Skip to main content
Erschienen in: Neurotoxicity Research 2/2018

01.08.2018 | ORIGINAL ARTICLE

Human Umbilical Cord Matrix Stem Cells Reverse Oxidative Stress-Induced Cell Death and Ameliorate Motor Function and Striatal Atrophy in Rat Model of Huntington Disease

verfasst von: Mohammad Javad Ebrahimi, Abbas Aliaghaei, Mahdi Eskandarian Boroujeni, Fariba Khodagholi, Gholamhoussein Meftahi, Mohammad Amin Abdollahifar, Houssein Ahmadi, Samira Danyali, Mahtab Daftari, Yousef Sadeghi

Erschienen in: Neurotoxicity Research | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Huntington disease (HD) is an inherited disorder hallmarked by progressive deterioration of specific neurons, followed by movement and cognitive anomalies. Cell therapy approaches in neurodegenerative conditions have concentrated on the replenishment of lost/dying neurons with functional ones. Multipotent mesenchymal stem cells (MSCs) have been represented as a potential remedy for HD. In this study, we evaluated the in vitro and in vivo efficacy of umbilical cord matrix stem cells (UCMSCs) and their paracrine effect against oxidative stress with a specific focus on HD. To this end, UCMSCs were isolated, immunophenotypically characterized by the positive expression of MSC markers, and exhibited multilineage potentiality. Besides, synthesis of neurotrophic factors of GDNF and VEGF by UCMSC was confirmed. Initially, PC12 cells were exposed to superoxide in the presence of conditioned media (CM) collected from UCMSC (UCMSC-CM) and cell viability plus neuritogenesis were measured. Next, bilateral striatal transplantation of UCMSC in 3-nitropropionic acid (3-NP) lesioned rat models was conducted, and 1 month later, post-graft analysis was performed. According to our in vitro results, CM of UCMSC protected PC12 cells against oxidative stress and considerably enhanced cell viability and neurite outgrowth. On the other hand, transplanted UCMSC survived, decreased gliosis, and ameliorated motor coordination and muscle activity, along with an increase in striatal volume as well as in dendritic length of the striatum in HD rats. Collectively, our findings imply that UCMSCs provide an enriched platform by largely their paracrine factors, which downgrades the unfavorable effects of oxidative stress.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aliaghaei A, Gardaneh M, Maghsoudi N, Salehinejad P, Gharib E (2016) Dopaminergic induction of umbilical cord mesenchymal stem cells by conditioned medium of choroid plexus epithelial cells reduces Apomorphine-induced rotation in parkinsonian rats. Arch Iran Med 19 Aliaghaei A, Gardaneh M, Maghsoudi N, Salehinejad P, Gharib E (2016) Dopaminergic induction of umbilical cord mesenchymal stem cells by conditioned medium of choroid plexus epithelial cells reduces Apomorphine-induced rotation in parkinsonian rats. Arch Iran Med 19
Zurück zum Zitat Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN (2008) Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci 37:454–470CrossRefPubMed Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, Schiffmann SN (2008) Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci 37:454–470CrossRefPubMed
Zurück zum Zitat Boroujeni ME, Gardaneh M (2017) Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 12:1186CrossRefPubMedPubMedCentral Boroujeni ME, Gardaneh M (2017) Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 12:1186CrossRefPubMedPubMedCentral
Zurück zum Zitat Boroujeni M, Gowda P, Johnson J, Rao J, Saremy S (2012) The proliferation and differentiation capacity of bone marrow derived-human mesenchymal stem cells in early and late doubling. Asian J Biochem 7:27–36CrossRef Boroujeni M, Gowda P, Johnson J, Rao J, Saremy S (2012) The proliferation and differentiation capacity of bone marrow derived-human mesenchymal stem cells in early and late doubling. Asian J Biochem 7:27–36CrossRef
