Skip to main content
Erschienen in: BMC Endocrine Disorders 1/2019

Open Access 01.12.2019 | Research article

HNF1A gene p.I27L is associated with early-onset, maturity-onset diabetes of the young-like diabetes in Turkey

verfasst von: Selvihan Beysel, Nilnur Eyerci, Ferda Alparslan Pinarli, Muhammed Kizilgul, Ozgur Ozcelik, Mustafa Caliskan, Erman Cakal

Erschienen in: BMC Endocrine Disorders | Ausgabe 1/2019

Abstract

Background

The molecular basis of the Turkish population with suspected maturity-onset diabetes of the young (MODY) has not been identified. This is the first study to investigate the association between HNF1A-gene single-nucleotide polymorphisms (SNPs) and having early-onset, MODY-like diabetes mellitus in the Turkish population.

Methods

All diabetic patients (N = 565) who presented to our clinic between 2012 and 2015 with a clinical suspicion of MODY were included in the study. Analysis of HNF1A, HNFB, HNF4A, GCK gene mutations was performed using real-time polymerase chain reaction sequencing. After genetic analysis, diabetics (n = 46) with HNF1A, HNF1B, HNF4A, GCK gene mutations (diagnosed as MODY) and diabetics (n = 30) with HNF1B, HNF4A, GCK gene SNPs were excluded. Patients with early-onset, MODY-like diabetes (n = 486) and non-diabetic controls (n = 263) were included. Genetic analyses for the HNF1A gene p.S487 N (rs2464196), p.A98V (rs1800574) and p.I27L (rs1169288) SNPs were performed using Sanger-based DNA sequencing among the control group.

Results

p.S487 N and p.A98V was similar between the diabetics and controls in dominant and recessive models with no association (each, p > 0.05). p.I27L GT/TT carriers (GT/TT vs. GG, OR = 1.68, 95% CI: [1. 21-2.13]; p = 0.035) and p.I27L TT carriers had increased risk of having MODY-like diabetes (GT/GG vs. TT, OR = 1.56, 95% CI: [1. 14-2.57]; p = 0.048). Family inheritance of diabetes was significantly more common in patients with the p.I27L TT genotype. The p.I27L SNP was modestly associated with having diabetes after adjusting for body mass index and age (β = 1.45, 95% CI: [1. 2-4.2]; p = 0.036).

Conclusions

The HNF1A gene p.I27L SNP was modestly associated with having early-onset, MODY-like diabetes in the Turkish population. HNF1A gene p.I27L SNP might contribute to age at diabetes diagnosis and family inheritance.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12902-019-0375-2) contains supplementary material, which is available to authorized users.
Abkürzungen
BMI
Body mass index
HbA1c
Hemoglobin A1c
HNF1A
Hepatocyte nuclear factor 1α
SNPs
Single nucleotide polymorphisms
T2DM
Type 2 diabetes mellitus

Background

Hepatocyte nuclear factor 1A (HNF1A) is a transcription factor that has a role in the development and function of pancreas ß-islet cells. In the developmental stage, both endocrine and exocrine cells of the pancreas have HNF1A expression [1]. HNF1A is necessary for insulin secretion in response to glucose [24]. The HNF1A gene has been identified in both monogenic and polygenetic diabetes. Rare mutations of the HNF1A gene cause a monogenic form of diabetes as Type 3 maturity-onset-diabetes of the young (MODY3) [1]. The HNF1A gene contributes to the pathogenesis of Type 2 diabetes mellitus (T2DM). HNF1A gene single nucleotide polymorphisms (SNPs) were modestly associated with Type 2 diabetes mellitus (T2DM) and glycemic features in different populations [57]. HNF1A SNPs were associated with impaired insulin secretion [8, 9]. HNF1A gene SNPs (p.I27L, p.A98V and p.S487 N) were inconsistently associated with impaired glucose tolerance and having diabetes [814]. Some young people with diabetes have atypical features such as insulin resistance or a need for insulin treatment. However, these features are not similar to T2DM. These non-obese adults have early-onset, MODY-like diabetes. Monogenic MODY has not been confirmed in patients with early-onset, MODY-like diabetes through genetic analysis [15]. The genetic basis of early-onset, non-monogenic diabetes is not yet known. The aim of this study was to obtain the effects of HNF1A gene SNPs on developing MODY-like diabetes. This is the first study to investigate the association between HNF1A gene SNPs rs1169288 (encoding HNF1A p.Ile27Leu), rs1800574 (encoding HNF1A p.Ala98Val) and rs2464196 (encoding HNF1A p.Ser486Asn), and having early-onset, MODY-like diabetes in the Turkish population.

