Skip to main content
Erschienen in: BMC Gastroenterology 1/2015

Open Access 01.12.2015 | Review

Hepatic stellate cells: central modulators of hepatic carcinogenesis

verfasst von: Alexandra I Thompson, Kylie P Conroy, Neil C Henderson

Erschienen in: BMC Gastroenterology | Ausgabe 1/2015

Abstract

Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study the relationship between a diseased stroma and promotion of carcinogenesis, as 90 % of HCCs arise in a cirrhotic liver. Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing tailored, cell-specific therapy for HCC.
Hinweise

Competing interests

The authors declare that they have no competing interests. Author Contributions AIT, KPC and NCH conceived, designed and wrote the manuscript. All authors read and approved the final manuscript.

Authors’ information

Alexandra and Kylie are first joint authors.
Abkürzungen
B7-H1
human B7 homolog 1
CAF
Cancer-associated fibroblasts
CCl4
Carbon tetrachloride
DEN
Diethylnitrosamine
ECM
Extracellular matrix
EGF
Epidermal growth factor
EMT
Epithelial-mesenchymal-transition
FAK
Focal adhesion kinase
FGF
Fibroblast growth factor
HCC
Hepatocellular carcinoma
HGF
Hepatocyte growth factor
HSC
Hepatic stellate cells
IFNγ
Interferon gamma
IGF
Insulin-like growth factor
iHSC
Intratumoural HSC
IL
Interleukin
MMPs
Matrix metalloproteinases
MDSC
Myeloid-derived suppressor cells
PAMPs
Pathogen-associated molecular patterns
PI3K
Phosphatidylinositol 3-kinase
PDGF
Platelet-derived growth factor
PDL-1
Programmed death ligand 1
TLRs
Toll-like receptors
TGF-β
Transforming growth factor-beta
TIMP-1
Tissue inhibitors of metalloproteinases 1
Tregs
Regulatory T-cells
VEGF
Vascular endothelial growth factor

Introduction

Hepatocellular carcinoma (HCC) represents the second most common cause of death from cancer worldwide, and was responsible for nearly 746 000 deaths in 2012 [13]. In patients with cirrhosis, HCC is the most common cause of death. Worldwide, chronic hepatitis B virus infection remains the major risk factor, with 80 % of cases occurring in eastern Asia and sub-Saharan Africa. In most countries, the mortality rate of HCC approximates the incidence, which is increasing [46]. This is partly due to the rising prevalence of advanced fatty liver disease and chronic hepatitis C, alongside other risk factors such as hepatitis B infection and alcohol-related cirrhosis. Some progress has been made with prevention, for example emerging antiviral agents and vaccination for hepatitis B. However, the vast majority of HCC cases are associated with fibrosis, and 90 % of tumours develop in cirrhotic livers [4, 5, 710]. Furthermore, liver disease severity markers correlate with tumour formation [46, 9, 1114]. Currently there are no effective anti-fibrotic therapies available to halt the fibrosis-cirrhosis-HCC continuum. Patients who present with early disease may benefit from resection, transplantation or loco-regional therapy, however many are unsuitable for curative treatment due to advanced malignancy, or the severity of co-existing liver disease. The multi-tyrosine kinase inhibitor sorafenib is the only available systemic chemotherapy agent with survival benefit for advanced stage HCC, however its use is limited to those with well-preserved liver function [11]. Whilst there is scope to optimize our use of existing treatments, for example by targeting tumours earlier and combining local and systemic approaches, efforts to broaden our chemotherapy armamentarium have been disappointing. Numerous molecular therapies with robust preclinical evidence for efficacy have failed to show benefit in clinical trials. This may in part reflect the abnormal tumour microenvironment, which acts to support the persistence and growth of cancer cells, and has resulted in the peri-tumoural stroma and its cellular inhabitants becoming an intense area of study in the search for efficacious therapies for HCC.
In this review we focus on the complex interplay between hepatic stellate cell (HSC) biology and hepatocarcinogenesis. The mechanisms by which HSC may facilitate HCC development and progression are likely to involve diverse biological processes including regulation of extracellular matrix (ECM) turnover, growth factor and cytokine signalling, promotion of tumour angiogenesis and immunomodulation. We will discuss how this burgeoning area of research may yield exciting new therapies for patients with HCC.

Role of the stroma in hepatocarcinogenesis

The stroma is a central component of both hepatic fibrosis and carcinogenesis, and is a key player in the cellular and molecular mechanisms linking these processes. It is still unclear, however, whether liver fibrosis specifically promotes HCC, or if it is merely a wound-healing by-product of chronic hepatic injury and inflammation, with no direct impact on liver cancer formation [8, 1315]. Evidence would suggest the former; the identification of gene signatures from non-tumoural tissue correlating with late recurrence of HCC, supports the concept of a ‘field effect’ in cancer development [9, 11, 13, 14, 1625].
Following liver injury, quiescent HSC become activated to matrix-secreting myofibroblasts and are the major source of ECM proteins during liver fibrogenesis [8, 13, 26]. As master regulators of the fibrotic matrix, HSC may therefore directly influence HCC formation via effects on the tumour stroma. Furthermore, it is well established in other systems that complex intercellular signalling networks exist between tumours and cancer-associated fibroblasts, contributing to cancer initiation, growth and progression [8, 13, 1619, 2126]. Tumour secretion of cytokines such as transforming growth factor-β (TGF-β), stimulate myofibroblast activation leading to profound changes in ECM composition and organization. Therefore, HSC or HSC-secreted products may be either permissive or necessary for oncogenesis and HCC persistence. In other cancers, the identification of pathways that the tumour depends upon for growth and proliferation, so-called “oncogenic addiction loops” has led to revolutionary therapeutic approaches. The landmark discovery of the protein kinase oncogene BCR-ABL and subsequent development of imatinib, allowed curative treatment of chronic myeloid leukaemia, and has paved the way for targeted therapies in other malignancies [27, 28]. Despite extensive genomic profiling of HCC, targeting other non-kinase oncogenes such as RAS and MYC has proven more challenging. The identification of promising candidate pathways targeting inhibition of a driving molecular alteration, which is also applicable in a significant proportion of patients, remains an elusive yet alluring goal [29]. Furthermore, the microenvironment may modulate susceptibility to inhibition of specific oncogenic pathways. Straussman et al. developed a co-culture system to test the ability of 23 stromal cell types to influence the susceptibility of 45 different cancer cell lines to 35 therapeutic agents [7]. They demonstrated that stroma-mediated resistance to anti-cancer drugs (especially targeted agents) is common. In particular, although melanomas expressing mutant BRAF respond to vemurafenib, hepatocyte growth factor (HGF) secretion by peri-tumoural stromal cells correlated with resistance to vemurafenib-induced cell death [7, 30, 31]. This illustrates the importance of stroma-derived resistance to chemotherapy, in many different organs and disease settings. Therefore, in the search for key driver mutations in HCC, the effect of the microenvironment cannot be underestimated. This may necessitate combinations of chemotherapeutic agents, to neutralize specific stromal interactions, resulting in greater overall clinical efficacy.

HSC in HCC

It is well-known that activated HSC infiltrate HCC stroma and peri-tumoural tissue, and are localised around tumour sinusoids, fibrous septae and the tumour capsule [3234]. Activated HSC have also been identified around the periphery of dysplastic nodules within the liver [35]. Following activation to the myofibroblast phenotype, HSC secrete substantial amounts of ECM proteins into the stroma. Fibrotic matrix deposition and degradation by HSC is tightly regulated in the liver. For example, tissue inhibitors of metalloproteinases 1 (TIMP-1) secretion favours scar deposition by inhibiting the endogenous matrix-degrading activities of various matrix metalloproteinases (MMPs). However, the balance of TIMPs and MMPs is complex; activated HSC are also a major source of MMP-2 in vitro, elevation of which has been correlated with increased tumoural collagen I, extracellular remodeling, and HCC progression [12, 36, 37]. Interestingly, the biomechanics of the ECM are also relevant. Differentiation of primary hepatocytes is inhibited by culture on a stiff collagen gel, with accompanying promotion of proliferation [38, 39]. In vitro increasing matrix stiffness has also been shown to directly stimulate growth of the HCC cell lines, HuH-7 and HepG2, and reduce chemotherapy-induced apoptosis [40]. Integrin β1 signalling was an integral driver of this response, via Fak, Erk, Pkb/Akt and Stat3 pathways [40]. Furthermore, stromal stiffness is self-perpetuating, causing stellate cell activation, and therefore further fibrosis [15, 41, 42]. Data in humans support these experimental findings. Ultrasound elastography has demonstrated that measurements of liver stiffness predict HCC development [4346]. Similarly, established HCC demonstrates further increases in matrix stiffness, more so than the peri-tumoural hepatic parenchyma [47]. The mechanical tension provided by an altered ECM is likely to act on HCC development and progression via outside-in signalling, for example by integrins, (discussed below) to support tumour growth and progression. This has also been observed in other malignancies, such as a mouse model of breast cancer [48]. Hepatocarcinogenesis in the context of cirrhosis, however, is a unique model of diseased ECM, and an ideal setting to further characterise and potentially target stromal drivers.