Zurück zum Zitat Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S (2017) Synergy between choroid plexus epithelial cell-conditioned medium and knockout serum replacement converts human adipose-derived stem cells to dopamine-secreting neurons. Rejuvenation Res Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S (2017) Synergy between choroid plexus epithelial cell-conditioned medium and knockout serum replacement converts human adipose-derived stem cells to dopamine-secreting neurons. Rejuvenation Res
Zurück zum Zitat Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton's jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3:e1451CrossRefPubMedPubMedCentral Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton's jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3:e1451CrossRefPubMedPubMedCentral
Zurück zum Zitat Clelland CD, Barker RA, Watts C (2008) Cell therapy in Huntington disease. Neurosurg Focus 24:E9CrossRefPubMed Clelland CD, Barker RA, Watts C (2008) Cell therapy in Huntington disease. Neurosurg Focus 24:E9CrossRefPubMed
Zurück zum Zitat Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res 214:193–200CrossRefPubMed Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res 214:193–200CrossRefPubMed
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMed
Zurück zum Zitat Ellison SM, Trabalza A, Tisato V, Pazarentzos E, Lee S, Papadaki V, Goniotaki D, Morgan S, Mirzaei N, Mazarakis ND (2013) Dose-dependent neuroprotection of VEGF165 in Huntington's disease striatum. Mol Ther 21:1862–1875CrossRefPubMedPubMedCentral Ellison SM, Trabalza A, Tisato V, Pazarentzos E, Lee S, Papadaki V, Goniotaki D, Morgan S, Mirzaei N, Mazarakis ND (2013) Dose-dependent neuroprotection of VEGF165 in Huntington's disease striatum. Mol Ther 21:1862–1875CrossRefPubMedPubMedCentral
Zurück zum Zitat Fan C-G, Zhang Q-j, Zhou J-r (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev 7:195–207CrossRefPubMed Fan C-G, Zhang Q-j, Zhou J-r (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev 7:195–207CrossRefPubMed
Zurück zum Zitat Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4:130CrossRefPubMedPubMedCentral Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4:130CrossRefPubMedPubMedCentral
Zurück zum Zitat Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, Dilley RJ (2011) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21:2189–2203CrossRefPubMedCentral Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, Dilley RJ (2011) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21:2189–2203CrossRefPubMedCentral
Zurück zum Zitat Jendro M, Goronzy JJ, Weyand CM (1991) Structural and functional characterization of HLA-DR molecules circulating in the serum. Autoimmunity 8:289–296CrossRefPubMed Jendro M, Goronzy JJ, Weyand CM (1991) Structural and functional characterization of HLA-DR molecules circulating in the serum. Autoimmunity 8:289–296CrossRefPubMed
Zurück zum Zitat Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688CrossRefPubMed Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688CrossRefPubMed
Zurück zum Zitat Kerkis I, Haddad MS, Valverde CW, Glosman S (2015) Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges. Stem Cell Res Ther 6:232CrossRefPubMedPubMedCentral Kerkis I, Haddad MS, Valverde CW, Glosman S (2015) Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges. Stem Cell Res Ther 6:232CrossRefPubMedPubMedCentral
Zurück zum Zitat Kim HO, Choi S-M, Kim H-S (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10:93–101CrossRef Kim HO, Choi S-M, Kim H-S (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 10:93–101CrossRef
Zurück zum Zitat Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, Zimprich C, Aebischer P, Svendsen CN, Suzuki M (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21:1602–1610CrossRefPubMedPubMedCentral Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, Zimprich C, Aebischer P, Svendsen CN, Suzuki M (2013) Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Mol Ther 21:1602–1610CrossRefPubMedPubMedCentral
Zurück zum Zitat Kumar P, Kalonia H, Kumar A (2010) Huntington’s disease: pathogenesis to animal models. Pharmacol Rep 62:1–14CrossRefPubMed Kumar P, Kalonia H, Kumar A (2010) Huntington’s disease: pathogenesis to animal models. Pharmacol Rep 62:1–14CrossRefPubMed
