Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 6/2018

24.02.2018 | Original Article

Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI

verfasst von: N. A. da Silva, P. Lohmann, J. Fairney, A. W. Magill, A.-M. Oros Peusquens, C.-H. Choi, R. Stirnberg, G. Stoffels, N. Galldiks, X. Golay, K.-J. Langen, N. Jon Shah

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET).

Methods

Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 average power of 1μT. B0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test.

Results

A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences, and no correlation was found between APT# and 18F-FET PET data. The distance between local hot spot APT# and 18F-FET were different (average 20 ± 13 mm, range 4–45 mm).

Conclusion

For the first time, CEST images were compared with 18F-FET in a simultaneous MR-PET measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.
Literatur
1.
Zurück zum Zitat Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.CrossRefPubMed Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.CrossRefPubMed
2.
3.
Zurück zum Zitat McConathy J, Yu W, Jarkas N, et al. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev. 2012;32(4):868–905.CrossRefPubMed McConathy J, Yu W, Jarkas N, et al. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev. 2012;32(4):868–905.CrossRefPubMed
4.
Zurück zum Zitat Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology. 2014;16(3):434–40.CrossRefPubMed Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology. 2014;16(3):434–40.CrossRefPubMed
5.
Zurück zum Zitat Dunet V, Rossier C, Buck A, et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med. 2012;53(2):207–14.CrossRefPubMed Dunet V, Rossier C, Buck A, et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med. 2012;53(2):207–14.CrossRefPubMed
6.
Zurück zum Zitat Heinzel A, Müller D, Langen K-J, et al. The use of O-(2-18F-fluoroethyl)-L-tyrosine PET for treatment management of bevacizumab and irinotecan in patients with recurrent high-grade glioma: a cost-effectiveness analysis. J Nucl Med. 2013;54(8):1217–22.CrossRefPubMed Heinzel A, Müller D, Langen K-J, et al. The use of O-(2-18F-fluoroethyl)-L-tyrosine PET for treatment management of bevacizumab and irinotecan in patients with recurrent high-grade glioma: a cost-effectiveness analysis. J Nucl Med. 2013;54(8):1217–22.CrossRefPubMed
7.
Zurück zum Zitat Galldiks N, Rapp M, Stoffels G, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40(1):22–33.CrossRefPubMed Galldiks N, Rapp M, Stoffels G, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40(1):22–33.CrossRefPubMed
8.
Zurück zum Zitat Galldiks N, Stoffels G, Ruge MI, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54(12):2046–54.CrossRefPubMed Galldiks N, Stoffels G, Ruge MI, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54(12):2046–54.CrossRefPubMed
9.
Zurück zum Zitat Ceccon G, Lohmann P, Stoffels G, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology. 2017;19(2):281–8.PubMed Ceccon G, Lohmann P, Stoffels G, et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology. 2017;19(2):281–8.PubMed
10.
Zurück zum Zitat Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson. 1990;86(1):164–9. Wolff SD, Balaban RS. NMR imaging of labile proton exchange. J Magn Reson. 1990;86(1):164–9.
11.
Zurück zum Zitat Ward KM, Aletrasa H, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.CrossRefPubMed Ward KM, Aletrasa H, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.CrossRefPubMed
12.
Zurück zum Zitat Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;802:799–802.CrossRef Ward K, Balaban R. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;802:799–802.CrossRef
13.
Zurück zum Zitat Van Zijl P, Jones C, Ren J, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A. 2007;104(11):4359–64.CrossRefPubMedPubMedCentral Van Zijl P, Jones C, Ren J, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A. 2007;104(11):4359–64.CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Zhou J, Payen J, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.CrossRefPubMed Zhou J, Payen J, Wilson DA, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.CrossRefPubMed
17.
Zurück zum Zitat Jones CK, Schlosser MJ, van Zijl PCM, et al. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56(3):585–92.CrossRefPubMed Jones CK, Schlosser MJ, van Zijl PCM, et al. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56(3):585–92.CrossRefPubMed
18.
Zurück zum Zitat Zhou J, Lal B, Wilson D, et al. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50(6):1120–6.CrossRefPubMed Zhou J, Lal B, Wilson D, et al. Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med. 2003;50(6):1120–6.CrossRefPubMed