Methods

Patients

In our study, none of the control subjects (n = 263) had diabetes. All patients with diabetes (n = 486) met the criteria for the diagnosis of MODY. Subjects with a clinical suspicion of MODY [16] (diagnosis of diabetes age below 25 years, positive family history including autosomal dominant inheritance in at least 2-3 generations, residual insulin secretion with normal C-peptide concentration and absence of B-cell autoimmunity) who presented to our hospital between 2012 and 2015 were included in the study. The inclusion criteria were as follows; patients with T2DM with C-peptide concentrations ≥0.3 nmol/L, negative anti-GAD antibodies, and age-at-onset below 25 years [2]. Patients with suspected MODY did not need insulin treatment for at least first 2 years after diagnosis and had no family history of T1DM [17]. Early or late-onset diabetes was identified by using age 45 years as a cut-off, as described in previous studies [2, 17]. If we selected control subjects from those whose mean age was below 28 years, some of these subjects would develop diabetes later in life. As a way of reducing the possibility of recruiting control subjects who might later develop T2DM, healthy-normoglycemic subjects with fasting glucose below 100 mg/dL and glycated hemoglobin (Hb1Ac) < 5.7%, who were aged ≥45 years and had no first-degree relatives or grandparents with T2DM were included in the control group [17]. Healthy controls without chronic disease such as diabetes, hypertension, renal and hepatic disease, were recruited from the outpatient clinic. Subjects with genetically confirmed MODY or T1DM were excluded [2]. Genetic analysis was performed for all patients (n = 565) in order to diagnose MODY. After genetic analysis, patients with diabetes (n = 46) who had HNF1A, HNF1B, HNF4A, GCK gene mutations were diagnosed as having MODY3, MODY5, MODY1, and MODY2 respectively. Thirty patients with diabetes had HNF1B, HNF4A, had GCK gene SNPs. Patients with diabetes with MODY and HNF1B, HNF4A, and GCK SNPs were excluded from the study. Finally, subjects without HNF1A, HNF1B, HNF4A, and GCK gene mutations and HNF1B, HNF4A, and GCK SNPs (n = 486) and non-diabetic healthy controls (n = 263) were included this study.

Measurements

Fasting glucose, postprandial glucose, creatinine, HbA1c, triglycerides (TG), cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), C-peptide, high-sensitivity (hs-CRP), anti-glutamic acid decarboxylase (GAD) antibody, anti-insulin antibody, anti-islet antibody, and urinary microalbuminuria concentrations were measured. Age and symptoms at onset of diabetes, diabetes treatment, and parental history of diabetes (first-degree relatives, mother or father) were recorded from all patients with diabetes. Body mass index (BMI) was calculated as weight (kg) / height (m2). BMI ≥ 30 kg/m2 was diagnosed as obesity. T2DM was diagnosed when plasma fasting glucose concentrations were > 125 mg/dL, casual or postprandial glucose levels were > 200 mg/dL or in the presence of current treatment with a hypoglycemic agent, according to the American Diabetes Association criteria [17]. Informed consent was obtained from all participants. This study was approved by Diskapi Yildirim Beyazit Training and Research Hospital Local Ethics Committee.
Genotyping and Statistical analysis is presented in Additional file 1.

Results

The percentage of women (51.5% vs. 58.2%) and BMI value (27.88 ± 5.72 vs. 27.01 ± 3.29 kg/m2) was similar between the diabetics and controls (p > 0.05). The mean age of the controls was 49.18 ± 3.38 years. The mean age at onset of diabetes was 24.08 ± 4.82 years. The mean C-peptide concentration of the patients with diabetes was 2.47 ± 1.79 nmol/L. Fasting glucose, HbA1c, TG, cholesterol, LDL-C concentrations were higher among the diabetics compared with the controls (p < 0.05, Table 1). HNF1A gene p.I27L rs1169288 and p.A98V rs1800574 SNPs were consistent with the Hardy-Weinberg equilibrium (HWE), and p.S487 rs2464196 were not consistent with the HWE (Table 2). HNF1A genotypes are shown in Table 3. Thefrequency of p.S487 N SNPs was similar between the diabetics and controls in the codominant model and dominant model and recessive model (p > 0.05, each). p.A98V SNPs were similar between the diabetics and controls in the dominant model and recessive model (p > 0.05, each). The p.A98V TT genotype was higher in diabetics in the codominant model compared with the controls (TT vs. CC, OR = 1.35, 95% CI: [0.95–3.54]; p = 0.027). HNF1A gene p.I27L TT genotype was increased in diabetes (TT vs. GG, OR = 1.71, 95% CI: [1. 25-3.46]; p = 0.024) compared with the controls in the codominant model. p.I27L GT/TT carriers had increased 1.68 odds of having diabetes (GT/TT vs. GG, OR = 1.68, 95% CI: [1. 21-2.13]; p = 0.035) in the dominant model. p.I27L TT carriers had 1.56-fold increased odds of having diabetes (GT/GG vs. TT, OR = 1.56, 95% CI: [1. 14-2.57]; p = 0.048) in the recessive model. Clinical and biochemical characteristics did not differ between patients with diabetes with p.I27L, p.S487 N, and p.A98V SNPs and diabetics without the SNPs (p > 0.05). Onset of diabetes was 26.17 ± 7.4 years in p.S487 N, 25.58 ± 2.7 years in p.A98V, and 24.57 ± 5.2 years in p.I27L (p > 0.05). Parent diabetes (mother or father) was higher in the p.I27L TT genotype compared with the GG genotype (78.5 vs. 98.7%, p = 0.035). Diabetics with p.I27L TT genotype had higher triglyceride concentrations compared with diabetics with the GG genotype (p = 0.041) (Table 4). HNF1A gene p.I27L and p.A98V haplotypes were within Linkage Disequilibrium. p.I27L SNPs was modestly associated with having diabetes after adjusting for BMI and age (β = 1.45, 95% CI: [1. 2-4.2]; p = 0.036).
Table 1
Characteristics of subjects
 