Zurück zum Zitat Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, Bae JS, Jin HK (2010) Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing Sphingosine-1-phosphate. Stem Cells 28:821–831CrossRefPubMed Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, Bae JS, Jin HK (2010) Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing Sphingosine-1-phosphate. Stem Cells 28:821–831CrossRefPubMed
Zurück zum Zitat Lin Y-T, Chern Y, Shen C-KJ, Wen H-L, Chang Y-C, Li H, Cheng T-H, Hsieh-Li HM (2011) Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models. PLoS One 6:e22924CrossRefPubMedPubMedCentral Lin Y-T, Chern Y, Shen C-KJ, Wen H-L, Chang Y-C, Li H, Cheng T-H, Hsieh-Li HM (2011) Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models. PLoS One 6:e22924CrossRefPubMedPubMedCentral
Zurück zum Zitat McBride JL, During MJ, Wuu J, Chen E-Y, Leurgans SE, Kordower JH (2003) Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp Neurol 181:213–223CrossRefPubMed McBride JL, During MJ, Wuu J, Chen E-Y, Leurgans SE, Kordower JH (2003) Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp Neurol 181:213–223CrossRefPubMed
Zurück zum Zitat McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, Zhou L, Pitzer MR, Berry-Kravis EM, Kordower JH (2006) Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci 103:9345–9350CrossRefPubMed McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, Zhou L, Pitzer MR, Berry-Kravis EM, Kordower JH (2006) Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci 103:9345–9350CrossRefPubMed
Zurück zum Zitat Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54CrossRefPubMedPubMedCentral Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54CrossRefPubMedPubMedCentral
Zurück zum Zitat Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP Jr, Bird ED (1991) Decreased neuronal and increased oligodendroglial densities in Huntington's disease caudate nucleus. J Neuropathol Exp Neurol 50:729–742CrossRefPubMed Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP Jr, Bird ED (1991) Decreased neuronal and increased oligodendroglial densities in Huntington's disease caudate nucleus. J Neuropathol Exp Neurol 50:729–742CrossRefPubMed
Zurück zum Zitat Noorafshan A, Abdollahifar M-A, Asadi-Golshan R, Rashidian-Rashidabadi A, Karbalay-Doust S (2014) Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats’ medial prefrontal cortex induced by stress. Acta Neurobiol Exp 74:44–53 Noorafshan A, Abdollahifar M-A, Asadi-Golshan R, Rashidian-Rashidabadi A, Karbalay-Doust S (2014) Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats’ medial prefrontal cortex induced by stress. Acta Neurobiol Exp 74:44–53
Zurück zum Zitat Noorafshan A, Abdollahifar M-A, Karbalay-Doust S, Asadi-Golshan R, Rashidian-Rashidabadi A (2015) Sertraline and curcumin prevent stress-induced morphological changes of dendrites and neurons in the medial prefrontal cortex of rats. Folia Neuropathol 53:69–79CrossRefPubMed Noorafshan A, Abdollahifar M-A, Karbalay-Doust S, Asadi-Golshan R, Rashidian-Rashidabadi A (2015) Sertraline and curcumin prevent stress-induced morphological changes of dendrites and neurons in the medial prefrontal cortex of rats. Folia Neuropathol 53:69–79CrossRefPubMed
Zurück zum Zitat Olson SD, Kambal A, Pollock K, Mitchell G-M, Stewart H, Kalomoiris S, Cary W, Nacey C, Pepper K, Nolta JA (2012) Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci 49:271–281CrossRefPubMed Olson SD, Kambal A, Pollock K, Mitchell G-M, Stewart H, Kalomoiris S, Cary W, Nacey C, Pepper K, Nolta JA (2012) Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci 49:271–281CrossRefPubMed
Zurück zum Zitat Pineda J, Rubio N, Akerud P, Urban N, Badimon L, Arenas E, Alberch J, Blanco J, Canals J (2007) Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Ther 14:118–128CrossRefPubMed Pineda J, Rubio N, Akerud P, Urban N, Badimon L, Arenas E, Alberch J, Blanco J, Canals J (2007) Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Ther 14:118–128CrossRefPubMed
Zurück zum Zitat Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci 14:708–721CrossRefPubMed Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci 14:708–721CrossRefPubMed