19.
Zurück zum Zitat Tietze A, Blicher J, Mikkelsen IK, et al. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR Biomed. 2014;27(2):163–74.CrossRefPubMed Tietze A, Blicher J, Mikkelsen IK, et al. Assessment of ischemic penumbra in patients with hyperacute stroke using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. NMR Biomed. 2014;27(2):163–74.CrossRefPubMed
20.
Zurück zum Zitat Heo H-Y, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging. 2016;44(1):41–50.CrossRefPubMed Heo H-Y, Jones CK, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging. 2016;44(1):41–50.CrossRefPubMed
21.
Zurück zum Zitat Sakata A, Okada T, Yamamoto A, et al. Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol. 2015;122(2):339–48.CrossRef Sakata A, Okada T, Yamamoto A, et al. Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol. 2015;122(2):339–48.CrossRef
22.
Zurück zum Zitat Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17(1):130–4.CrossRefPubMed Zhou J, Tryggestad E, Wen Z, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17(1):130–4.CrossRefPubMed
23.
Zurück zum Zitat Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology. 2014;16(3):441–8.CrossRefPubMed Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology. 2014;16(3):441–8.CrossRefPubMed
24.
Zurück zum Zitat Zaiss M, Windschuh J, Goerke S, et al. Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med. 2017;77(1):196–208.CrossRefPubMed Zaiss M, Windschuh J, Goerke S, et al. Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med. 2017;77(1):196–208.CrossRefPubMed
25.
Zurück zum Zitat Jones CK, Huang A, Xu J, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage. 2013;77:114–24.CrossRefPubMed Jones CK, Huang A, Xu J, et al. Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. NeuroImage. 2013;77:114–24.CrossRefPubMed
26.
Zurück zum Zitat Paech D, Zaiss M, Meissner J-E, et al. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One. 2014;9(8):e104181.CrossRefPubMedPubMedCentral Paech D, Zaiss M, Meissner J-E, et al. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One. 2014;9(8):e104181.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Schlemmer H, Pichler B, Schmand M. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3). Schlemmer H, Pichler B, Schmand M. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248(3).
28.
Zurück zum Zitat Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncology. 2015;17(11):1514–24.CrossRefPubMedPubMedCentral Harris RJ, Cloughesy TF, Liau LM, et al. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-Oncology. 2015;17(11):1514–24.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Harris RJ, Cloughesy TF, Liau LM, et al. Simulation, phantom validation, and clinical evaluation of fast pH-weighted molecular imaging using amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) in glioma at 3 T. NMR Biomed. 2016;29(11):1563–76.CrossRefPubMed Harris RJ, Cloughesy TF, Liau LM, et al. Simulation, phantom validation, and clinical evaluation of fast pH-weighted molecular imaging using amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) in glioma at 3 T. NMR Biomed. 2016;29(11):1563–76.CrossRefPubMed
30.
Zurück zum Zitat Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(3):678–87.CrossRefPubMed Pauleit D, Floeth F, Hamacher K, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128(3):678–87.CrossRefPubMed
31.
Zurück zum Zitat Herzog H, Langen K-J, Weirich C, et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin. 2011;50(2):74–82.CrossRefPubMed Herzog H, Langen K-J, Weirich C, et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin. 2011;50(2):74–82.CrossRefPubMed
32.
Zurück zum Zitat Jones C, Polders D, Hua J. In vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T. Magn Reson Med. 2012;67(6):1579–89.CrossRefPubMed Jones C, Polders D, Hua J. In vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T. Magn Reson Med. 2012;67(6):1579–89.CrossRefPubMed
33.
Zurück zum Zitat Stirnberg R, Pflugfelder D, Stöcker T, Shah NJ. High-Resolution 3D-fMRI at 9.4 Tesla with Intrinsically Minimised Geometric Distortions. Proc Intl Soc Mag Reson Med. 2013;2372. Stirnberg R, Pflugfelder D, Stöcker T, Shah NJ. High-Resolution 3D-fMRI at 9.4 Tesla with Intrinsically Minimised Geometric Distortions. Proc Intl Soc Mag Reson Med. 2013;2372.
34.
Zurück zum Zitat Stirnberg R, Brenner D, Stöcker T, Shah NJ. Rapid fat suppression for three-dimensional echo planar imaging with minimized specific absorption rate. Magn Reson Med. 2016;76(5):1517–23.CrossRefPubMed Stirnberg R, Brenner D, Stöcker T, Shah NJ. Rapid fat suppression for three-dimensional echo planar imaging with minimized specific absorption rate. Magn Reson Med. 2016;76(5):1517–23.CrossRefPubMed