Controls (n = 263)
Diabetics (n = 486)
P
Women (%)
58.2
51.5
0.081
Parent diabetes (%)
30.4
96.1
< 0.001
Symptoms at the diagnosis (%)
 
 Asymptomatic
 
58.1
 Diabetic symptom
 
32.5
 Gestational diabetes
 
8.1
 Diabetic complication
 
1.3
Treatment (%)
 
 Diet
 
20.1
 Oral antidiabetic
 
32.1
 İnsulin
 
47.8
Age at diagnosis (year)a
24.08 ± 4.82
BMI (kg/m2)a
27.01 ± 3.29
27.88 ± 5.72
0.109
Systolic BP (mmHg)a
124.70 ± 11.15
125.31 ± 11.82
0.823
Diastolic BP (mmHg)a
76.64 ± 7.21
75.61 ± 7.86
0.374
Fasting glucose (mg/dl)a
80.68 ± 9.37
151.75 ± 74.12
< 0.001
Postprandial glucose (mg/dl)a
252.92 ± 110.97
LDL (mg/dl)a
96.90 ± 20.75
107.99 ± 36.98
< 0.001
TG (mg/dl)a
99.51 ± 51.64
204.46 ± 203.21
< 0.001
Cholesterol (mg/dl)a
159.18 ± 27.68
193.55 ± 87.46
< 0.001
HDL (mg/dl)a
51.33 ± 16.96
44.16 ± 14.07
< 0.001
Creatinine (mg/dl)a
0.88 ± 0.89
1.24 ± 8.91
0.018
HbA1c (%)a
5.31 ± 0.10
8.21 ± 2.41
< 0.001
TSHa
1.74 ± 1.01
2.78 ± 8.73
0.142
HsCRPa
3.30 ± 2.98
4.08 ± 3.96
0.101
C-peptide (nmol/L)a
2.47 ± 1.79
Microalbuminuriaa
11.96 ± 13.65
94.86 ± 348.40
< 0.001
BMI body mass index, HbA1c hemoglobin A1c, BP blood pressure
aStudent’s t test was used for normally distributed continuous variables or log-transformed variables between two groups
Data are shown as mean ± standard deviation (means ± SD) and percentage (%)
Bold represents the significant p-values
Categorical variables were analyzed with the Chi-square test or Fisher’s exact test, where appropriate
Table 2
Minor allele frequency of HNF1A gene SNPs
 
Risk allele
MAF for study sample
I27L rs1169288
T
0.43
S487 N rs2464196
T
0.39
A98V rs1800574
T
0.09
MAF minor allele frequency
Table 3
Genotype analysis of HNF1A gene SNPs
 
Controls, n
Diabetes, n
OR (95% CI)
P
I27L rs1169288 (%)
 *Co-dominant Wild type GG
105
146
  
 Heterozygous GT
120
233
1.02 (0.57–1.78)
0.984
 Homozygous TT
38
110
1.71 (1.25–3.46)
0.024
 Dominant (GT + TT/GG)
158 vs 105
343 vs 146
1.68 (1. 21-2.13)
0.035
 Recessive (TT/GT + GG)
38 vs 225
110 vs 379
1.56 (1. 14-2.57)
0.048
S487 N rs2464196 (%)
 *Co-dominant Wild type CC
102
188
  
 Heterozygous CT
121
210
0.58 (0.35–1.39)
0.471
 Homozygous TT
40
91
1.25 (0.57–2.75)
0.638
 Dominant (CT + TT/CC)
161 vs 102
301 vs 188
1.01 (0.74–1.38)
0.938
 Recessive (TT/CT + CC)
40 vs 223
91 vs 398
1.27 (0.84–1.91)
0.241
A98V rs1800574 (%)
 *Co-dominant Wild type CC
208
411
  
 Heterozygous CT
52
64
1.26 (0.48–3.29)
0.676
 Homozygous TT
3
14
1.35 (0.95–3.54)
0.027
 Dominant model (CT + TT/CC)
55 vs 208
78 vs 411
0.71 (0.48–1.05)
0.089
 Recessive model (TT/CT + CC)
3 vs 260
14 vs 475
2.55 (0.72–8.97)
0.130
*Co-dominat model was compared wild type, homozygous variant and heterozygous variant were compared
DM Diabetes mellitus, OR odds ratio, CI confidence interval
Data are shown as mean ± standard deviation (means ± SD) and percentage (%)
Bold represents the significant p-values
Categorical variables were analyzed with Chi-square test or Fisher’s exact test, where appropriate
Multiple logistic regression analysis and Fisher’s exact test were tested using models: dominant (major allele homozygotes vs heterozygotes + minor allele homozygotes), recessive (major allele homozygotes + heterozygotes vs minor allele homozygotes) and codominant (major allele homozygotes vs heterozygote and minor allele homozygotes vs major allele homozygotes)
Table 4
HNF1A gene p.I27L SNPs and clinical features in diabetics patients
 