Zurück zum Zitat Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington's disease. ILAR J 48:356–373CrossRefPubMed Ramaswamy S, McBride JL, Kordower JH (2007) Animal models of Huntington's disease. ILAR J 48:356–373CrossRefPubMed
Zurück zum Zitat Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216CrossRefPubMed Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216CrossRefPubMed
Zurück zum Zitat Rossignol J, Boyer C, Lévèque X, Fink KD, Thinard R, Blanchard F, Dunbar GL, Lescaudron L (2011) Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington's disease: morphological and behavioral outcomes. Behav Brain Res 217:369–378CrossRefPubMed Rossignol J, Boyer C, Lévèque X, Fink KD, Thinard R, Blanchard F, Dunbar GL, Lescaudron L (2011) Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington's disease: morphological and behavioral outcomes. Behav Brain Res 217:369–378CrossRefPubMed
Zurück zum Zitat Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, Yeshurun M, Djaldetti R, Cohen Y, Melamed E (2012) Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington's disease. Exp Neurol 234:417–427CrossRefPubMed Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, Yeshurun M, Djaldetti R, Cohen Y, Melamed E (2012) Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington's disease. Exp Neurol 234:417–427CrossRefPubMed
Zurück zum Zitat Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MDF, Jazedje T, Okamoto OK, Muotri AR, Zatz M (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150CrossRefPubMed Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MDF, Jazedje T, Okamoto OK, Muotri AR, Zatz M (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150CrossRefPubMed
Zurück zum Zitat Snyder BR, Chiu AM, Prockop DJ, Chan AW (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease. PLoS One 5:e9347CrossRefPubMedPubMedCentral Snyder BR, Chiu AM, Prockop DJ, Chan AW (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease. PLoS One 5:e9347CrossRefPubMedPubMedCentral
Zurück zum Zitat Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851CrossRefPubMedPubMedCentral Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851CrossRefPubMedPubMedCentral
Zurück zum Zitat Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15:878–916CrossRefPubMed Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15:878–916CrossRefPubMed
Zurück zum Zitat Volm M, Mattern J, Koomägi R (1999) Inverse correlation between apoptotic (Fas ligand, caspase-3) and angiogenic factors (VEGF, microvessel density) in squamous cell lung carcinomas. Anticancer Res 19:1669–1671PubMed Volm M, Mattern J, Koomägi R (1999) Inverse correlation between apoptotic (Fas ligand, caspase-3) and angiogenic factors (VEGF, microvessel density) in squamous cell lung carcinomas. Anticancer Res 19:1669–1671PubMed
Zurück zum Zitat Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel J-PG, Faull RL (2014) The neuropathology of Huntington’s disease. Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease. Springer, In, pp 33–80 Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel J-PG, Faull RL (2014) The neuropathology of Huntington’s disease. Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease. Springer, In, pp 33–80
Zurück zum Zitat Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22:1330–1337CrossRefPubMed Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22:1330–1337CrossRefPubMed
Metadaten
Titel
Human Umbilical Cord Matrix Stem Cells Reverse Oxidative Stress-Induced Cell Death and Ameliorate Motor Function and Striatal Atrophy in Rat Model of Huntington Disease
verfasst von
Mohammad Javad Ebrahimi
Abbas Aliaghaei
Mahdi Eskandarian Boroujeni
Fariba Khodagholi
Gholamhoussein Meftahi
Mohammad Amin Abdollahifar
Houssein Ahmadi
Samira Danyali
Mahtab Daftari
Yousef Sadeghi
Publikationsdatum
01.08.2018
Verlag
Springer US
Erschienen in
Neurotoxicity Research / Ausgabe 2/2018
Print ISSN: 1029-8428
Elektronische ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-018-9884-4

Weitere Artikel der Ausgabe 2/2018

Neurotoxicity Research 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.