Skip to main content
Erschienen in: Journal of Medical Systems 4/2010

01.08.2010 | Original Paper

Ideal Filtering Approach on DCT Domain for Biomedical Signals: Index Blocked DCT Filtering Method (IB-DCTFM)

verfasst von: Hang Sik Shin, Chungkeun Lee, Myoungho Lee

Erschienen in: Journal of Medical Systems | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

We proposed Index-Blocked Discrete Cosine Transform Filtering Method (IB-DCTFM) to design ideal frequency range filter on DCT domain for biomedical signal which frequently exposed to specific frequency noise such as motion artifacts and 50/60 Hz powerline interference. IB-DCTFM removes unwanted frequency range signal on time domain by blocking specific DCT index on DCT domain. In simulation, electrocardiography, electromyography, photoplethysmography are used as a signal source and FIR, IIR and adaptive filter are used for comparison with proposed IB-DCTFM. To evaluate filter performance, we calculated signal-to-noise ratio and correlation coefficient to clean signal of each signal and filtering method respectively. As a result of filter simulation, average signal to noise ration and correlation coefficient of IB-DCTFM are improved about 75.8 dB/0.477, and FIR, IIR and adaptive filtering results are 24.8 dB/0.130, 54.3 dB/0.440 and 29.5 dB/0.200 respectively.
Literatur
1.
Zurück zum Zitat Tompkins, W. J., Biomedical digital signal processing: C language examples and laboratory experiments for the IBM PC. Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1993. Tompkins, W. J., Biomedical digital signal processing: C language examples and laboratory experiments for the IBM PC. Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1993.
3.
Zurück zum Zitat Amit, J. N., and Tompkins, W. J., EMD-based 60-Hz noise filtering of the ECG. Proc of the 29th Annual Int Conf of the IEEE EMBS, Cité Internationale, Lyon, France, August 23–26, 2007. Amit, J. N., and Tompkins, W. J., EMD-based 60-Hz noise filtering of the ECG. Proc of the 29th Annual Int Conf of the IEEE EMBS, Cité Internationale, Lyon, France, August 23–26, 2007.
4.
Zurück zum Zitat Rangaraj, M. R., Biomedical signal analysis: A case-study approach. IEEE Press Series on Biomedical Engineering: Wiley, NY, USA, 2002. Rangaraj, M. R., Biomedical signal analysis: A case-study approach. IEEE Press Series on Biomedical Engineering: Wiley, NY, USA, 2002.
6.
Zurück zum Zitat Pei, S. C., and Tseng, C. C., Adaptive IIR notch filter based on least mean p-power error criterion. IEEE Trans. Circuits Syst. 2 Analog Digit. Signal Process. 40 (8)525–528, 1993. doi:10.1109/82.242343.CrossRef Pei, S. C., and Tseng, C. C., Adaptive IIR notch filter based on least mean p-power error criterion. IEEE Trans. Circuits Syst. 2 Analog Digit. Signal Process. 40 (8)525–528, 1993. doi:10.​1109/​82.​242343.CrossRef
7.
Zurück zum Zitat Zhang, D., Wavelet approach for ECG baseline wander correction and noise reduction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1212–1215, 2005. Zhang, D., Wavelet approach for ECG baseline wander correction and noise reduction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2:1212–1215, 2005.
8.
Zurück zum Zitat Kim, S. H., Ryoo, D. W. et al., Adaptive noise cancellation using accelerometers for the PPG signal from forehead. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2564–2567, 2007. doi:10.1109/IEMBS.2007.4352852. Kim, S. H., Ryoo, D. W. et al., Adaptive noise cancellation using accelerometers for the PPG signal from forehead. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2564–2567, 2007. doi:10.​1109/​IEMBS.​2007.​4352852.
10.
Zurück zum Zitat Oppenheim, A.V., Schafer, R. S., and Buck, J. R., Discrete-time signal processing, 2nd edition. Prentice Hall, Upper Sandle River, NJ, 1999. Oppenheim, A.V., Schafer, R. S., and Buck, J. R., Discrete-time signal processing, 2nd edition. Prentice Hall, Upper Sandle River, NJ, 1999.
11.
Zurück zum Zitat Shamir, M., Eidelman, L. A., et al., Pulse oximetry plethysmographic waveform during changes in blood volume. Br. J. Anaesth. 82 (2)178–181, 1999. Shamir, M., Eidelman, L. A., et al., Pulse oximetry plethysmographic waveform during changes in blood volume. Br. J. Anaesth. 82 (2)178–181, 1999.