GG (wild)
n = 146
GT
n = 233
TT
n = 110
Pa GG/GT
Pb GG/TT
Pc GT/TT
Age at the diagnosis (year)a
23.36 ± 9.51
20.89 ± 6.54
21.29 ± 9.78
0.845
0.653
0.958
Parent diabetes (%)
78.5
89.2
98.7
0.427
0.035
0.852
BMI (kg/m2)a
26.78 ± 6.02
27.81 ± 3.85
28.42 ± 4.70
0.871
0.852
0.990
Fasting glucose (mg/dl)a
151.12 ± 75.89
175.01 ± 98.35
154.01 ± 68.13
0.895
0.836
0.127
Postprandial glucose (mg/dl)a
239.43 ± 114.53
264.18 ± 100.37
276.18 ± 125.38
0.625
0.327
0.785
HbA1c (%)
7.85 ± 3.45
8.20 ± 6.75
8.47 ± 2.29
0.427
0.324
0.913
LDL (mg/dl)a
112.30 ± 37.61
106.09 ± 30.98
136.09 ± 45.65
0.358
0.339
0.249
TG (mg/dl)a
174.31 ± 175.80
197.91 ± 186.34
218.91 ± 276.52
0.258
0.041
0.377
Cholesterol (mg/dl)a
185.35 ± 96.84
189.27 ± 35.63
197.87 ± 44.90
0.957
0.924
0.847
HDL (mg/dl)a
46.22 ± 11.37
49.32 ± 17.93
43.28 ± 20.85
0.542
0.627
0.332
C-peptide (nmol/L)a
2.82 ± 2.28
2.15 ± 1.32
2.32 ± 1.51
0.246
0.351
0.513
Microalbuminuria
91.30 ± 357.93
96.42 ± 349.35
106.50 ± 320.85
0.792
0.650
0.838
aGG genotype vs GT genotype bGG genotype vs TT genotype cGT genotype vs TT genotype
Data are shown as mean ± standard deviation (means ± SD) and percentage (%)
Bold represents the significant p-values
BMI body mass index, HbA1c hemoglobin A1c
Student’s t test was used for normally distributed continuous variables or log-transformed variables between two groups
Categorical variables were analyzed with the Chi-square test or Fisher’s exact test, where appropriate

Discussion

This case-control study showed that the HNF1A gene p.I27L SNP was modestly associated with having early-onset, MODY-like diabetes in the Turkish population. Family inheritance of diabetes was significantly more common in patients with the p.I27L TT genotype. The HNF1A gene p.I27L SNP might contribute to age at diabetes diagnosis and family inheritance.
In this study, we suggest that polygenic T2DM may show differences in age-related and family inheritance transmission for an associated monogenic form of diabetes. This is the first study to show the effect of the p.I27L genotype on modifying age at diagnosis in the Turkish population. We excluded monogenic diabetes modifier genes, which often include mutations, because we aimed to examine the influence of variations on polygenic diabetes. In our study, subjects with diabetes were non-obese and the onset of diabetes was early. A previous study showed that non-obese patients with early-onset diabetes were more susceptible to β-cell dysfunction as compared with old and obese individuals [18]. A modest association was found between HNF1A missense SNPs (p.I27L, p.A98V, and p.S487 N) and having late-onset T2DM in the European population [24]. In European ancestry, no association was shown between HNF1A gene SNPs and having late-onset T2DM [19], but a robust association was found when p.A98V SNPs were included [20]. Similar to our study, European ancestry reported that p.I27L and p.A98V SNPs were associated with having late-onset T2DM [12]. p.I27L GT/TT carriers had 1.68-fold increased odds of having diabetes, and p.I27L TT carriers had 1.5 6-fold increased odds of having diabetes in our study. Only the p.I27L variant was modestly associated with having diabetes and this relationship continued after adjusting BMI and age. There was no association between p.S487 N and p.A98V SNPs and early-onset T2DM. Similar to our report, a modest association was shown between p.I27L, p.S487 N, and p.A98V and having T2DM in the European population [19]. In agreement with our report, p.I27L was associated with having T2DM in non-obese French [21] and Finnish subjects [13]. A Chinese and Japanese meta-analysis reported that p.I27L was associated with having T2DM [18]. HNF1A gene p.I27L was associated with having late-onset T2DM in Brazilian [22] and Western Indian [23] overweight/obese subjects aged 51–60 years; however, this association was found in normal-weight Japanese subjects [11]. In line with our report, Holmkvist et al. determined that p.I27L was associated with having late-onset T2DM in overweight Scandinavian subjects aged over 60 years, and p.A98V was reported to decrease in vivo glucose-responsive to insulin secretion [2]. Chi et al. demonstrated that p.I27L has a modest role in β-cell dysfunction [10] and in insulin resistance [8, 24]. Consistent with our study, European population studies found a modest association between only p.A98V and having T2DM [3, 4]. A Danish study of Caucasians found p.A98V to be associated with decreased insulin secretion in healthy individuals [9], but this effect was balanced by increased insulin sensitivity [25]. HNF1A gene p.A98V was associated with having early-onset T2DM in Scandinavian [26] and Asian-Indian [27] individuals. HNF1A p.A98V was associated with having late-onset T2DM in Finnish but not in Chinese individuals [14]. Our study reported that the p.A98V TT genotype was higher compared with the GG genotype in diabetics, nevertheless, with no association.
Early-onset diabetes (19 years) was observed in Chinese p.I27L + p.S487 N carriers [28]. Yorifuji et al. reported that patients who were MODY-mutation–positive were younger and had a lower BMI percentile at diagnosis compared with mutation-negative patients in Japan [29]. A German-Austrian study reported that age at onset of diabetes (10.9 years) was found to be younger in p.I27L + p.S487 N ± p.A98V carriers, as compared with HNF1A mutation (14 years). Locke et al. reported that each p.I27L allele was associated with a 1.6-year decrease in age at diagnosis in patients with HNF1A-MODY [30]. Our study reported early onset of diabetes (24.08 ± 4.82 year) with no differences between HNF1A gene SNPs. Similar to our report, paternal diabetes was higher in HNF1A gene SNP carriers [31]. This study found that diabetes was higher in first-degree relatives (mother or father) of p.I27L homozygous TT carriers, suggesting a probability of significant familial transmission.
The HNF1A locus p.I27L is localized in the dimerization domain, p.S487 N is localized in the transactivation domain, and the p.A98V is localized in the DNA-binding domain [1, 22, 28]. HNF1A gene p.I27L, p.A98V, and p.S487 N variants reduce transcriptional activities of genes that have a role in glucose metabolism [2]. It was reported that p.I27L + p.A98V variations decreased transactivation activity on GLUT2 in HeLa cells more than p.I27L alone and p.A98V alone [2]. Decreased insulin secretion and ß-cell dysfunction was observed in p.I27L coexisting with p.487 N carrier (when p.A98V carrier included). This leads to developing diabetes [1, 2, 4, 24, 25, 31]. HNF1A controls ß-cell function by regulating target genes such as glucose transporter 2 (GLUT2), HNF 4A, collectrin, liver pyruvate kinase, and hepatocyte growth factor activator. HNF1A activity dysfunction causes a reduction β-cell mass and induces onset of diabetes [1]. Gene expression regulation among diabetic subjects with HNF1A variation can be explained by environmental factors together with epigenetic factors [22, 31].
This study had a case-control design and small sample size. p.I27L and p.A98V were consistent with the HWE whereas p.S487 was not consistent with HWE. HNF1A gene p.I27L and p.A98V haplotypes were within LD. These are the limitations of this study.