Integrins as mediators of HSC/HCC crosstalk

Consisting of an α- and β-subunit, integrins form a family of transmembrane receptors that ‘integrate’ the extracellular and intracellular environments through binding ECM and the cytoskeleton [49]. Via transduction of signals between the internal and external cellular domains, integrins regulate cell adhesion, spreading, migration, proliferation and differentiation as well as ECM deposition and remodelling [50].
In activated HSC downstream integrin signalling, via the focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, promotes ECM deposition [51]. Increased ECM stiffness in vitro enhances integrin expression and activity and focal adhesion formation, [48] with subsequent activation of downstream integrin signalling within the hepatocyte that may nurture the growth and survival of precancerous cells. Matrix stiffness has been reported to dictate differentiation and chemotherapeutic resistance of human HCC cell lines, with softer matrices abrogating hepatoma proliferation and stiffer platforms promoting proliferation [40, 52]. In an elegant in vivo study, cells from the HCC cell line McA-RH7777 were implanted into rats treated with carbon tetrachloride (CCl4) for varying lengths of time, thereby modelling tumourigenesis on different liver stiffness backgrounds. Microarray analysis of the tumours demonstrated a positive correlation between matrix rigidity and tumour angiogenesis [52]. Correlations between collagen expression, integrin expression and tumourigenicity have also been reported in human HCC and murine HCC models [53, 54]. Characterisation of integrin expression in hepatoma cell lines has revealed a high degree of heterogeneity in integrin expression [55]. Comparing two clinically relevant mouse models of HCC, platelet-derived growth factor (PDGF)-C overexpressing and PTEN null mice, Lai et al. demonstrated that each model had a specific pattern of integrin gene expression, further indicating HCC heterogeneity [54].
The β1 integrin subfamily has been extensively studied in the context of HCC, and hepatocarcinogenesis is associated with the enhanced expression of integrins α1β1, α2β1 and α3β1 and the acquisition of a migratory phenotype by hepatocytes [5658]. Further, assessment of integrin β1 expression in human HCC tissues demonstrated a positive correlation with ECM stiffness, pathological grade and metastasis [59]. Blockade of integrin β1 in vitro significantly abrogates migration and invasion of HCC cell lines induced by TGF-β1 and epidermal growth factor (EGF) [58, 60]. Conversely, overexpression of integrin β1 has been reported to enhance HepG2 cell migration [61]. More recently it has been reported that integrin β1 is involved in the transduction of ECM signalling into HCC cells, resulting in the downstream activation of angiogenic signalling [52]. Utilising a high-stiffness gel to culture HCC cell lines Dong et al. found that vascular endothelial growth factor (VEGF) expression is suppressed by treatment with an integrin β1-specific antibody [52]. SERPINA5 (Protein C inhibitor), a member of the serine protease inhibitor superfamily know to have anti-metastatic and anti-angiogenic effects, [62] is down-regulated in human HCC tissues and further assessment of it’s anti-tumourigenic activity demonstrated that this was mediated by effects on the fibronectin-integrin β1 signalling pathway [63]. The relationship between integrin β1 and ECM stiffness in HCC is further highlighted in a study where resistance of the HCC cell line, Hep3B, to sorafenib was found to be mediated by integrin β1 and its downstream effector JNK [64].
Other integrin subunits, in addition to β1, have been reported to have key roles in HCC progression. Fan et al. have reported integrin α6 expression to strongly correlate with HCC metastasis in humans [65]. Integrin α6 overexpression in HCC cell lines (utilising a viral short hairpin RNA-mediated strategy) revealed that integrin α6 can form a complex with CD151, a tetraspanin protein also associated with HCC invasion [65]. Further investigation in vivo indicates that the CD151/α6 complex stimulates the PI3K-Akt signalling pathway leading to enhanced epithelial-mesenchymal-transition (EMT) of HCC cell lines [65].
Crosstalk between integrins and TGF-β signalling has also been studied in hepatocarcinogenesis. TGF-β receptor I (TGF-β RI) activation has been reported to promote HCC cell invasiveness through phosphorylation of the intracellular portion of the β1 subunit of the α5β1 integrin via Smad-2 and Smad-3, leading to an inside-out conformational change and stimulating vascular invasion [66]. Up-regulation of other integrins including α3β1 and α6β1 by TGF-β1 has also been reported, leading to increased tumour invasiveness into surrounding tissues [67]. Furthermore specific crosstalk between fibronectin-binding integrins and TGF-β1 can promote cell cycle progression in HCC cells through activation of c-Src [68]. Crosstalk between integrins, growth factor receptors and ECM proteins including collagen, have further been shown to alter downstream signal transduction pathways such as Smad, promoting both hepatocyte proliferation and sustaining HSC activation [69, 70]. TGF-β1 has also been reported to modulate α5β1 expression and synergistically enhance integrin-mediated FAK phosphorylation and cell adhesion in the HCC cell line SMMC-7721 [71]. Therefore, integrins (via modulation of TGF-β signalling) may render hepatocytes less sensitive to pro-apoptotic signals in early HCC stages, and more sensitive to tumourigenic differentiation and metastasis formation in advanced HCC.

HSC growth factor signalling

HSC have been shown to favour HCC tumourigenicity, potentially as a result of a change in their secretory phenotype upon activation. In vitro studies, using conditioned media from activated HSC, have consistently reported increased proliferation, migration and invasion of tumour cells [7274]. Isolation and subsequent co-culture of human intratumoural HSC with hepatoma cell lines enhanced their viability and migratory capacity [72]. Furthermore, co-transplantation with HCC cells into nude mice promoted tumour formation and growth [75]. Utilising both co-culture and conditioned media from primary human HSC Giannelli and colleagues determined Laminin-5 to be a mediator of HSC-induced HCC migration via its activation of the MEK/ERK pathway [76]. This is supported by in vivo experiments, in which co-transplantation of murine activated HSC with murine HCC cells (H22 line) into immunocompetent mice resulted in significantly larger tumour volumes [73]. Furthermore, implantation of human HCC cell lines (PLC and Hep3B) into nude mice did not form tumours unless activated HSC were concurrently implanted [72]. HepG2 cells did form tumours when implanted alone, however tumour growth was more rapid when co-transplanted with activated HSC [72]. Activated HSC secrete a broad range of growth factors including HGF, TGF-β, fibroblast growth factor (FGF), EGF, VEGF and insulin-like growth factor (IGF). The following sections discuss how these growth factors are involved in HCC pathogenesis.

Hepatocyte Growth Factor

HGF is expressed by HSC and myofibroblasts, [77, 78] and is a highly potent hepatocyte growth factor regulating cell proliferation, migration, survival and angiogenesis [7982]. As such it is widely regarded as a key factor for tumour cell invasion and metastasis [83]. HGF binding to its receptor, c-MET, induces receptor homodimerization and a subsequent phosphorylation cascade. A transmembrane receptor tyrosine kinase, c-MET is found in 20-48 % of HCCs, [8486] and has been shown to be expressed by multiple HCC cell lines [72]. Correlations between increased c-MET and HCC tumour size or invasiveness of HCC have been reported in some studies [87, 88]. c-MET overexpression is also associated with a reduced five-year HCC survival, and a c-MET-regulated expression signature has been reported to define a subset of patients with poor prognosis and an aggressive phenotype [89, 90]. Within HCC tumours, activated HSC have been found to initiate signalling pathways downstream of c-MET, including NF-κB and ERK leading to tumour proliferation and migration [72, 91].
The pro-tumourigenic activity of fibroblast-secreted HGF has also been reported in vitro. Conditioned media from isolated and activated HSC, pre-incubated with anti-HGF antibodies, was found to abrogate the proliferative and migration-inducing effects on HCC cell lines, seen in non-treated conditioned media [72]. This has also been demonstrated in cancer-associated fibroblasts (CAF) isolated from HCC, where treatment of CAF-conditioned media with an anti-HGF antibody significantly reduced HCC proliferation in Hep3B and MHCC97L cell lines [74]. Moreover, a HGF/c-MET specific antagonist, NK4, has been found to inhibit markedly the fibroblast-induced invasion of cancer cells, both in vitro and in vivo, [9294] although this has yet to be translated into the clinical setting. A murine model of HCC with similarities to the human disease was recently developed, in which progressive fibrosis and cirrhosis, initiated by ectopic expression of PDGF-C, precedes hepatocyte dysplasia and eventual HCC development [95]. Analysis of these PDGF-C transgenic mice demonstrated that expression of hepatic HGF and its receptor were elevated at the time point at which dysplastic foci are present, further suggesting a pro-tumourigenic role for HGF. Activation of HGF/c-MET signalling has also been shown to enhance HCC chemoresistance. Conditioned media from the activated HSC cell line LX-2 enhanced resistance of the HCC cell line Hep3B to the chemotherapeutic agent cisplatin, an effect mediated by HGF [96]. Tumour cells may also potentiate pro-metastatic c-MET signalling via an autocrine mechanism involving TIMP-1, leading to downstream expression of metastasis-promoting genes [97, 98].
However, HGF signalling is not unidirectional. A high level of bi-directional crosstalk between tumour cells and stromal cells, in particular fibroblasts, has been reported. Nakamura and colleagues have reported the expression of HGF inducers in several carcinoma cell lines, including squamous cell carcinoma, human epidermoid carcinoma, human non-small cell lung cancer cells, human cholangiocarcinoma cells, and SBC-3 human small cell lung carcinoma cells [99]. These HGF inducers include interleukin (IL)-1β, FGF, PDGF and TGF-α and were reported to up-regulate HGF expression by stromal fibroblasts [99, 100]. Taken together, these studies highlight that HGF and aberrant c-MET signalling have a critical role in mediating the bi-directional crosstalk between HSC and tumour cells during hepatocarcinogenesis.

Transforming growth factor-β

The large latent TGF-β complex is secreted by most cell types, including human HSC and hepatocytes [101, 102] and fixed in the ECM by transglutaminase-dependent linkage of latent TGF-β binding protein to fibronectin and other ECM proteins, forming a reservoir of latent TGF-β. In the context of HCC, it has been suggested that defective TGF-β signalling promotes tumourigenesis secondary to reduced responsiveness to the anti-proliferative effects of TGF-β signalling [103, 104]. However, TGF-β appears to exhibit multiple roles in HCC pathogenesis. Tumour-suppressor functions are observed in the early stages of liver damage and regeneration, whereas during cancer progression, TGF-β may exacerbate tumour invasiveness and metastatic behavior [105]. It has further been demonstrated that TGF-β and PDGF signaling crosstalk supports EMT and is crucial for tumour growth and the acquisition of an invasive phenotype [106].
The survival and malignancy of HCC cell lines, including Huh7 and HepG2, have been reported to require autocrine TGF-β signalling, with exogenous TGF-β leading to growth inhibition of HCC cells [107]. Utilising HCC cell lines, Meindl-Beinker et al. revealed a heterogeneic response to TGF-β, reflective of different stages and mechanisms of disease. Variation between cell lines in their endogenous TGF-β and Smad7 levels, and their transcriptional activity of Smad3, was related to the maintenance of TGF-β cytostatic activity. In particular, the Hep3B, HepG2 and PLC hepatoma cell lines were found to have low TGF-β and Smad7 levels and strong Smad3 transcriptional activity and were thus sensitive to TGF-β cytostatic activity, representative of the early stages of chronic liver disease [108]. In an analysis of TGF-β gene expression in HCC patients, Coulouarn et al. reported that those tumours displaying an invasive phenotype and increased recurrence were characterized by a late TGF-β signalling signature, with transcriptional activation of genes associated with matrix remodelling and cell adhesion [109].
Therefore, as the role of TGF-β in HCC pathogenesis appears to be highly context-dependent, exhibiting both pro- and anti-tumoural activity, it is highly unlikely that pan-TGF-β blockade will provide a useful therapeutic avenue in HCC treatment. More selective strategies to interfere with TGF-β signalling, perhaps even at a cell-specific level, will likely be required to modulate this signalling pathway for therapeutic gain in the context of HCC.

