
18.
Zurück zum Zitat Phalkey RK, Yamamoto S, Awate P, Marx M. Challenges with the implementation of an integrated disease surveillance and response (IDSR) system: systematic review of the lessons learned. Health Policy Plan. 2015;30(1):131–43.CrossRefPubMed Phalkey RK, Yamamoto S, Awate P, Marx M. Challenges with the implementation of an integrated disease surveillance and response (IDSR) system: systematic review of the lessons learned. Health Policy Plan. 2015;30(1):131–43.CrossRefPubMed
19.
Zurück zum Zitat Sahal N, Reintjes R, Aro AR. Review article: communicable diseases surveillance lessons learned from developed and developing countries: literature review. Scand J Public Health. 2009;37:187–200.CrossRefPubMed Sahal N, Reintjes R, Aro AR. Review article: communicable diseases surveillance lessons learned from developed and developing countries: literature review. Scand J Public Health. 2009;37:187–200.CrossRefPubMed
20.
Zurück zum Zitat Toda M, Njeru I, Zurovac D, Tipo SO, Kareko D, et al. Effectiveness of a mobile short-message-service-based disease outbreak alert system in Kenya. Emerg Infect Dis. 2016;22:711–5.CrossRefPubMedPubMedCentral Toda M, Njeru I, Zurovac D, Tipo SO, Kareko D, et al. Effectiveness of a mobile short-message-service-based disease outbreak alert system in Kenya. Emerg Infect Dis. 2016;22:711–5.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kebede S, Duales S, Yokouide A, Alemu W. Trends of major disease outbreaks in the African region, 2003-2007. East African journal of public health. 2010;7:20–9.PubMed Kebede S, Duales S, Yokouide A, Alemu W. Trends of major disease outbreaks in the African region, 2003-2007. East African journal of public health. 2010;7:20–9.PubMed
22.
Zurück zum Zitat Njuguna C, Njeru I, Mgamb E, Langat D, Makokha A, et al. Enteric pathogens and factors associated with acute bloody diarrhoea, Kenya. BMC Infect Dis. 2016;16:477.CrossRefPubMedPubMedCentral Njuguna C, Njeru I, Mgamb E, Langat D, Makokha A, et al. Enteric pathogens and factors associated with acute bloody diarrhoea, Kenya. BMC Infect Dis. 2016;16:477.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Pavlinac PB, Denno DM, John-Stewart GC, Onchiri FM, Naulikha JM, et al. Failure of syndrome-based diarrhea management guidelines to detect Shigella infections in Kenyan children. J Pediatric Infect Dis Soc. 2016;5:366–74.CrossRefPubMed Pavlinac PB, Denno DM, John-Stewart GC, Onchiri FM, Naulikha JM, et al. Failure of syndrome-based diarrhea management guidelines to detect Shigella infections in Kenyan children. J Pediatric Infect Dis Soc. 2016;5:366–74.CrossRefPubMed
24.
Zurück zum Zitat Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis. 2014;59:933–41.CrossRefPubMedPubMedCentral Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis. 2014;59:933–41.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Centers for Disease C, Prevention. Measles--horn of Africa, 2010-2011. MMWR Morb Mortal Wkly Rep. 2012;61:678–84. Centers for Disease C, Prevention. Measles--horn of Africa, 2010-2011. MMWR Morb Mortal Wkly Rep. 2012;61:678–84.
26.
Zurück zum Zitat Navarro-Colorado C, Mahamud A, Burton A, Haskew C, Maina GK, et al. Measles outbreak response among adolescent and adult Somali refugees displaced by famine in Kenya and Ethiopia, 2011. J Infect Dis. 2014;210:1863–70.CrossRefPubMed Navarro-Colorado C, Mahamud A, Burton A, Haskew C, Maina GK, et al. Measles outbreak response among adolescent and adult Somali refugees displaced by famine in Kenya and Ethiopia, 2011. J Infect Dis. 2014;210:1863–70.CrossRefPubMed
28.
Zurück zum Zitat Blaylock JM, Maranich A, Bauer K, Nyakoe N, Waitumbi J, et al. The seroprevalence and seroincidence of dengue virus infection in western Kenya. Travel Med Infect Dis. 2011;9:246–8.CrossRefPubMed Blaylock JM, Maranich A, Bauer K, Nyakoe N, Waitumbi J, et al. The seroprevalence and seroincidence of dengue virus infection in western Kenya. Travel Med Infect Dis. 2011;9:246–8.CrossRefPubMed
29.