35.
36.
Zurück zum Zitat Hamacher K, Coenen HH. Efficient routine production of the 18 F-labelled amino acid O-2-18F-fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.CrossRefPubMed Hamacher K, Coenen HH. Efficient routine production of the 18 F-labelled amino acid O-2-18F-fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.CrossRefPubMed
37.
Zurück zum Zitat Langen K-J, Bartenstein P, Boecker H, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50(4):167–73.CrossRefPubMed Langen K-J, Bartenstein P, Boecker H, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50(4):167–73.CrossRefPubMed
38.
Zurück zum Zitat Kops E, Hautzel H, Herzog H, et al. Comparison of template-based versus CT-based attenuation correction for hybrid MR/PET scanners. IEEE Trans Nucl Sci. 2015;62(5):2115–21.CrossRef Kops E, Hautzel H, Herzog H, et al. Comparison of template-based versus CT-based attenuation correction for hybrid MR/PET scanners. IEEE Trans Nucl Sci. 2015;62(5):2115–21.CrossRef
39.
Zurück zum Zitat Weirich C, Scheins J, Lohmann P, et al. Quantitative PET imaging with the 3T MR-BrainPET. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2013;702:26–8.CrossRef Weirich C, Scheins J, Lohmann P, et al. Quantitative PET imaging with the 3T MR-BrainPET. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2013;702:26–8.CrossRef
40.
Zurück zum Zitat Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.CrossRefPubMed Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.CrossRefPubMed
41.
Zurück zum Zitat Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–41.CrossRefPubMed Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–41.CrossRefPubMed
42.
Zurück zum Zitat Zhang Y, Heo H-Y, Lee D-H, et al. Selecting the reference image for registration of CEST series. J Magn Reson Imaging. 2016;43(3):756–61.CrossRefPubMed Zhang Y, Heo H-Y, Lee D-H, et al. Selecting the reference image for registration of CEST series. J Magn Reson Imaging. 2016;43(3):756–61.CrossRefPubMed
43.
Zurück zum Zitat Abdul-Rahman HS, Gdeisat M, Burton DR, et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt. 2007;46(26):6623.CrossRefPubMed Abdul-Rahman HS, Gdeisat M, Burton DR, et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt. 2007;46(26):6623.CrossRefPubMed
44.
Zurück zum Zitat Henkelman R, Huang X, Xiang QS, et al. Quantitative interpretation of magnetization transfer. Magn Reson Med. 1993;29(6):759–66.CrossRefPubMed Henkelman R, Huang X, Xiang QS, et al. Quantitative interpretation of magnetization transfer. Magn Reson Med. 1993;29(6):759–66.CrossRefPubMed
45.
Zurück zum Zitat Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med. 1995;33(4):475–82.CrossRefPubMed Morrison C, Henkelman RM. A model for magnetization transfer in tissues. Magn Reson Med. 1995;33(4):475–82.CrossRefPubMed
46.
Zurück zum Zitat Heo H-Y, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla. Magn Reson Med. 2016;75(1):137–49.CrossRefPubMed Heo H-Y, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla. Magn Reson Med. 2016;75(1):137–49.CrossRefPubMed
47.
Zurück zum Zitat Heo H-Y, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3T. Magn Reson Med. 2016;75(4):1630–9.CrossRefPubMed Heo H-Y, Zhang Y, Jiang S, et al. Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3T. Magn Reson Med. 2016;75(4):1630–9.CrossRefPubMed
48.
Zurück zum Zitat Heo H-Y, Lee D-H, Zhang Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med. 2017;77(5):1853–65.CrossRefPubMed Heo H-Y, Lee D-H, Zhang Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med. 2017;77(5):1853–65.CrossRefPubMed
49.
Zurück zum Zitat Lohmann P, Herzog H, Rota Kops E, et al. Dual-time-point O-(2-[(18)F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25(10):3017–24.CrossRefPubMed Lohmann P, Herzog H, Rota Kops E, et al. Dual-time-point O-(2-[(18)F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol. 2015;25(10):3017–24.CrossRefPubMed
50.
Zurück zum Zitat Sakata A, Fushimi Y, Okada T, et al. Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging. 2017;46(3):732–9.CrossRefPubMed Sakata A, Fushimi Y, Okada T, et al. Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors. J Magn Reson Imaging. 2017;46(3):732–9.CrossRefPubMed
51.
Zurück zum Zitat Albert NL, Winkelmann I, Suchorska B, et al. Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43(6):1105–14.CrossRefPubMed Albert NL, Winkelmann I, Suchorska B, et al. Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43(6):1105–14.CrossRefPubMed
52.
Zurück zum Zitat Langen K-J, Hamacher K, Weckesser M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.CrossRefPubMed Langen K-J, Hamacher K, Weckesser M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33(3):287–94.CrossRefPubMed