Epiregulin

The gut microbiome is increasingly recognized as a powerful modulator of fibrosis, cirrhosis, and infectious complications in chronic liver disease. Much interest is currently focused on the translocation of bacterial pathogen-associated molecular patterns (PAMPs), which activate inflammatory responses through Toll-like receptors (TLRs). Recently Dapito et al. demonstrated that Tlr4mut mice (harbouring non-functional TLR4) that received diethylnitrosamine (DEN) and CCl4 show 80-90 % reduction in HCC tumour size and number, compared with mice expressing wild-type TLR4 [110]. Gut sterilisation significantly reduced this effect whereas LPS treatment enhanced it, suggesting a role for the LPS-TLR4 pathway in promotion of hepatocarcinogenesis. Interestingly, alongside hepatocytes, HSC were identified as candidates for TLR4-dependent tumour promotion in the chronically injured liver. LPS and the gut microbiome were found to induce HSC activation, resulting in production of the mitogens HGF and epiregulin, which likely act on malignant hepatocytes. Epiregulin is a member of the EGF family, and results in EGF receptor and human epidermal growth factor receptor 2 activation during early stages of DEN/CCl4 carcinogenesis, whereas it reduces hepatocyte apoptosis by NF-KB nuclear translocation during later stages [110, 111]. This suggests that there may be merit in evaluating whether long-term antibiotic treatment confers any protection against HCC development. This could initially be investigated by following up patients with cirrhosis on long-term prophylaxis for spontaneous bacterial peritonitis or encephalopathy, although identifying a comparable control group may prove challenging.

HSC and angiogenesis

Angiogenesis has a critical role in HCC initiation, progression and metastasis, as reflected by the efficacy of sorafenib, which targets this process. The rapid growth pattern of malignant hepatocytes requires new vessel formation, stimulated by multiple pro-angiogenic factors. This pro-angiogenic environment in turn supports tumour progression and metastasis. The relevance of tumour vascularity is reinforced by the observation that VEGF expression progressively increases from low-grade dysplasia to early-stage HCC [112]. VEGF overexpression is also associated with high tumour grade, and vascular and portal vein invasion [113117]. Furthermore, raised plasma VEGF and angiopoietin 2 (Ang-2) are independent predictors of poor prognosis in advanced HCC [118].
HSC are known to secrete VEGF as well as other angiogenic factors including PDGF, MMPs, FGF, TGF-β1, EGF, angiopoietin-1 (Ang-1) and Ang-2 [119121]. Upon activation, HSC express multiple smooth muscle cell markers, suggesting they may act like pericytes during angiogenesis [122, 123]. They also express angiogenic growth factor receptors, such as VEGF receptor, PDGF receptor and Tie-2 [124126]. In liver injury and HCC, this facilitates reciprocal signalling between HSC and endothelial cells or malignant hepatocytes and contributes towards a pro-angiogenic microenvironment. VEGF secretion by HSC can be hormonally induced by leptin, or by physical stress such as hypoxia, and is upregulated in HCC [120, 124, 127]. VEGF receptor upregulation also occurs during HSC activation, resulting in increased mitogenesis in response to VEGF [13].
Conditioned media from HCC cells can activate HSC and stimulate VEGF production. Coulouarn et al. co-cultured LX2 cells with HepRG HCC cells, and analysis of differential gene expression identified a gene network linked to VEGFA and MMP9 [128]. This was shown to promote angiogenesis, as conditioned medium from LX2-HepaRG coculture (but not LX2 or HepaRG medium alone) induced tubule complex formation by primary human umbilical vein endothelial cells. A gene signature of this cross-talk correlated with poor prognosis and metastasis in humans [128].
Lin et al. have also shown increased angiogenesis by activated HSC in vitro using a murine HCC cell line (H22) and rat colon microvascular endothelial cells [129]. They went on to demonstrate in vivo, using an orthotopic HCC model, that activated HSCs promote tumour vascularisation via increased VEGF and possibly PDGF secretion.
Of particular interest in HCC is the interaction between malignant hepatocytes, endothelial cells and activated HSC. Torimura et al. characterised expression of Ang-1, Ang-2 and Tie2 receptors in HCC cell lines (HLE and HuH-7) and human HCC cases [130]. They concluded angiopoietin-Tie2 signalling in the vascular wall may act in favour of vessel remodelling in HCC. Ang-2 production by hepatoma cells, HSC and smooth muscle cells binds Tie2 (on HSC, smooth muscle and endothelial cells) and destabilises connections between endothelial cells, perivascular support cells and ECM. This allows exposure to VEGF, which in these relatively hypoxic conditions, is upregulated. Proliferation of endothelial cells ensues, allowing neovascularization and further tumour growth.
Recently, it has been shown that metformin inhibits angiogenesis in vitro, in an HCC (HepG2 line) and HSC (LX2) co-culture system [131]. This was associated with reduced VEGF production. It was postulated that metformin was acting via AMPK activation, and specifically targeting HSC in this model. Indeed, inhibition of AMPK on LX2 cells (but not on HepG2 cells) using siRNA did restore VEGF levels and abrogate metformin’s anti-angiogenic effect. Metformin would seem a promising candidate for human HCC treatment, but unfortunately retrospective data would suggest a lack of survival benefit [132]. However, considering the well-established tolerability of metformin, its potential HSC-mediated effect on angiogenesis merits further investigation.
Some of the factors mediating crosstalk between HSC and HCC are summarised in Fig. 1.

HSC and immunomodulation

Tumour immune evasion is now regarded as a hallmark of cancer progression and is therefore a very active area of research. One mechanism by which tumours evade the immune response is through the augmentation of the numbers and activity of immunosuppressive cells, at both the tumour site and within lymphoid organs [133]. Such cells include regulatory T-cells (Tregs) and myeloid-derived suppressor cells (MDSC). Increased levels of Tregs within peripheral blood and tumours have been reported in human HCC cases, and have further been shown to suppress anti-tumour immune responses in addition to promoting angiogenic remodeling [134136]. Further, intratumoural Treg accumulation has been reported to correlate with disease progression and poor prognosis [137]. MDSC are defined by the markers CD11b and Ly6-C/G and have been found in the tumour, lymph nodes and blood, suppressing cellular responses to cancer cells [138].
The immunosuppressive activities of HSC have only recently been recognised with studies demonstrating, both in vitro and in vivo, that activated HSC are able to strongly suppress T-cell responses. Investigation into the divergent immunomodulatory activity of quiescent and intratumoural HSC has revealed that, in vitro, intratumoural HSC induce T-cell hyporesponsiveness, an effect not seen with quiescent HSC [139]. Moreover, in an orthotopic rat model of HCC, intratumoural HSC number strongly correlated with T-cell apoptosis and lung metastatic nodules [140]. Although a direct interaction was not reported, this does suggest an additional role for HSC in HCC metastasis via an immunosuppressive mechanism.
Co-transplantation of HCC cells and HSC into immunocompetent mice promoted HCC proliferation and enhanced tumour angiogenesis, in association with inhibition of lymphocyte infiltration and apoptosis of infiltrating monocytes [73]. In an orthotopic model of HCC, activated HSC in tumour-bearing mice significantly increase Treg and MDSC populations in the spleen and tumour stroma [141]. An increase in tumour vascular and lymphatic vessel density was also reported in those tumours co-transplanted with HSC.
Investigation into the mechanisms underlying HSC immunomodulatory effects in HCC has demonstrated that this may be mediated via upregulation of human B7 homolog 1 (B7-H1; programmed death ligand 1 (PDL-1)) on tumoural HSC [142144]. B7-H1 can act as both receptor and ligand and has immunosuppressive functions such as promoting activated T-cell apoptosis and inhibiting T-cell-mediated tumour cell apoptosis [1, 145, 146]. Its counter-receptor, PD-1, is expressed on activated, but not resting, T-cells, B-cells and monocytes [2]. B7-H1/PD-1 signaling has been reported to promote Treg cell induction and immunosuppressive function through the down-regulation of mTOR and AKT phosphorylation [147, 148]. In vitro experiments involving incubation of T-cells with anti-B7-H1 monoclonal antibody resulted in a significant reduction in HSC immunomodulatory activity and HCC migration and invasion [139].
Three monoclonal antibodies against PD-1, and one against B7-H1 have been developed and promising Phase 1 data has been reported [149]. In one study, varying degrees of tumour regression were found in colon, renal and lung cancers and melanoma and a significant increase in tumour lymphocyte infiltration was noted [150]. This has been extended to a second clinical trial where responses were seen in 16 out of 39 patients with advanced melanoma [151]. These early clinical studies further demonstrated encouraging safety data. In the context of HCC, a Phase 1, dose escalation study investigating the effects of anti-PD-1 therapy is currently underway in patients with advanced HCC (NCT01658878), however results have yet to be reported. Some of the immunomodulatory effects of HSC in HCC are summarised in Fig. 2.