Conclusions

We report a genetic modifier of the HNF1A gene age at diagnosis that shows an effect of genetic variation on diabetes phenotype. The HNF1A variant p.I27L was associated with having early-onset, MODY-like diabetes in the Turkish population. Enlightening the role of HNF1A in β-cells would be helpful in understanding the molecular mechanism of both T2DM and MODY and would guide new therapeutic approaches.

Acknowledgements

Not applicable

Funding

No funding sources for research

Availability of data and materials

All data are freely available for scientific purpose.

Authors’ information

Selvihan Beysel MD, Nilnur Eyerci PhD, Ferda Alparslan Pinarli MD, Muhammed Kizilgul MD, Ozgur Ozcelik MD, Mustafa Caliskan MD, Erman Cakal MD.
This study was approved by Diskapi Yildirim Beyazit Teaching and Research Hospital Ethics Board (Number.24.01.2015–17/25). Written informed consent was obtained from all subjects.
Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Balamurugan K, Bjørkhaug L, Mahajan S, Kanthimathi S, Njølstad PR, Srinivasan N, Mohan V, Radha V. Structure-function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin Genet. 2016;90:486–95. Balamurugan K, Bjørkhaug L, Mahajan S, Kanthimathi S, Njølstad PR, Srinivasan N, Mohan V, Radha V. Structure-function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin Genet. 2016;90:486–95.
2.
Zurück zum Zitat Holmkvist J, Cervin C, Lyssenko V, Winckler W, Anevski D, Cilio C, Almgren P, Berglund G, Nilsson P, Tuomi T, et al. Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia. 2006;49:2882–91.CrossRef Holmkvist J, Cervin C, Lyssenko V, Winckler W, Anevski D, Cilio C, Almgren P, Berglund G, Nilsson P, Tuomi T, et al. Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia. 2006;49:2882–91.CrossRef
3.
Zurück zum Zitat Weedon MN, Owen KR, Shields B, Hitman G, Walker M, McCarthy MI, Hattersley AT, Frayling TM. A large-scale association analysis of common variation of the HNF1alpha gene with type 2 diabetes in the U.K. Caucasian population. Diabetes. 2005;54:2487–91.CrossRef Weedon MN, Owen KR, Shields B, Hitman G, Walker M, McCarthy MI, Hattersley AT, Frayling TM. A large-scale association analysis of common variation of the HNF1alpha gene with type 2 diabetes in the U.K. Caucasian population. Diabetes. 2005;54:2487–91.CrossRef
4.
Zurück zum Zitat Winckler W, Burtt NP, Holmkvist J, Cervin C, de Bakker PIW, Sun M, Almgren P, Tuomi T, Gaudet D, Hudson TJ, et al. Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. Diabetes. 2005;54:2336–42.CrossRef Winckler W, Burtt NP, Holmkvist J, Cervin C, de Bakker PIW, Sun M, Almgren P, Tuomi T, Gaudet D, Hudson TJ, et al. Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. Diabetes. 2005;54:2336–42.CrossRef
5.
Zurück zum Zitat Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.CrossRef Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.CrossRef
6.
Zurück zum Zitat Cho YS, Chen C-H, Hu C, Long J, Ong RTH, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.CrossRef Cho YS, Chen C-H, Hu C, Long J, Ong RTH, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.CrossRef
7.
Zurück zum Zitat DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium, Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 2014;46:234–44.CrossRef DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples (T2D-GENES) Consortium, Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 2014;46:234–44.CrossRef
8.
Zurück zum Zitat Chiu KC, Chuang L-M, Chu A, Yoon C, Wang M. Comparison of the impact of the I27L polymorphism of the hepatocyte nuclear factor-1alpha on estimated and measured beta cell indices. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2003b;148:641–7.CrossRef Chiu KC, Chuang L-M, Chu A, Yoon C, Wang M. Comparison of the impact of the I27L polymorphism of the hepatocyte nuclear factor-1alpha on estimated and measured beta cell indices. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 2003b;148:641–7.CrossRef
9.