12.
Zurück zum Zitat Zhang, W., Wang, X., et al., Noise reduction in ECG signal based on adaptive wavelet transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2699–2702, 2005. Zhang, W., Wang, X., et al., Noise reduction in ECG signal based on adaptive wavelet transform. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2699–2702, 2005.
13.
Zurück zum Zitat Ziarani, A. K., Konrad, A., Edward, S., and Rogers, Sr., A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Trans. Biomed. Eng. 49:540–547, 2002. doi:10.1109/TBME.2002.1001968.CrossRef Ziarani, A. K., Konrad, A., Edward, S., and Rogers, Sr., A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Trans. Biomed. Eng. 49:540–547, 2002. doi:10.​1109/​TBME.​2002.​1001968.CrossRef
15.
Zurück zum Zitat Akay, M., Biomedical signal processing. Academic: San Diego, CA, 1994. Akay, M., Biomedical signal processing. Academic: San Diego, CA, 1994.
17.
Zurück zum Zitat Foo, J. Y. A., and Wilson, S. J., A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states. Med. Biol. Eng. Comput. 44:140–145, 2006. doi:10.1007/s11517-005-0008-y.CrossRef Foo, J. Y. A., and Wilson, S. J., A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states. Med. Biol. Eng. Comput. 44:140–145, 2006. doi:10.​1007/​s11517-005-0008-y.CrossRef
18.
Zurück zum Zitat Wood, L. B., and Asada, H. H., Noise cancellation model validation for reduced motion artifact wearable PPG sensors using MEMS accelerometers. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3525–3528, 2006.CrossRef Wood, L. B., and Asada, H. H., Noise cancellation model validation for reduced motion artifact wearable PPG sensors using MEMS accelerometers. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3525–3528, 2006.CrossRef
19.
20.
Zurück zum Zitat Ortolan, R. L., Mori, R. N., et al., Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans. Neural Syst. Rehabil. Eng. 11 (1)60–69, 2003. doi:10.1109/TNSRE.2003.810432.CrossRef Ortolan, R. L., Mori, R. N., et al., Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. IEEE Trans. Neural Syst. Rehabil. Eng. 11 (1)60–69, 2003. doi:10.​1109/​TNSRE.​2003.​810432.CrossRef
21.
Zurück zum Zitat Zhang, Y. T., Parker, P. A., and Scott, R. N., Signal-to-noise ratios of the myoelectric channel with additive noise. Proc. 19th Ann. Intern. Conf. IEEE Eng. Med. Biol. Soc. 4 (30)1582–1584, 1997. Zhang, Y. T., Parker, P. A., and Scott, R. N., Signal-to-noise ratios of the myoelectric channel with additive noise. Proc. 19th Ann. Intern. Conf. IEEE Eng. Med. Biol. Soc. 4 (30)1582–1584, 1997.
22.
Zurück zum Zitat Bazhyna, A., Gotchev, A., Christov, I. I., Daskalov, I. K., and Egiazarian, K., Beat-to-beat noise removal in noninvasive His-bundle electrocardiogram. Med. Biol. Eng. Comput. 42 (5)712–719, 2004. doi:10.1007/BF02347555.CrossRef Bazhyna, A., Gotchev, A., Christov, I. I., Daskalov, I. K., and Egiazarian, K., Beat-to-beat noise removal in noninvasive His-bundle electrocardiogram. Med. Biol. Eng. Comput. 42 (5)712–719, 2004. doi:10.​1007/​BF02347555.CrossRef
23.
Zurück zum Zitat Nikolaev, N., Gotchev, A., Egiazarian, K., and Nikolov, Z., Suppression of electromyogram interference on the electrocardiogram by transform domain denoising. Med. Biol. Eng. Comput. 39 (6)649–655, 2001. doi:10.1007/BF02345437.CrossRef Nikolaev, N., Gotchev, A., Egiazarian, K., and Nikolov, Z., Suppression of electromyogram interference on the electrocardiogram by transform domain denoising. Med. Biol. Eng. Comput. 39 (6)649–655, 2001. doi:10.​1007/​BF02345437.CrossRef
Metadaten
Titel
Ideal Filtering Approach on DCT Domain for Biomedical Signals: Index Blocked DCT Filtering Method (IB-DCTFM)
verfasst von
Hang Sik Shin
Chungkeun Lee
Myoungho Lee
Publikationsdatum
01.08.2010
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 4/2010
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-009-9289-2

Weitere Artikel der Ausgabe 4/2010

Journal of Medical Systems 4/2010 Zur Ausgabe