Zurück zum Zitat Sutherland LJ, Cash AA, Huang YJ, Sang RC, Malhotra I, et al. Serologic evidence of arboviral infections among humans in Kenya. Am J Trop Med Hyg. 2011;85:158–61.CrossRefPubMedPubMedCentral Sutherland LJ, Cash AA, Huang YJ, Sang RC, Malhotra I, et al. Serologic evidence of arboviral infections among humans in Kenya. Am J Trop Med Hyg. 2011;85:158–61.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Mease LE, Coldren RL, Musila LA, Prosser T, Ogolla F, et al. Seroprevalence and distribution of arboviral infections among rural Kenyan adults: a cross-sectional study. Virol J. 2011;8:371.CrossRefPubMedPubMedCentral Mease LE, Coldren RL, Musila LA, Prosser T, Ogolla F, et al. Seroprevalence and distribution of arboviral infections among rural Kenyan adults: a cross-sectional study. Virol J. 2011;8:371.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Konongoi L, Ofula V, Nyunja A, Owaka S, Koka H, et al. Detection of dengue virus serotypes 1, 2 and 3 in selected regions of Kenya: 2011-2014. Virol J. 2016;13:182.CrossRefPubMedPubMedCentral Konongoi L, Ofula V, Nyunja A, Owaka S, Koka H, et al. Detection of dengue virus serotypes 1, 2 and 3 in selected regions of Kenya: 2011-2014. Virol J. 2016;13:182.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Baba M, Villinger J, Masiga DK. Repetitive dengue outbreaks in East Africa: a proposed phased mitigation approach may reduce its impact. Rev Med Virol. 2016;26:183–96.CrossRefPubMed Baba M, Villinger J, Masiga DK. Repetitive dengue outbreaks in East Africa: a proposed phased mitigation approach may reduce its impact. Rev Med Virol. 2016;26:183–96.CrossRefPubMed
33.
Zurück zum Zitat Lutomiah J, Barrera R, Makio A, Mutisya J, Koka H, et al. Dengue outbreak in Mombasa City, Kenya, 2013-2014: entomologic investigations. PLoS Negl Trop Dis. 2016;10:e0004981.CrossRefPubMedPubMedCentral Lutomiah J, Barrera R, Makio A, Mutisya J, Koka H, et al. Dengue outbreak in Mombasa City, Kenya, 2013-2014: entomologic investigations. PLoS Negl Trop Dis. 2016;10:e0004981.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Ngoi CN, Price MA, Fields B, Bonventure J, Ochieng C, et al. Dengue and Chikungunya virus infections among young febrile adults evaluated for acute HIV-1 infection in coastal Kenya. PLoS One. 2016;11:e0167508.CrossRefPubMedPubMedCentral Ngoi CN, Price MA, Fields B, Bonventure J, Ochieng C, et al. Dengue and Chikungunya virus infections among young febrile adults evaluated for acute HIV-1 infection in coastal Kenya. PLoS One. 2016;11:e0167508.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Amoakoh-Coleman M, Kayode GA, Brown-Davies C, Agyepong IA, Grobbee DE, et al. Completeness and accuracy of data transfer of routine maternal health services data in the greater Accra region. BMC Res Notes. 2015;8:114.CrossRefPubMedPubMedCentral Amoakoh-Coleman M, Kayode GA, Brown-Davies C, Agyepong IA, Grobbee DE, et al. Completeness and accuracy of data transfer of routine maternal health services data in the greater Accra region. BMC Res Notes. 2015;8:114.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Adam JK, Abeyta R, Smith B, Gaul L, Thomas DL, et al. Clinician survey to determine knowledge of dengue and clinical management practices, Texas, 2014. Am J Trop Med Hyg. 2017;96(3):708–14.PubMed Adam JK, Abeyta R, Smith B, Gaul L, Thomas DL, et al. Clinician survey to determine knowledge of dengue and clinical management practices, Texas, 2014. Am J Trop Med Hyg. 2017;96(3):708–14.PubMed
38.
Zurück zum Zitat Christopher PR, David KV, John SM, Sankarapandian V. Antibiotic therapy for Shigella dysentery. Cochrane Database Syst Rev. 2010;(8):CD006784. Christopher PR, David KV, John SM, Sankarapandian V. Antibiotic therapy for Shigella dysentery. Cochrane Database Syst Rev. 2010;(8):CD006784.
39.
Zurück zum Zitat Zurovac D, Guintran JO, Donald W, Naket E, Malinga J, et al. Health systems readiness and management of febrile outpatients under low malaria transmission in Vanuatu. Malar J. 2015;14:489.CrossRefPubMedPubMedCentral Zurovac D, Guintran JO, Donald W, Naket E, Malinga J, et al. Health systems readiness and management of febrile outpatients under low malaria transmission in Vanuatu. Malar J. 2015;14:489.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Steinhardt LC, Onikpo F, Kouame J, Piercefield E, Lama M, et al. Predictors of health worker performance after integrated Management of Childhood Illness training in Benin: a cohort study. BMC Health Serv Res. 2015;15:276.CrossRefPubMedPubMedCentral Steinhardt LC, Onikpo F, Kouame J, Piercefield E, Lama M, et al. Predictors of health worker performance after integrated Management of Childhood Illness training in Benin: a cohort study. BMC Health Serv Res. 2015;15:276.CrossRefPubMedPubMedCentral
Metadaten
Titel
Health worker knowledge of Integrated Disease Surveillance and Response standard case definitions: a cross-sectional survey at rural health facilities in Kenya
verfasst von
Mitsuru Toda
Dejan Zurovac
Ian Njeru
David Kareko
Matilu Mwau
Kouichi Morita
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Public Health / Ausgabe 1/2018
Elektronische ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5028-2

Weitere Artikel der Ausgabe 1/2018

BMC Public Health 1/2018 Zur Ausgabe