Zurück zum Zitat Urhammer SA, Fridberg M, Hansen T, Rasmussen SK, Møller AM, Clausen JO, Pedersen O. A prevalent amino acid polymorphism at codon 98 in the hepatocyte nuclear factor-1alpha gene is associated with reduced serum C-peptide and insulin responses to an oral glucose challenge. Diabetes. 1997;46:912–6.CrossRef Urhammer SA, Fridberg M, Hansen T, Rasmussen SK, Møller AM, Clausen JO, Pedersen O. A prevalent amino acid polymorphism at codon 98 in the hepatocyte nuclear factor-1alpha gene is associated with reduced serum C-peptide and insulin responses to an oral glucose challenge. Diabetes. 1997;46:912–6.CrossRef
10.
Zurück zum Zitat Chiu KC, Chuang L-M, Chu A, Wang M. Transcription factor 1 and beta-cell function in glucose-tolerant subjects. Diabet Med J Br Diabet Assoc. 2003a;20:225–30.CrossRef Chiu KC, Chuang L-M, Chu A, Wang M. Transcription factor 1 and beta-cell function in glucose-tolerant subjects. Diabet Med J Br Diabet Assoc. 2003a;20:225–30.CrossRef
11.
Zurück zum Zitat Morita K, Saruwatari J, Tanaka T, Oniki K, Kajiwara A, Otake K, Ogata Y, Nakagawa K. Associations between the common HNF1A gene variant p.I27L (rs1169288) and risk of type 2 diabetes mellitus are influenced by weight. Diabetes Metab. 2015;41:91–4.CrossRef Morita K, Saruwatari J, Tanaka T, Oniki K, Kajiwara A, Otake K, Ogata Y, Nakagawa K. Associations between the common HNF1A gene variant p.I27L (rs1169288) and risk of type 2 diabetes mellitus are influenced by weight. Diabetes Metab. 2015;41:91–4.CrossRef
12.
Zurück zum Zitat Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, Mahajan A, Locke A, Rayner NW, Robertson N, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25.CrossRef Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, Mahajan A, Locke A, Rayner NW, Robertson N, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25.CrossRef
13.
Zurück zum Zitat Bonnycastle LL, Willer CJ, Conneely KN, Jackson AU, Burrill CP, Watanabe RM, Chines PS, Narisu N, Scott LJ, Enloe ST, et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes. 2006;55:2534–40.CrossRef Bonnycastle LL, Willer CJ, Conneely KN, Jackson AU, Burrill CP, Watanabe RM, Chines PS, Narisu N, Scott LJ, Enloe ST, et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes. 2006;55:2534–40.CrossRef
14.
Zurück zum Zitat Rissanen J, Wang H, Miettinen R, Kärkkäinen P, Kekäläinen P, Mykkänen L, Kuusisto J, Karhapää P, Niskanen L, Uusitupa M, et al. Variants in the hepatocyte nuclear factor-1alpha and -4alpha genes in Finnish and Chinese subjects with late-onset type 2 diabetes. Diabetes Care. 2000;23:1533–8.CrossRef Rissanen J, Wang H, Miettinen R, Kärkkäinen P, Kekäläinen P, Mykkänen L, Kuusisto J, Karhapää P, Niskanen L, Uusitupa M, et al. Variants in the hepatocyte nuclear factor-1alpha and -4alpha genes in Finnish and Chinese subjects with late-onset type 2 diabetes. Diabetes Care. 2000;23:1533–8.CrossRef
15.
Zurück zum Zitat Steenkamp DW, Alexanian SM, Sternthal E. Approach to the patient with atypical diabetes. CMAJ Can Med Assoc J J Assoc Medicale Can. 2014;186:678–84.CrossRef Steenkamp DW, Alexanian SM, Sternthal E. Approach to the patient with atypical diabetes. CMAJ Can Med Assoc J J Assoc Medicale Can. 2014;186:678–84.CrossRef
16.
Zurück zum Zitat Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş VN, Önder A, Peltek Kendirci HN, Doğan H, Ceylaner S. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab JPEM. 2016;29:487–96.PubMed Ağladıoğlu SY, Aycan Z, Çetinkaya S, Baş VN, Önder A, Peltek Kendirci HN, Doğan H, Ceylaner S. Maturity onset diabetes of youth (MODY) in Turkish children: sequence analysis of 11 causative genes by next generation sequencing. J Pediatr Endocrinol Metab JPEM. 2016;29:487–96.PubMed
17.