Therapeutic approaches to targeting HSC and HSC signalling

HSC represent a small percentage of cells within the liver, and specific therapeutic targeting of HSC remains challenging. Recently, transgenic mice have been developed that allow reliable fluorescent labeling or genetic manipulation in HSC and myofibroblasts [152, 153]. These transgenic mice will hopefully prove useful not only in elucidating the molecular mechanisms in HSC that regulate the stroma-HCC interface, but also in facilitating the identification of rational, new therapeutic targets in hepatocarcinogenesis.
If a targetable, HSC-dependent pathway driving hepatocarcinogenesis is identified, cell-specific therapy is conceivable, albeit not entirely straightforward. ECM homeostasis is a key physiological process and modifying HSC functions may impair this, with potential for severe adverse effects. Practically, delivering drugs to HSC is hindered by a lack of multiple transport receptors and endocytic capacity. Furthermore, candidate compounds may include siRNA and cytokines, which have a short half-life in plasma following systemic administration, hindering therapeutic efficacy [154].
To overcome these problems, a number of groups have explored active targeting of HSC to deliver therapeutic compounds. This involves coupling the selected compound to a carrier possessing a specific receptor-binding ligand, or an antibody.
Carriers recently employed have included an antibody to the synaptophysin receptor on HSC, and a liposome specific to the vitamin A receptor on HSC [155, 156]. Furthermore Poelstra et al. have used proteins substituted with a sugar moiety that binds the mannose-6-phosphate-IGFII receptor [157]. They have also utilised a peptide that binds the PDGF receptor-β, [158] to deliver a protein or an adenovirus to HSC [159, 160]. An RGD-peptide which binds to RGD-binding integrins has also been used to create a carrier that accumulates in HSC [161, 162]. Of note, the carrier molecules used must fit strict criteria such as low immunogenicity, and high stability, biocompatibility and selectivity, if they are to translate into clinical practice. Moreover, the target receptors on HSC should be selectively expressed and ideally upregulated during disease activity. A further challenge is the requirement for endocytosis of the construct following target receptor binding. This can be particularly problematic in the case of biological therapeutics, which usually fail to withstand the endosomal degradation process.
With these challenges in mind, Bansal et al. subsequently developed a recombinant protein construct to deliver interferon gamma (IFNγ) to HSC [163]. This elegant system transported the signalling moiety of IFNγ to the PDGF-receptor with a carrier molecule that was simplified and miniaturised. They found that IFNγ could be effectively delivered to human HSC in vitro, and to mouse HSC in vivo. Furthermore, the targeted fusion proteins were shown to ameliorate hepatic fibrosis in CCl4-treated mice [163165]. This suggests that directing a cytokine to HSC is a feasible and potentially tractable therapeutic approach, both in the context of developing new treatments for patients with liver fibrosis, as well as HCC. Therapeutic approaches to targeting HSC are summarised in Fig. 3.

Conclusions

Treatment options for HCC are still severely limited. Recently, increasing evidence has suggested that HSC are key regulators of hepatocarcinogenesis, likely through a variety of mechanisms, including direct effects on malignant hepatocytes, and indirectly via modulation of the peri-tumoural stroma and immune response. Further elucidation of the molecular mechanisms underpinning the crosstalk between the HSC, stromal and tumoural compartments will hopefully allow multi-faceted and personalized treatment of HCC in the future. For example, agents with a direct anti-tumoural effect could be combined with therapies that inhibit HSC-mediated angiogenesis and fibrogenesis. What has become increasingly clear is that neither the tumour nor the microenvironment can be viewed in isolation, rather that successful HCC therapies will need to be directed at counteracting the synergistic components of this complex relationship.

Acknowledgements

The authors acknowledge the support of Cancer Research UK and the Wellcome Trust.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests. Author Contributions AIT, KPC and NCH conceived, designed and wrote the manuscript. All authors read and approved the final manuscript.