53.
Zurück zum Zitat Yan K, Fu Z, Yang C, et al. Assessing amide proton transfer (APT) MRI contrast origins in 9 L Gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol. 2015;17(4):479–87.CrossRefPubMedPubMedCentral Yan K, Fu Z, Yang C, et al. Assessing amide proton transfer (APT) MRI contrast origins in 9 L Gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol. 2015;17(4):479–87.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Sun PZ, Sorensen G. Imaging pH using the chemical exchange saturation transfer (CEST) MRI: correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med. 2008;60(2):390–7.CrossRefPubMed Sun PZ, Sorensen G. Imaging pH using the chemical exchange saturation transfer (CEST) MRI: correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med. 2008;60(2):390–7.CrossRefPubMed
55.
Zurück zum Zitat Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med. 2011;66(4):1033–41.CrossRefPubMedPubMedCentral Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med. 2011;66(4):1033–41.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Desmond KL, Stanisz GJ. Understanding quantitative pulsed CEST in the presence of MT. Magn Reson Med. 2012;67(4):979–90.CrossRefPubMed Desmond KL, Stanisz GJ. Understanding quantitative pulsed CEST in the presence of MT. Magn Reson Med. 2012;67(4):979–90.CrossRefPubMed
57.
Zurück zum Zitat Zaiss M, Kunz P, Goerke S, et al. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed. 2013;26(12):1815–22.CrossRefPubMed Zaiss M, Kunz P, Goerke S, et al. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed. 2013;26(12):1815–22.CrossRefPubMed
58.
Zurück zum Zitat Griffiths J. Are cancer cells acidic? Br J Cancer. 1991;427(3):425-427. Griffiths J. Are cancer cells acidic? Br J Cancer. 1991;427(3):425-427.
59.
Zurück zum Zitat Ross B, Higgins RJ, Boggan JE, et al. 31P NMR spectroscopy of the in vivo metabolism of an intracerebral glioma in the rat. Magn Reson Med. 1988;6(4):403–17.CrossRefPubMed Ross B, Higgins RJ, Boggan JE, et al. 31P NMR spectroscopy of the in vivo metabolism of an intracerebral glioma in the rat. Magn Reson Med. 1988;6(4):403–17.CrossRefPubMed
60.
Zurück zum Zitat Goldman S, Levivier M, Pirotte B, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med. 1997;38(9):1459–62.PubMed Goldman S, Levivier M, Pirotte B, et al. Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med. 1997;38(9):1459–62.PubMed
62.
Zurück zum Zitat Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [ 11 C ] L -Methionine positron emission Tomography : local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70.CrossRefPubMed Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [ 11 C ] L -Methionine positron emission Tomography : local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70.CrossRefPubMed
63.
Zurück zum Zitat Stegmayr C, Bandelow U, Oliveira D, et al. Influence of blood-brain barrier permeability on O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging. 2017;44(3):408–16.CrossRefPubMed Stegmayr C, Bandelow U, Oliveira D, et al. Influence of blood-brain barrier permeability on O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging. 2017;44(3):408–16.CrossRefPubMed
64.
Zurück zum Zitat Schmitt B, Zaiss M, Zhou J, Bachert P. Optimization of pulse train presaturation for CEST imaging in clinical scanners. Magn Reson Med. 2011;65(6):1620–9.CrossRefPubMed Schmitt B, Zaiss M, Zhou J, Bachert P. Optimization of pulse train presaturation for CEST imaging in clinical scanners. Magn Reson Med. 2011;65(6):1620–9.CrossRefPubMed
65.
Zurück zum Zitat Dula AN, Asche EM, Landman BA, et al. Development of chemical exchange saturation transfer (CEST) at 7T. Magn Reson Med. 2012;66(3):831–8.CrossRef Dula AN, Asche EM, Landman BA, et al. Development of chemical exchange saturation transfer (CEST) at 7T. Magn Reson Med. 2012;66(3):831–8.CrossRef
67.
Zurück zum Zitat Shah NJ. Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct Funct. 2015;220(4):1867–84.CrossRefPubMed Shah NJ. Multimodal neuroimaging in humans at 9.4 T: a technological breakthrough towards an advanced metabolic imaging scanner. Brain Struct Funct. 2015;220(4):1867–84.CrossRefPubMed
Metadaten
Titel
Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI
verfasst von
N. A. da Silva
P. Lohmann
J. Fairney
A. W. Magill
A.-M. Oros Peusquens
C.-H. Choi
R. Stirnberg
G. Stoffels
N. Galldiks
X. Golay
K.-J. Langen
N. Jon Shah
Publikationsdatum
24.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 6/2018
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-3940-4

Weitere Artikel der Ausgabe 6/2018

European Journal of Nuclear Medicine and Molecular Imaging 6/2018 Zur Ausgabe