Zurück zum Zitat Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, Vázquez-Cárdenas P, Ordóñez-Sánchez ML, Rodríguez-Guillén R, Riba L, Rodríguez-Torres M, Guerra-García MT, Guillén-Pineda LE, et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican mestizo population. Diabetes. 2012;61:3314–21.CrossRef Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, Vázquez-Cárdenas P, Ordóñez-Sánchez ML, Rodríguez-Guillén R, Riba L, Rodríguez-Torres M, Guerra-García MT, Guillén-Pineda LE, et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican mestizo population. Diabetes. 2012;61:3314–21.CrossRef
18.
Zurück zum Zitat Chen T, Cao X, Long Y, Zhang X, Yu H, Xu J, Yu T, Tian H. I27L polymorphism in hepatocyte nuclear factor-1A gene and type 2 diabetes mellitus: a meta-analysis of studies about orient population (Chinese and Japanese). Int J Diabetes Mellit. 2010;2:28–31.CrossRef Chen T, Cao X, Long Y, Zhang X, Yu H, Xu J, Yu T, Tian H. I27L polymorphism in hepatocyte nuclear factor-1A gene and type 2 diabetes mellitus: a meta-analysis of studies about orient population (Chinese and Japanese). Int J Diabetes Mellit. 2010;2:28–31.CrossRef
19.
Zurück zum Zitat Winckler W, Weedon MN, Graham RR, McCarroll SA, Purcell S, Almgren P, Tuomi T, Gaudet D, Boström KB, Walker M, et al. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes. 2007;56:685–93.CrossRef Winckler W, Weedon MN, Graham RR, McCarroll SA, Purcell S, Almgren P, Tuomi T, Gaudet D, Boström KB, Walker M, et al. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes. 2007;56:685–93.CrossRef
20.
Zurück zum Zitat Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, Mega JL, Lanktree MB, Tare A, Castillo BA, Li YR, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet. 2012;90:410–25.CrossRef Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, Mega JL, Lanktree MB, Tare A, Castillo BA, Li YR, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet. 2012;90:410–25.CrossRef
21.
Zurück zum Zitat Cauchi S, Nead KT, Choquet H, Horber F, Potoczna N, Balkau B, Marre M, Charpentier G, Froguel P, Meyre D. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet. 2008;9:45.CrossRef Cauchi S, Nead KT, Choquet H, Horber F, Potoczna N, Balkau B, Marre M, Charpentier G, Froguel P, Meyre D. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet. 2008;9:45.CrossRef
22.
Zurück zum Zitat Bonatto N, Nogaroto V, Svidnicki PV, Milléo FQ, Grassiolli S, Almeida MC, Vicari MR, Artoni RF. Variants of the HNF1A gene: a molecular approach concerning diabetic patients from southern Brazil. Genet Mol Biol. 2012;35:737–40.CrossRef Bonatto N, Nogaroto V, Svidnicki PV, Milléo FQ, Grassiolli S, Almeida MC, Vicari MR, Artoni RF. Variants of the HNF1A gene: a molecular approach concerning diabetic patients from southern Brazil. Genet Mol Biol. 2012;35:737–40.CrossRef
23.
Zurück zum Zitat Deobagkar D, Ranade S, Deobagkar D. Identification of I27L polymorphism in the HNF-1Agene in Western Indian population with late-onset of diabetes. Int J Diabetes Dev Ctries. 2010;30:226.CrossRef Deobagkar D, Ranade S, Deobagkar D. Identification of I27L polymorphism in the HNF-1Agene in Western Indian population with late-onset of diabetes. Int J Diabetes Dev Ctries. 2010;30:226.CrossRef
24.
Zurück zum Zitat Chiu KC, Chuang LM, Ryu JM, Tsai GP, Saad MF. The I27L amino acid polymorphism of hepatic nuclear factor-1alpha is associated with insulin resistance. J Clin Endocrinol Metab. 2000;85:2178–83.PubMed Chiu KC, Chuang LM, Ryu JM, Tsai GP, Saad MF. The I27L amino acid polymorphism of hepatic nuclear factor-1alpha is associated with insulin resistance. J Clin Endocrinol Metab. 2000;85:2178–83.PubMed
25.
Zurück zum Zitat Bergman BC, Howard D, Schauer IE, Maahs DM, Snell-Bergeon JK, Eckel RH, Perreault L, Rewers M. Features of hepatic and skeletal muscle insulin resistance unique to type 1 diabetes. J Clin Endocrinol Metab. 2012;97:1663–72.CrossRef Bergman BC, Howard D, Schauer IE, Maahs DM, Snell-Bergeon JK, Eckel RH, Perreault L, Rewers M. Features of hepatic and skeletal muscle insulin resistance unique to type 1 diabetes. J Clin Endocrinol Metab. 2012;97:1663–72.CrossRef
26.