Authors’ information

Alexandra and Kylie are first joint authors.
Literatur
1.
2.
Zurück zum Zitat Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.PubMedCrossRef Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.PubMedCrossRef
5.
Zurück zum Zitat Bruix J, Sherman M, American Association for the Study of Liver Diseases: Management of hepatocellular carcinoma: an update. Hepatology 2011;53(3):1020–1022. Bruix J, Sherman M, American Association for the Study of Liver Diseases: Management of hepatocellular carcinoma: an update. Hepatology 2011;53(3):1020–1022.
6.
Zurück zum Zitat European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer: EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;53(3):908–943 European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer: EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;53(3):908–943
7.
Zurück zum Zitat Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.PubMedPubMedCentralCrossRef Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci. 2007;112:265–80.PubMedCrossRef Henderson NC, Iredale JP. Liver fibrosis: cellular mechanisms of progression and resolution. Clin Sci. 2007;112:265–80.PubMedCrossRef
9.
Zurück zum Zitat Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.PubMedPubMedCentralCrossRef Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem. 2006;387:349–60.PubMedCrossRef Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem. 2006;387:349–60.PubMedCrossRef
11.
Zurück zum Zitat Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. SHARP Investigators Study Group: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.PubMedCrossRef Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. SHARP Investigators Study Group: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.PubMedCrossRef
12.
Zurück zum Zitat Zhou X, Jamil A, Nash A, Chan J, Trim N, Iredale JP, et al. Impaired proteolysis of collagen I inhibits proliferation of hepatic stellate cells: implications for regulation of liver fibrosis. J Biol Chem. 2006;281:39757–65.PubMedCrossRef Zhou X, Jamil A, Nash A, Chan J, Trim N, Iredale JP, et al. Impaired proteolysis of collagen I inhibits proliferation of hepatic stellate cells: implications for regulation of liver fibrosis. J Biol Chem. 2006;281:39757–65.PubMedCrossRef
14.
Zurück zum Zitat Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. HALT-C Trial Group: Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology. 2009;136:138–48.PubMedCrossRef Lok AS, Seeff LB, Morgan TR, di Bisceglie AM, Sterling RK, Curto TM, et al. HALT-C Trial Group: Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology. 2009;136:138–48.PubMedCrossRef
17.
Zurück zum Zitat Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.PubMed Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.PubMed
18.
Zurück zum Zitat Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res. 2009;15:6630–8.PubMedCrossRef Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M, et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res. 2009;15:6630–8.PubMedCrossRef
19.
Zurück zum Zitat Eberlein C, Rooney C, Ross SJ, Farren M, Weir HM, Barry ST: E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin αvβ6 and maintained through TGFβ signalling. Oncogene 2014;34:704. Eberlein C, Rooney C, Ross SJ, Farren M, Weir HM, Barry ST: E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin αvβ6 and maintained through TGFβ signalling. Oncogene 2014;34:704.
20.
Zurück zum Zitat Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512–27.PubMedPubMedCentralCrossRef Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512–27.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Jedeszko C, Victor BC, Podgorski I, Sloane BF. Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res. 2009;69:9148–55.PubMedPubMedCentralCrossRef Jedeszko C, Victor BC, Podgorski I, Sloane BF. Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res. 2009;69:9148–55.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Busch S, Acar A, Magnusson Y, Gregersson P, Rydén L, Landberg G: TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 2013;34:704. Busch S, Acar A, Magnusson Y, Gregersson P, Rydén L, Landberg G: TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 2013;34:704.
23.
Zurück zum Zitat Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med. 2007;357:2543–51.PubMedCrossRef Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL, et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med. 2007;357:2543–51.PubMedCrossRef
24.
Zurück zum Zitat Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW, LaChapellede A, et al. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 2004;23:7366–77.PubMedCrossRef Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW, LaChapellede A, et al. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene. 2004;23:7366–77.PubMedCrossRef
25.
Zurück zum Zitat Noskova V, Ahmadi S, Asander E, Casslén B. Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecol Oncol. 2009;115:121–6.PubMedCrossRef Noskova V, Ahmadi S, Asander E, Casslén B. Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecol Oncol. 2009;115:121–6.PubMedCrossRef
27.
Zurück zum Zitat Druker BJ. Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene. 2002;21:8541–6.PubMedCrossRef Druker BJ. Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene. 2002;21:8541–6.PubMedCrossRef
28.
Zurück zum Zitat O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. IRIS Investigators: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.PubMedCrossRef O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. IRIS Investigators: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.PubMedCrossRef
30.
Zurück zum Zitat Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. BRIM-3 Study Group: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedPubMedCentralCrossRef Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. BRIM-3 Study Group: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505–9.PubMedPubMedCentralCrossRef Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505–9.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Faouzi S, Le Bail B, Neaud V, Boussarie L, Saric J, Bioulac-Sage P, et al. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol. 1999;30:275–84.PubMedCrossRef Faouzi S, Le Bail B, Neaud V, Boussarie L, Saric J, Bioulac-Sage P, et al. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol. 1999;30:275–84.PubMedCrossRef
33.
Zurück zum Zitat Le Bail B, Faouzi S, Boussarie L, Guirouilh J, Blanc JF, Carles J, et al. Osteonectin/SPARC is overexpressed in human hepatocellular carcinoma. J Pathol. 1999;189:46–52.PubMedCrossRef Le Bail B, Faouzi S, Boussarie L, Guirouilh J, Blanc JF, Carles J, et al. Osteonectin/SPARC is overexpressed in human hepatocellular carcinoma. J Pathol. 1999;189:46–52.PubMedCrossRef
34.
Zurück zum Zitat Dubuisson L, Lepreux S, Bioulac-Sage P, Balabaud C, Costa AM, Rosenbaum J, et al. Expression and cellular localization of fibrillin-1 in normal and pathological human liver. J Hepatol. 2001;34:514–22.PubMedCrossRef Dubuisson L, Lepreux S, Bioulac-Sage P, Balabaud C, Costa AM, Rosenbaum J, et al. Expression and cellular localization of fibrillin-1 in normal and pathological human liver. J Hepatol. 2001;34:514–22.PubMedCrossRef
35.
Zurück zum Zitat Park YN, Yang CP, Cubukcu O, Thung SN, Theise ND. Hepatic stellate cell activation in dysplastic nodules: evidence for an alternate hypothesis concerning human hepatocarcinogenesis. Liver. 1997;17:271–4.PubMedCrossRef Park YN, Yang CP, Cubukcu O, Thung SN, Theise ND. Hepatic stellate cell activation in dysplastic nodules: evidence for an alternate hypothesis concerning human hepatocarcinogenesis. Liver. 1997;17:271–4.PubMedCrossRef
36.
Zurück zum Zitat Théret N, Musso O, Turlin B, Lotrian D, Bioulac-Sage P, Campion JP, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology. 2001;34:82–8.PubMedCrossRef Théret N, Musso O, Turlin B, Lotrian D, Bioulac-Sage P, Campion JP, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology. 2001;34:82–8.PubMedCrossRef
37.
Zurück zum Zitat Nishio T, Iimuro Y, Nitta T, Harada N, Yoshida M, Hirose T, et al. Increased expression of collagenase in the liver induces hepatocyte proliferation with cytoplasmic accumulation of beta-catenin in the rat. J Hepatol. 2003;38:468–75.PubMedCrossRef Nishio T, Iimuro Y, Nitta T, Harada N, Yoshida M, Hirose T, et al. Increased expression of collagenase in the liver induces hepatocyte proliferation with cytoplasmic accumulation of beta-catenin in the rat. J Hepatol. 2003;38:468–75.PubMedCrossRef
38.
Zurück zum Zitat You J, Park S-A, Shin D-S, Patel D, Raghunathan VK, Kim M, et al. Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng Part A. 2013;19:2655–63.PubMedPubMedCentralCrossRef You J, Park S-A, Shin D-S, Patel D, Raghunathan VK, Kim M, et al. Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng Part A. 2013;19:2655–63.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Semler EJ, Lancin PA, Dasgupta A, Moghe PV. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol Bioeng. 2005;89:296–307.PubMedCrossRef Semler EJ, Lancin PA, Dasgupta A, Moghe PV. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol Bioeng. 2005;89:296–307.PubMedCrossRef
40.
Zurück zum Zitat Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.PubMedPubMedCentralCrossRef Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.PubMedCrossRef Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.PubMedCrossRef
42.
Zurück zum Zitat Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007;46:1246–56.PubMedCrossRef Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology. 2007;46:1246–56.PubMedCrossRef
43.
Zurück zum Zitat Masuzaki R, Tateishi R, Yoshida H, Goto E, Sato T, Ohki T, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49:1954–61.PubMedCrossRef Masuzaki R, Tateishi R, Yoshida H, Goto E, Sato T, Ohki T, et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology. 2009;49:1954–61.PubMedCrossRef
44.
Zurück zum Zitat Kim DY, Song KJ, Kim SU, Yoo EJ, Park JY, Ahn SH, et al. Transient elastography-based risk estimation of hepatitis B virus-related occurrence of hepatocellular carcinoma: development and validation of a predictive model. Onco Targets Ther. 2013;6:1463–9.PubMedPubMedCentral Kim DY, Song KJ, Kim SU, Yoo EJ, Park JY, Ahn SH, et al. Transient elastography-based risk estimation of hepatitis B virus-related occurrence of hepatocellular carcinoma: development and validation of a predictive model. Onco Targets Ther. 2013;6:1463–9.PubMedPubMedCentral
45.
Zurück zum Zitat Wong GL-H, Chan HL-Y, Wong CK-Y, Leung C, Chan CY, Ho PP-L, et al. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J Hepatol. 2014;60:339–45.PubMedCrossRef Wong GL-H, Chan HL-Y, Wong CK-Y, Leung C, Chan CY, Ho PP-L, et al. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J Hepatol. 2014;60:339–45.PubMedCrossRef
46.
Zurück zum Zitat Singh S, Fujii LL, Murad MH, Wang Z, Asrani SK, Ehman RL, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1573–84. e1–2– quiz e88–9.PubMedPubMedCentralCrossRef Singh S, Fujii LL, Murad MH, Wang Z, Asrani SK, Ehman RL, et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1573–84. e1–2– quiz e88–9.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Masuzaki R, Tateishi R, Yoshida H, Sato T, Ohki T, Goto T, et al. Assessing liver tumor stiffness by transient elastography. Hepatol Int. 2007;1:394–7.PubMedPubMedCentralCrossRef Masuzaki R, Tateishi R, Yoshida H, Sato T, Ohki T, Goto T, et al. Assessing liver tumor stiffness by transient elastography. Hepatol Int. 2007;1:394–7.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.PubMedPubMedCentralCrossRef Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23:397–418.PubMedCrossRef Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23:397–418.PubMedCrossRef
50.
51.
Zurück zum Zitat Reif S, Lang A, Lindquist JN, Yata Y, Gäbele E, Scanga A, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 2003;278:8083–90.PubMedCrossRef Reif S, Lang A, Lindquist JN, Yata Y, Gäbele E, Scanga A, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 2003;278:8083–90.PubMedCrossRef
52.
Zurück zum Zitat Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, et al. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem Biophys Res Commun. 2014;444:427–32.PubMedCrossRef Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, et al. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem Biophys Res Commun. 2014;444:427–32.PubMedCrossRef