Zurück zum Zitat Lehto M, Wipemo C, Ivarsson SA, Lindgren C, Lipsanen-Nyman M, Weng J, Wibell L, Widén E, Tuomi T, Groop L. High frequency of mutations in MODY and mitochondrial genes in Scandinavian patients with familial early-onset diabetes. Diabetologia. 1999;42:1131–7.CrossRef Lehto M, Wipemo C, Ivarsson SA, Lindgren C, Lipsanen-Nyman M, Weng J, Wibell L, Widén E, Tuomi T, Groop L. High frequency of mutations in MODY and mitochondrial genes in Scandinavian patients with familial early-onset diabetes. Diabetologia. 1999;42:1131–7.CrossRef
27.
Zurück zum Zitat Anuradha S, Radha V, Deepa R, Hansen T, Carstensen B, Pedersen O, Mohan V. A prevalent amino acid polymorphism at codon 98 (Ala98Val) of the hepatocyte nuclear factor-1alpha is associated with maturity-onset diabetes of the young and younger age at onset of type 2 diabetes in Asian Indians. Diabetes Care. 2005;28:2430–5.CrossRef Anuradha S, Radha V, Deepa R, Hansen T, Carstensen B, Pedersen O, Mohan V. A prevalent amino acid polymorphism at codon 98 (Ala98Val) of the hepatocyte nuclear factor-1alpha is associated with maturity-onset diabetes of the young and younger age at onset of type 2 diabetes in Asian Indians. Diabetes Care. 2005;28:2430–5.CrossRef
28.
Zurück zum Zitat Yang Y, Zhou T-C, Liu Y-Y, Li X, Wang W-X, Irwin DM, Zhang Y-P. Identification of HNF4A mutation p.T130I and HNF1A mutations p.I27L and p.S487N in a Han Chinese family with early-onset maternally inherited type 2 diabetes. J Diabetes Res. 2016;2016:3582616.PubMedPubMedCentral Yang Y, Zhou T-C, Liu Y-Y, Li X, Wang W-X, Irwin DM, Zhang Y-P. Identification of HNF4A mutation p.T130I and HNF1A mutations p.I27L and p.S487N in a Han Chinese family with early-onset maternally inherited type 2 diabetes. J Diabetes Res. 2016;2016:3582616.PubMedPubMedCentral
29.
Zurück zum Zitat Yorifuji T, Higuchi S, Kawakita R, Hosokawa Y, Aoyama T, Murakami A, Kawae Y, Hatake K, Nagasaka H, Tamagawa N. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: dominance of maternal inheritance. Pediatr Diabetes. 2018;19:1164–72.CrossRef Yorifuji T, Higuchi S, Kawakita R, Hosokawa Y, Aoyama T, Murakami A, Kawae Y, Hatake K, Nagasaka H, Tamagawa N. Genetic basis of early-onset, maturity-onset diabetes of the young-like diabetes in Japan and features of patients without mutations in the major MODY genes: dominance of maternal inheritance. Pediatr Diabetes. 2018;19:1164–72.CrossRef
30.
Zurück zum Zitat Locke JM, Saint-Martin C, Laver TW, Patel KA, Wood AR, Sharp SA, Ellard S, Bellanné-Chantelot C, Hattersley AT, Harries LW, et al. The common HNF1A variant I27L is a modifier of age at diabetes diagnosis in individuals with HNF1A-MODY. Diabetes. 2018;67:1903–7.CrossRef Locke JM, Saint-Martin C, Laver TW, Patel KA, Wood AR, Sharp SA, Ellard S, Bellanné-Chantelot C, Hattersley AT, Harries LW, et al. The common HNF1A variant I27L is a modifier of age at diabetes diagnosis in individuals with HNF1A-MODY. Diabetes. 2018;67:1903–7.CrossRef
31.
Zurück zum Zitat Awa WL, Thon A, Raile K, Grulich-Henn J, Meissner T, Schober E, Holl RW, DPV-Wiss. Study Group. Genetic and clinical characteristics of patients with HNF1A gene variations from the German-Austrian DPV database. Eur J Endocrinol Eur Fed Endocr Soc. 2011;164:513–20.CrossRef Awa WL, Thon A, Raile K, Grulich-Henn J, Meissner T, Schober E, Holl RW, DPV-Wiss. Study Group. Genetic and clinical characteristics of patients with HNF1A gene variations from the German-Austrian DPV database. Eur J Endocrinol Eur Fed Endocr Soc. 2011;164:513–20.CrossRef
Metadaten
Titel
HNF1A gene p.I27L is associated with early-onset, maturity-onset diabetes of the young-like diabetes in Turkey
verfasst von
Selvihan Beysel
Nilnur Eyerci
Ferda Alparslan Pinarli
Muhammed Kizilgul
Ozgur Ozcelik
Mustafa Caliskan
Erman Cakal
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Endocrine Disorders / Ausgabe 1/2019
Elektronische ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-019-0375-2

Weitere Artikel der Ausgabe 1/2019

BMC Endocrine Disorders 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.