53.
Zurück zum Zitat Lee SK, Kim M-H, Cheong JY, Cho SW, Yang S-J, Kwack K. Integrin alpha V polymorphisms and haplotypes in a Korean population are associated with susceptibility to chronic hepatitis and hepatocellular carcinoma. Liver Int. 2009;29:187–95.PubMedCrossRef Lee SK, Kim M-H, Cheong JY, Cho SW, Yang S-J, Kwack K. Integrin alpha V polymorphisms and haplotypes in a Korean population are associated with susceptibility to chronic hepatitis and hepatocellular carcinoma. Liver Int. 2009;29:187–95.PubMedCrossRef
54.
Zurück zum Zitat Lai KKY, Shang S, Lohia N, Booth GC, Masse DJ, Fausto N, et al. Extracellular matrix dynamics in hepatocarcinogenesis: a comparative proteomics study of PDGFC transgenic and Pten null mouse models. PLoS Genet. 2011;7, e1002147.PubMedPubMedCentralCrossRef Lai KKY, Shang S, Lohia N, Booth GC, Masse DJ, Fausto N, et al. Extracellular matrix dynamics in hepatocarcinogenesis: a comparative proteomics study of PDGFC transgenic and Pten null mouse models. PLoS Genet. 2011;7, e1002147.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Jung CW, Song T-J, Lee K-O, Choi SB, Kim WB, Suh SO, et al. Characterization of hepatocellular carcinoma cell lines based on cell adhesion molecules. Int J Mol Med. 2012;29:1158–64.PubMed Jung CW, Song T-J, Lee K-O, Choi SB, Kim WB, Suh SO, et al. Characterization of hepatocellular carcinoma cell lines based on cell adhesion molecules. Int J Mol Med. 2012;29:1158–64.PubMed
56.
Zurück zum Zitat Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V, Antonaci S. Human hepatocellular carcinoma (HCC) cells require both alpha3beta1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest. 2001;81:613–27.PubMedCrossRef Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V, Antonaci S. Human hepatocellular carcinoma (HCC) cells require both alpha3beta1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest. 2001;81:613–27.PubMedCrossRef
57.
Zurück zum Zitat Torimura T, Ueno T, Kin M, Harad R, Nakamura T, Sakamoto M, et al. Laminin deposition to type IV collagen enhances haptotaxis, chemokinesis, and adhesion of hepatoma cells through beta1-integrins. J Hepatol. 2001;35:245–53.PubMedCrossRef Torimura T, Ueno T, Kin M, Harad R, Nakamura T, Sakamoto M, et al. Laminin deposition to type IV collagen enhances haptotaxis, chemokinesis, and adhesion of hepatoma cells through beta1-integrins. J Hepatol. 2001;35:245–53.PubMedCrossRef
58.
Zurück zum Zitat Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R. Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res. 2003;63:8312–7.PubMed Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R. Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res. 2003;63:8312–7.PubMed
59.
Zurück zum Zitat Zhao G, Cui J, Qin Q, Zhang J, Liu L, Deng S, et al. Mechanical stiffness of liver tissues in relation to integrin β1 expression may influence the development of hepatic cirrhosis and hepatocellular carcinoma. J Surg Oncol. 2010;102:482–9.PubMedCrossRef Zhao G, Cui J, Qin Q, Zhang J, Liu L, Deng S, et al. Mechanical stiffness of liver tissues in relation to integrin β1 expression may influence the development of hepatic cirrhosis and hepatocellular carcinoma. J Surg Oncol. 2010;102:482–9.PubMedCrossRef
60.
Zurück zum Zitat Fu B-H, Wu Z-Z, Qin J. Effects of integrin α6β1 on migration of hepatocellular carcinoma cells. Mol Biol Rep. 2011;38:3271–6.PubMedCrossRef Fu B-H, Wu Z-Z, Qin J. Effects of integrin α6β1 on migration of hepatocellular carcinoma cells. Mol Biol Rep. 2011;38:3271–6.PubMedCrossRef
61.
Zurück zum Zitat Mizuno H, Ogura M, Saito Y, Sekine W, Sano R, Gotou T, et al. Changes in adhesive and migratory characteristics of hepatocellular carcinoma (HCC) cells induced by expression of alpha3beta1 integrin. Biochim Biophys Acta. 1780;2008:564–70. Mizuno H, Ogura M, Saito Y, Sekine W, Sano R, Gotou T, et al. Changes in adhesive and migratory characteristics of hepatocellular carcinoma (HCC) cells induced by expression of alpha3beta1 integrin. Biochim Biophys Acta. 1780;2008:564–70.
62.
Zurück zum Zitat Sil H, Sen T, Chatterjee A. Fibronectin-integrin (alpha5beta1) modulates migration and invasion of murine melanoma cell line B16F10 by involving MMP-9. Oncol Res. 2011;19:335–48.PubMedCrossRef Sil H, Sen T, Chatterjee A. Fibronectin-integrin (alpha5beta1) modulates migration and invasion of murine melanoma cell line B16F10 by involving MMP-9. Oncol Res. 2011;19:335–48.PubMedCrossRef
63.
Zurück zum Zitat Jing Y, Jia D, Wong C-M, Oi-Lin Ng I, Zhang Z, Liu L, et al. SERPINA5 inhibits tumor cell migration by modulating the fibronectin-integrin β1 signaling pathway in hepatocellular carcinoma. Mol Oncol. 2014;8:366–77.PubMedCrossRef Jing Y, Jia D, Wong C-M, Oi-Lin Ng I, Zhang Z, Liu L, et al. SERPINA5 inhibits tumor cell migration by modulating the fibronectin-integrin β1 signaling pathway in hepatocellular carcinoma. Mol Oncol. 2014;8:366–77.PubMedCrossRef
64.
Zurück zum Zitat Nguyen TV, Sleiman M, Moriarty T, Herrick WG, Peyton SR. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials. 2014;35:5749–59.PubMedCrossRef Nguyen TV, Sleiman M, Moriarty T, Herrick WG, Peyton SR. Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials. 2014;35:5749–59.PubMedCrossRef
65.
Zurück zum Zitat Ke A-W, Shi G-M, Zhou J, Huang X-Y, Shi Y-H, Ding Z-B, et al. CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology. 2011;140:1629–41. e15.PubMedCrossRef Ke A-W, Shi G-M, Zhou J, Huang X-Y, Shi Y-H, Ding Z-B, et al. CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology. 2011;140:1629–41. e15.PubMedCrossRef
66.
Zurück zum Zitat Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49:839–50.PubMedCrossRef Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49:839–50.PubMedCrossRef
67.
Zurück zum Zitat Giannelli G, Fransvea E, Marinosci F, Bergamini C, Colucci S, Schiraldi O, et al. Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol. 2002;161:183–93.PubMedPubMedCentralCrossRef Giannelli G, Fransvea E, Marinosci F, Bergamini C, Colucci S, Schiraldi O, et al. Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol. 2002;161:183–93.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Kim H-P, Kim T-Y, Lee M-S, Jong H-S, Kim T-Y, Lee JW, et al. TGF-beta1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin. Biochim Biophys Acta. 1743;2005:151–61. Kim H-P, Kim T-Y, Lee M-S, Jong H-S, Kim T-Y, Lee JW, et al. TGF-beta1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin. Biochim Biophys Acta. 1743;2005:151–61.
69.
Zurück zum Zitat Matsuzaki K. Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res. 2012;347:225–43.PubMedCrossRef Matsuzaki K. Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells. Cell Tissue Res. 2012;347:225–43.PubMedCrossRef
70.
Zurück zum Zitat Hayashida T. Integrins modulate cellular fibrogenesis at multiple levels; Regulation of TGF-β signaling. Endocr Metab Immune Disord Drug Targets. 2010;10:302–19.PubMedCrossRef Hayashida T. Integrins modulate cellular fibrogenesis at multiple levels; Regulation of TGF-β signaling. Endocr Metab Immune Disord Drug Targets. 2010;10:302–19.PubMedCrossRef
71.
Zurück zum Zitat Cai T, Lei QY, Wang LY, Zha XL. TGF-beta 1 modulated the expression of alpha 5 beta 1 integrin and integrin-mediated signaling in human hepatocarcinoma cells. Biochem Biophys Res Commun. 2000;274:519–25.PubMedCrossRef Cai T, Lei QY, Wang LY, Zha XL. TGF-beta 1 modulated the expression of alpha 5 beta 1 integrin and integrin-mediated signaling in human hepatocarcinoma cells. Biochem Biophys Res Commun. 2000;274:519–25.PubMedCrossRef
72.
Zurück zum Zitat Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci. 2009;100:646–53.PubMedCrossRef Amann T, Bataille F, Spruss T, Mühlbauer M, Gäbele E, Schölmerich J, et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci. 2009;100:646–53.PubMedCrossRef
73.
Zurück zum Zitat Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, et al. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer. 2011;129:2651–61.PubMedCrossRef Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, et al. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer. 2011;129:2651–61.PubMedCrossRef
74.
Zurück zum Zitat Jia C-C, Wang T-T, Liu W, Fu B-S, Hua X, Wang G-Y, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8, e63243.PubMedPubMedCentralCrossRef Jia C-C, Wang T-T, Liu W, Fu B-S, Hua X, Wang G-Y, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013;8, e63243.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Sun B, Zhang X, Cheng X, Zhang Y, Chen L, Shi L, et al. Intratumoral hepatic stellate cells as a poor prognostic marker and a new treatment target for hepatocellular carcinoma. PLoS One. 2013;8, e80212.PubMedPubMedCentralCrossRef Sun B, Zhang X, Cheng X, Zhang Y, Chen L, Shi L, et al. Intratumoral hepatic stellate cells as a poor prognostic marker and a new treatment target for hepatocellular carcinoma. PLoS One. 2013;8, e80212.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Santamato A, Fransvea E, Dituri F, Caligiuri A, Quaranta M, Niimi T, et al. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin Sci. 2011;121:159–68.PubMedCrossRef Santamato A, Fransvea E, Dituri F, Caligiuri A, Quaranta M, Niimi T, et al. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin Sci. 2011;121:159–68.PubMedCrossRef
77.
Zurück zum Zitat Guirouilh J, Castroviejo M, Balabaud C, Desmoulière A, Rosenbaum J. Hepatocarcinoma cells stimulate hepatocyte growth factor secretion in human liver myofibroblasts. Int J Oncol. 2000;17:777–81.PubMed Guirouilh J, Castroviejo M, Balabaud C, Desmoulière A, Rosenbaum J. Hepatocarcinoma cells stimulate hepatocyte growth factor secretion in human liver myofibroblasts. Int J Oncol. 2000;17:777–81.PubMed
78.
Zurück zum Zitat Guirouilh J, Le Bail B, Boussarie L, Balabaud C, Bioulac-Sage P, Desmoulière A, et al. Expression of hepatocyte growth factor in human hepatocellular carcinoma. J Hepatol. 2001;34:78–83.PubMedCrossRef Guirouilh J, Le Bail B, Boussarie L, Balabaud C, Bioulac-Sage P, Desmoulière A, et al. Expression of hepatocyte growth factor in human hepatocellular carcinoma. J Hepatol. 2001;34:78–83.PubMedCrossRef
79.
Zurück zum Zitat Efimova EA, Glanemann M, Liu L, Schumacher G, Settmacher U, Jonas S, et al. Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines. Eur Surg Res. 2004;36:300–7.PubMedCrossRef Efimova EA, Glanemann M, Liu L, Schumacher G, Settmacher U, Jonas S, et al. Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines. Eur Surg Res. 2004;36:300–7.PubMedCrossRef
80.
Zurück zum Zitat Monvoisin A, Neaud V, De Lédinghen V, Dubuisson L, Balabaud C, Bioulac-Sage P, et al. Direct evidence that hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells is mediated by urokinase. J Hepatol. 1999;30:511–8.PubMedCrossRef Monvoisin A, Neaud V, De Lédinghen V, Dubuisson L, Balabaud C, Bioulac-Sage P, et al. Direct evidence that hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells is mediated by urokinase. J Hepatol. 1999;30:511–8.PubMedCrossRef
81.
Zurück zum Zitat Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology. 2000;32:796–802.PubMedCrossRef Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology. 2000;32:796–802.PubMedCrossRef
82.
Zurück zum Zitat Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.PubMedCrossRef Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995;373:699–702.PubMedCrossRef
83.
Zurück zum Zitat Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer. 2006;119:477–83.PubMedCrossRef Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer. 2006;119:477–83.PubMedCrossRef
84.
Zurück zum Zitat Suzuki K, Hayashi N, Yamada Y, Yoshihara H, Miyamoto Y, Ito Y, et al. Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology. 1994;20:1231–6.PubMedCrossRef Suzuki K, Hayashi N, Yamada Y, Yoshihara H, Miyamoto Y, Ito Y, et al. Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology. 1994;20:1231–6.PubMedCrossRef
85.
Zurück zum Zitat Kiss A, Wang NJ, Xie JP, Thorgeirsson SS. Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth Factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res. 1997;3:1059–66.PubMed Kiss A, Wang NJ, Xie JP, Thorgeirsson SS. Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth Factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res. 1997;3:1059–66.PubMed
86.
Zurück zum Zitat Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene. 2006;25:3787–800.PubMedCrossRef Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene. 2006;25:3787–800.PubMedCrossRef
87.
Zurück zum Zitat Boix L, Rosa JL, Ventura F, Castells A, Bruix J, Rodés J, et al. c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology. 1994;19:88–91.PubMedCrossRef Boix L, Rosa JL, Ventura F, Castells A, Bruix J, Rodés J, et al. c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology. 1994;19:88–91.PubMedCrossRef
88.
Zurück zum Zitat Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. Liver. 1999;19:151–9.PubMedCrossRef Okano J, Shiota G, Kawasaki H. Expression of hepatocyte growth factor (HGF) and HGF receptor (c-met) proteins in liver diseases: an immunohistochemical study. Liver. 1999;19:151–9.PubMedCrossRef
89.
Zurück zum Zitat Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology. 1997;25:862–6.PubMedCrossRef Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E. Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology. 1997;25:862–6.PubMedCrossRef
90.
Zurück zum Zitat Kaposi-Novak P, Lee J-S, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 2006;116:1582–95.PubMedPubMedCentralCrossRef Kaposi-Novak P, Lee J-S, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 2006;116:1582–95.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Luedde T, Schwabe RF. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18.PubMedPubMedCentralCrossRef Luedde T, Schwabe RF. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Date K, Matsumoto K, Kuba K, Shimura H, Tanaka M, Nakamura T. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene. 1998;17:3045–54.PubMedCrossRef Date K, Matsumoto K, Kuba K, Shimura H, Tanaka M, Nakamura T. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene. 1998;17:3045–54.PubMedCrossRef
93.
Zurück zum Zitat Heideman DAM, Overmeer RM, van Beusechem VW, Lamers WH, Hakvoort TBM, Snijders PJF, et al. Inhibition of angiogenesis and HGF-cMET-elicited malignant processes in human hepatocellular carcinoma cells using adenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther. 2005;12:954–62.PubMedCrossRef Heideman DAM, Overmeer RM, van Beusechem VW, Lamers WH, Hakvoort TBM, Snijders PJF, et al. Inhibition of angiogenesis and HGF-cMET-elicited malignant processes in human hepatocellular carcinoma cells using adenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther. 2005;12:954–62.PubMedCrossRef
94.
Zurück zum Zitat Son G, Hirano T, Seki E, Iimuro Y, Nukiwa T, Matsumoto K, et al. Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. J Hepatol. 2006;45:688–95.PubMedCrossRef Son G, Hirano T, Seki E, Iimuro Y, Nukiwa T, Matsumoto K, et al. Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. J Hepatol. 2006;45:688–95.PubMedCrossRef
95.
Zurück zum Zitat Wright JH, Johnson MM, Shimizu-Albergine M, Bauer RL, Hayes BJ, Surapisitchat J, Hudkins KL, Riehle KJ, Johnson S, Yeh MM, Bammler TK, Beyer RP, Gilbertson DG, Alpers CC, Fausto N, Campbell JS: Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice; evidence for stromal induction of hepatocellular carcinoma. Int J Cancer 2013;34:704. Wright JH, Johnson MM, Shimizu-Albergine M, Bauer RL, Hayes BJ, Surapisitchat J, Hudkins KL, Riehle KJ, Johnson S, Yeh MM, Bammler TK, Beyer RP, Gilbertson DG, Alpers CC, Fausto N, Campbell JS: Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice; evidence for stromal induction of hepatocellular carcinoma. Int J Cancer 2013;34:704.
96.
Zurück zum Zitat Yu G, Jing Y, Kou X, Ye F, Gao L, Fan Q, et al. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma. PLoS One. 2013;8, e73312.PubMedPubMedCentralCrossRef Yu G, Jing Y, Kou X, Ye F, Gao L, Fan Q, et al. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma. PLoS One. 2013;8, e73312.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S, et al. Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res. 2007;67:8615–23.PubMedCrossRef Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S, et al. Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res. 2007;67:8615–23.PubMedCrossRef
98.
Zurück zum Zitat Schelter F, Grandl M, Seubert B, Schaten S, Hauser S, Gerg M, et al. Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin Exp Metastasis. 2011;28:793–802.PubMedCrossRef Schelter F, Grandl M, Seubert B, Schaten S, Hauser S, Gerg M, et al. Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin Exp Metastasis. 2011;28:793–802.PubMedCrossRef
99.
Zurück zum Zitat Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res. 1997;57:3305–13.PubMed Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res. 1997;57:3305–13.PubMed
100.
Zurück zum Zitat Hasina R, Matsumoto K, Matsumoto-Taniura N, Kato I, Sakuda M, Nakamura T. Autocrine and paracrine motility factors and their involvement in invasiveness in a human oral carcinoma cell line. Br J Cancer. 1999;80:1708–17.PubMedPubMedCentralCrossRef Hasina R, Matsumoto K, Matsumoto-Taniura N, Kato I, Sakuda M, Nakamura T. Autocrine and paracrine motility factors and their involvement in invasiveness in a human oral carcinoma cell line. Br J Cancer. 1999;80:1708–17.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Meyer DH, Bachem MG, Gressner AM. Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type beta 1 and type alpha. Biochem Biophys Res Commun. 1990;171:1122–9.PubMedCrossRef Meyer DH, Bachem MG, Gressner AM. Modulation of hepatic lipocyte proteoglycan synthesis and proliferation by Kupffer cell-derived transforming growth factors type beta 1 and type alpha. Biochem Biophys Res Commun. 1990;171:1122–9.PubMedCrossRef
102.
Zurück zum Zitat Roth S, Schurek J, Gressner AM. Expression and release of the latent transforming growth factor beta binding protein by hepatocytes from rat liver. Hepatology. 1997;25:1398–405.PubMedCrossRef Roth S, Schurek J, Gressner AM. Expression and release of the latent transforming growth factor beta binding protein by hepatocytes from rat liver. Hepatology. 1997;25:1398–405.PubMedCrossRef
103.
Zurück zum Zitat Morris SM, Carter KT, Baek JY, Koszarek A, Yeh MM, Knoblaugh SE, et al. TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 2014. Morris SM, Carter KT, Baek JY, Koszarek A, Yeh MM, Knoblaugh SE, et al. TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 2014.
104.
Zurück zum Zitat Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ, et al. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology. 2013;144:1042–54. e4.PubMedPubMedCentralCrossRef Yang L, Inokuchi S, Roh YS, Song J, Loomba R, Park EJ, et al. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology. 2013;144:1042–54. e4.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Meindl-Beinker NM, Matsuzaki K, Dooley S. TGF-β signaling in onset and progression of hepatocellular carcinoma. Dig Dis. 2012;30:514–23.PubMedCrossRef Meindl-Beinker NM, Matsuzaki K, Dooley S. TGF-β signaling in onset and progression of hepatocellular carcinoma. Dig Dis. 2012;30:514–23.PubMedCrossRef
106.
Zurück zum Zitat van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene. 2009;28:4022–33.PubMedPubMedCentralCrossRef van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene. 2009;28:4022–33.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Mu X, Lin S, Yang J, Chen C, Chen Y, Herzig MC, et al. TGF-β signaling is often attenuated during hepatotumorigenesis, but is retained for the malignancy of hepatocellular carcinoma cells. PLoS One. 2013;8, e63436.PubMedPubMedCentralCrossRef Mu X, Lin S, Yang J, Chen C, Chen Y, Herzig MC, et al. TGF-β signaling is often attenuated during hepatotumorigenesis, but is retained for the malignancy of hepatocellular carcinoma cells. PLoS One. 2013;8, e63436.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Dzieran J, Fabian J, Feng T, Coulouarn C, Ilkavets I, Kyselova A, et al. Comparative analysis of TGF-β/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines. PLoS One. 2013;8, e72252.PubMedPubMedCentralCrossRef Dzieran J, Fabian J, Feng T, Coulouarn C, Ilkavets I, Kyselova A, et al. Comparative analysis of TGF-β/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines. PLoS One. 2013;8, e72252.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008;47:2059–67.PubMedPubMedCentralCrossRef Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008;47:2059–67.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Dapito DH, Mencin A, Gwak G-Y, Pradere J-P, Jang M-K, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–16.PubMedPubMedCentralCrossRef Dapito DH, Mencin A, Gwak G-Y, Pradere J-P, Jang M-K, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–16.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Darnaud M, Faivre J, Moniaux N. Targeting gut flora to prevent progression of hepatocellular carcinoma. J Hepatol. 2013;58:385–7.PubMedCrossRef Darnaud M, Faivre J, Moniaux N. Targeting gut flora to prevent progression of hepatocellular carcinoma. J Hepatol. 2013;58:385–7.PubMedCrossRef
112.
Zurück zum Zitat Park YN, Kim YB, Yang KM, Park C. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med. 2000;124:1061–5.PubMed Park YN, Kim YB, Yang KM, Park C. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med. 2000;124:1061–5.PubMed
113.
Zurück zum Zitat Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology. 1998;28:68–77.PubMedCrossRef Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology. 1998;28:68–77.PubMedCrossRef
114.
Zurück zum Zitat Li XM, Tang ZY, Zhou G, Lui YK, Ye SL. Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res. 1998;17:13–17.PubMed Li XM, Tang ZY, Zhou G, Lui YK, Ye SL. Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res. 1998;17:13–17.PubMed
115.
Zurück zum Zitat Yao D-F, Wu X-H, Zhu Y, Shi G-S, Dong Z-Z, Yao D-B, et al. Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicopathologic features in human hepatocellular carcinoma. HBPD INT. 2005;4:220–6.PubMed Yao D-F, Wu X-H, Zhu Y, Shi G-S, Dong Z-Z, Yao D-B, et al. Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicopathologic features in human hepatocellular carcinoma. HBPD INT. 2005;4:220–6.PubMed
116.
Zurück zum Zitat Zhou J, Tang ZY, Fan J, Wu ZQ, Li XM, Liu YK, et al. Expression of platelet-derived endothelial cell growth factor and vascular endothelial growth factor in hepatocellular carcinoma and portal vein tumor thrombus. J Cancer Res Clin Oncol. 2000;126:57–61.PubMedCrossRef Zhou J, Tang ZY, Fan J, Wu ZQ, Li XM, Liu YK, et al. Expression of platelet-derived endothelial cell growth factor and vascular endothelial growth factor in hepatocellular carcinoma and portal vein tumor thrombus. J Cancer Res Clin Oncol. 2000;126:57–61.PubMedCrossRef
117.
118.
Zurück zum Zitat Llovet JM, Peña CEA, Lathia CD, Shan M, Meinhardt G, Bruix J. SHARP Investigators Study Group: Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2012;18:2290–300.PubMedCrossRef Llovet JM, Peña CEA, Lathia CD, Shan M, Meinhardt G, Bruix J. SHARP Investigators Study Group: Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2012;18:2290–300.PubMedCrossRef
119.
Zurück zum Zitat Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.PubMedCrossRef Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.PubMedCrossRef
120.
Zurück zum Zitat Aleffi S, Petrai I, Bertolani C, Parola M, Colombatto S, Novo E, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339–48.PubMedCrossRef Aleffi S, Petrai I, Bertolani C, Parola M, Colombatto S, Novo E, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339–48.PubMedCrossRef
121.
Zurück zum Zitat Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology. 2008;135:1729–38.PubMedCrossRef Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K, Osterreicher CH, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology. 2008;135:1729–38.PubMedCrossRef
122.
Zurück zum Zitat Wirz W, Antoine M, Tag CG, Gressner AM, Korff T, Hellerbrand C, et al. Hepatic stellate cells display a functional vascular smooth muscle cell phenotype in a three-dimensional co-culture model with endothelial cells. Differentiation. 2008;76:784–94.PubMedCrossRef Wirz W, Antoine M, Tag CG, Gressner AM, Korff T, Hellerbrand C, et al. Hepatic stellate cells display a functional vascular smooth muscle cell phenotype in a three-dimensional co-culture model with endothelial cells. Differentiation. 2008;76:784–94.PubMedCrossRef
124.
Zurück zum Zitat Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology. 2000;31:141–8.PubMedCrossRef Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology. 2000;31:141–8.PubMedCrossRef
125.
Zurück zum Zitat Borkham-Kamphorst E, van Roeyen CRC, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol. 2007;46:1064–74.PubMedCrossRef Borkham-Kamphorst E, van Roeyen CRC, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol. 2007;46:1064–74.PubMedCrossRef
126.
Zurück zum Zitat Novo E, Cannito S, Zamara E, Valfrè di Bonzo L, Caligiuri A, Cravanzola C, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol. 2007;170:1942–53.PubMedPubMedCentralCrossRef Novo E, Cannito S, Zamara E, Valfrè di Bonzo L, Caligiuri A, Cravanzola C, et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol. 2007;170:1942–53.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Torimura T, Sata M, Ueno T, Kin M, Tsuji R, Suzaku K, et al. Increased expression of vascular endothelial growth factor is associated with tumor progression in hepatocellular carcinoma. Hum Pathol. 1998;29:986–91.PubMedCrossRef Torimura T, Sata M, Ueno T, Kin M, Tsuji R, Suzaku K, et al. Increased expression of vascular endothelial growth factor is associated with tumor progression in hepatocellular carcinoma. Hum Pathol. 1998;29:986–91.PubMedCrossRef
128.
Zurück zum Zitat Coulouarn C, Corlu A, Glaise D, Guénon I, Thorgeirsson SS, Clément B. Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res. 2012;72:2533–42.PubMedPubMedCentralCrossRef Coulouarn C, Corlu A, Glaise D, Guénon I, Thorgeirsson SS, Clément B. Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res. 2012;72:2533–42.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R: Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 2014;34:704. Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R: Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 2014;34:704.
130.
Zurück zum Zitat Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, et al. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol. 2004;40:799–807.PubMedCrossRef Torimura T, Ueno T, Kin M, Harada R, Taniguchi E, Nakamura T, et al. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol. 2004;40:799–807.PubMedCrossRef
131.
Zurück zum Zitat Qu H, Yang X. Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. Cell Biochem Biophys. 2015;71:931–6.PubMedCrossRef Qu H, Yang X. Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. Cell Biochem Biophys. 2015;71:931–6.PubMedCrossRef
132.
Zurück zum Zitat Bhat M, Chaiteerakij R, Harmsen WS, Schleck CD, Yang JD, Giama NH, et al. Metformin does not improve survival in patients with hepatocellular carcinoma. World J Gastroenterol. 2014;20:15750–5.PubMedPubMedCentralCrossRef Bhat M, Chaiteerakij R, Harmsen WS, Schleck CD, Yang JD, Giama NH, et al. Metformin does not improve survival in patients with hepatocellular carcinoma. World J Gastroenterol. 2014;20:15750–5.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol. 2011;26:941–51.PubMed Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol. 2011;26:941–51.PubMed
134.
Zurück zum Zitat Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.PubMedCrossRef Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.PubMedCrossRef
135.
Zurück zum Zitat Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39.PubMedCrossRef Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39.PubMedCrossRef
136.
137.
Zurück zum Zitat Chen K-J, Zhou L, Xie H-Y, Ahmed T-E, Feng X-W, Zheng S-S. Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Med Oncol. 2012;29:1817–26.PubMedCrossRef Chen K-J, Zhou L, Xie H-Y, Ahmed T-E, Feng X-W, Zheng S-S. Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection. Med Oncol. 2012;29:1817–26.PubMedCrossRef
139.
Zurück zum Zitat Xia Y, Chen R, Ye S-L, Sun R, Chen J, Zhao Y. Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma. Clin Exp Metastasis. 2011;28:661–74.PubMedCrossRef Xia Y, Chen R, Ye S-L, Sun R, Chen J, Zhao Y. Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma. Clin Exp Metastasis. 2011;28:661–74.PubMedCrossRef
140.
Zurück zum Zitat Xia Y-H, Wang Z-M, Chen R-X, Ye S-L, Sun R-X, Xue Q, et al. T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol Rep. 2013;30:1175–84.PubMed Xia Y-H, Wang Z-M, Chen R-X, Ye S-L, Sun R-X, Xue Q, et al. T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol Rep. 2013;30:1175–84.PubMed
141.
Zurück zum Zitat Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, et al. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest. 2014;94:182–91.PubMedCrossRef Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, et al. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest. 2014;94:182–91.PubMedCrossRef
142.
Zurück zum Zitat Chen C-H, Kuo L-M, Chang Y, Wu W, Goldbach C, Ross MA, et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology. 2006;44:1171–81.PubMedCrossRef Chen C-H, Kuo L-M, Chang Y, Wu W, Goldbach C, Ross MA, et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology. 2006;44:1171–81.PubMedCrossRef
143.
Zurück zum Zitat Yu M-C, Chen C-H, Liang X, Wang L, Gandhi CR, Fung JJ, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004;40:1312–21.PubMedCrossRef Yu M-C, Chen C-H, Liang X, Wang L, Gandhi CR, Fung JJ, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004;40:1312–21.PubMedCrossRef
144.
Zurück zum Zitat Muhanna N, Horani A, Doron S, Safadi R. Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clin Exp Immunol. 2007;148:338–47.PubMedPubMedCentralCrossRef Muhanna N, Horani A, Doron S, Safadi R. Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clin Exp Immunol. 2007;148:338–47.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G, et al. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest. 2003;111:363–70.PubMedPubMedCentralCrossRef Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G, et al. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest. 2003;111:363–70.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FBJ, Coyle AJ, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36:2472–82.PubMedCrossRef Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FBJ, Coyle AJ, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36:2472–82.PubMedCrossRef
147.
Zurück zum Zitat Ni L, Ma CJ, Zhang Y, Nandakumar S, Zhang CL, Wu XY, et al. PD-1 modulates regulatory T cells and suppresses T-cell responses in HCV-associated lymphoma. Immunol Cell Biol. 2011;89:535–9.PubMedCrossRef Ni L, Ma CJ, Zhang Y, Nandakumar S, Zhang CL, Wu XY, et al. PD-1 modulates regulatory T cells and suppresses T-cell responses in HCV-associated lymphoma. Immunol Cell Biol. 2011;89:535–9.PubMedCrossRef
148.
Zurück zum Zitat Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206:3015–29.PubMedPubMedCentralCrossRef Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206:3015–29.PubMedPubMedCentralCrossRef
149.
150.
Zurück zum Zitat Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.PubMedPubMedCentralCrossRef Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Sznol M, Powderly JD, Smith DC, Brahmer JR, Drake CG, McDermott DF, Lawrence DP, Wolchok JD, Topalian SL, Lowy I: Safety and antitumor activity of biweekly MDX-1106 (Anti-PD-1, BMS-936558/ONO-4538) in patients with advanced refractory malignancies. 2010 ASCO Annual Meeting Abstracts. Sznol M, Powderly JD, Smith DC, Brahmer JR, Drake CG, McDermott DF, Lawrence DP, Wolchok JD, Topalian SL, Lowy I: Safety and antitumor activity of biweekly MDX-1106 (Anti-PD-1, BMS-936558/ONO-4538) in patients with advanced refractory malignancies. 2010 ASCO Annual Meeting Abstracts.
152.
Zurück zum Zitat Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–24.PubMedCrossRef Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–24.PubMedCrossRef
153.
Zurück zum Zitat Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.PubMedPubMedCentralCrossRef Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Poelstra K, Beljaars L, Melgert BN. Cell-specific delivery of biologicals: problems, pitfalls and possibilities of antifibrotic compounds in the liver. Drug Discov Today. 2013;18:1237–42.PubMedCrossRef Poelstra K, Beljaars L, Melgert BN. Cell-specific delivery of biologicals: problems, pitfalls and possibilities of antifibrotic compounds in the liver. Drug Discov Today. 2013;18:1237–42.PubMedCrossRef
155.
Zurück zum Zitat Elrick LJ, Leel V, Blaylock MG, Duncan L, Drever MR, Strachan G, et al. Generation of a monoclonal human single chain antibody fragment to hepatic stellate cells–a potential mechanism for targeting liver anti-fibrotic therapeutics. J Hepatol. 2005;42:888–96.PubMedCrossRef Elrick LJ, Leel V, Blaylock MG, Duncan L, Drever MR, Strachan G, et al. Generation of a monoclonal human single chain antibody fragment to hepatic stellate cells–a potential mechanism for targeting liver anti-fibrotic therapeutics. J Hepatol. 2005;42:888–96.PubMedCrossRef
156.
Zurück zum Zitat Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26:431–42.PubMedCrossRef Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26:431–42.PubMedCrossRef
157.
Zurück zum Zitat Klein S, Van Beuge MM, Granzow M, Beljaars L, Schierwagen R, Kilic S, et al. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. J Hepatol. 2012;57:1220–7.PubMedCrossRef Klein S, Van Beuge MM, Granzow M, Beljaars L, Schierwagen R, Kilic S, et al. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. J Hepatol. 2012;57:1220–7.PubMedCrossRef
158.
Zurück zum Zitat Moreno M, Gonzalo T, Kok RJ, Sancho-Bru P, van Beuge M, Swart J, et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology. 2010;51:942–52.PubMedCrossRef Moreno M, Gonzalo T, Kok RJ, Sancho-Bru P, van Beuge M, Swart J, et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology. 2010;51:942–52.PubMedCrossRef
159.
Zurück zum Zitat Beljaars L, Weert B, Geerts A, Meijer DKF, Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochem Pharmacol. 2003;66:1307–17.PubMedCrossRef Beljaars L, Weert B, Geerts A, Meijer DKF, Poelstra K. The preferential homing of a platelet derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochem Pharmacol. 2003;66:1307–17.PubMedCrossRef
160.
Zurück zum Zitat Schoemaker MH, Rots MG, Beljaars L, Ypma AY, Jansen PLM, Poelstra K, et al. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells. Mol Pharm. 2008;5:399–406.PubMedCrossRef Schoemaker MH, Rots MG, Beljaars L, Ypma AY, Jansen PLM, Poelstra K, et al. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells. Mol Pharm. 2008;5:399–406.PubMedCrossRef
161.
Zurück zum Zitat Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J Biol Chem. 2000;275:12743–51.PubMedCrossRef Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J Biol Chem. 2000;275:12743–51.PubMedCrossRef
162.
Zurück zum Zitat Du S-L, Pan H, Lu W-Y, Wang J, Wu J, Wang J-Y. Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting drug therapy of hepatic fibrosis in rats. J Pharmacol Exp Ther. 2007;322:560–8.PubMedCrossRef Du S-L, Pan H, Lu W-Y, Wang J, Wu J, Wang J-Y. Cyclic Arg-Gly-Asp peptide-labeled liposomes for targeting drug therapy of hepatic fibrosis in rats. J Pharmacol Exp Ther. 2007;322:560–8.PubMedCrossRef
163.
Zurück zum Zitat Bansal R, Prakash J, De Ruiter M, Poelstra K. Targeted recombinant fusion proteins of IFNγ and mimetic IFNγ with PDGFβR bicyclic peptide inhibits liver fibrogenesis in vivo. PLoS One. 2014;9, e89878.PubMedPubMedCentralCrossRef Bansal R, Prakash J, De Ruiter M, Poelstra K. Targeted recombinant fusion proteins of IFNγ and mimetic IFNγ with PDGFβR bicyclic peptide inhibits liver fibrogenesis in vivo. PLoS One. 2014;9, e89878.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Bansal R, Prakash J, De Ruiter M, Poelstra K. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo. J Control Release. 2014;179:18–24.PubMedCrossRef Bansal R, Prakash J, De Ruiter M, Poelstra K. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo. J Control Release. 2014;179:18–24.PubMedCrossRef
165.
Zurück zum Zitat Bansal R, Prakash J, Post E, Beljaars L, Schuppan D, Poelstra K. Novel engineered targeted interferon-gamma blocks hepatic fibrogenesis in mice. Hepatology. 2011;54:586–96.PubMedCrossRef Bansal R, Prakash J, Post E, Beljaars L, Schuppan D, Poelstra K. Novel engineered targeted interferon-gamma blocks hepatic fibrogenesis in mice. Hepatology. 2011;54:586–96.PubMedCrossRef
Metadaten
Titel
Hepatic stellate cells: central modulators of hepatic carcinogenesis
verfasst von
Alexandra I Thompson
Kylie P Conroy
Neil C Henderson
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2015
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-015-0291-5

Weitere Artikel der Ausgabe 1/2015

BMC Gastroenterology 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.