Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2014

Open Access 01.12.2014 | Research

Identification and characterisation of eight novel SERPINA1 Null mutations

verfasst von: Ilaria Ferrarotti, Tomás P Carroll, Stefania Ottaviani, Anna M Fra, Geraldine O’Brien, Kevin Molloy, Luciano Corda, Daniela Medicina, David R Curran, Noel G McElvaney, Maurizio Luisetti

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2014

Abstract

Background

Alpha-1 antitrypsin (AAT) is the most abundant circulating antiprotease and is a member of the serine protease inhibitor (SERPIN) superfamily. The gene encoding AAT is the highly polymorphic SERPINA1 gene, found at 14q32.1. Mutations in the SERPINA1 gene can lead to AAT deficiency (AATD) which is associated with a substantially increased risk of lung and liver disease. The most common pathogenic AAT variant is Z (Glu342Lys) which causes AAT to misfold and polymerise within hepatocytes and other AAT-producing cells. A group of rare mutations causing AATD, termed Null or Q0, are characterised by a complete absence of AAT in the plasma. While ultra rare, these mutations confer a particularly high risk of emphysema.

Methods

We performed the determination of AAT serum levels by a rate immune nephelometric method or by immune turbidimetry. The phenotype was determined by isoelectric focusing analysis on agarose gel with specific immunological detection. DNA was isolated from whole peripheral blood or dried blood spot (DBS) samples using a commercial extraction kit. The new mutations were identified by sequencing all coding exons (II-V) of the SERPINA1 gene.

Results

We have found eight previously unidentified SERPINA1 Null mutations, named: Q0cork, Q0perugia, Q0brescia, Q0torino, Q0cosenza, Q0pordenone, Q0lampedusa, and Q0dublin . Analysis of clinical characteristics revealed evidence of the recurrence of lung symptoms (dyspnoea, cough) and lung diseases (emphysema, asthma, chronic bronchitis) in M/Null subjects, over 45 years-old, irrespective of smoking.

Conclusions

We have added eight more mutations to the list of SERPINA1 Null alleles. This study underlines that the laboratory diagnosis of AATD is not just a matter of degree, because the precise determination of the deficiency and Null alleles carried by an AATD individual may help to evaluate the risk for the lung disease.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13023-014-0172-y) contains supplementary material, which is available to authorized users.

Competing interests

Authors have no potential conflicts of interest with any companies/organisations whose products or services may be discussed in this article.

Authors’ contributions

IF and TPC conceived of the study and wrote the manuscript. IF, TPC, SO, GO’B, DM performed experiments. AMF, NGM, ML helped with discussion and interpretation of the results. KM, LC, DRC collected samples and clinical data. All authors read and approved the final manuscript.
Abkürzungen
AAT
Alpha1-antitrypsin
SERPIN
Serine protease inhibitor
AATD
Alpha1-antitrypsin deficiency
COPD
Chronic obstructive pulmonary disease
IEF
Isoelectric focusing
HRCT
High resolution computed tomography

Background

Alpha-1 antitrypsin (AAT) is a serine protease inhibitor, encoded by the SERPINA1 gene on the long arm of chromosome 14 at 14q32.1. The gene is comprised of four coding exons (II, III, IV, and V), three untranslated exons (Ia, Ib, and Ic) in the 5′ region and six introns. Following translation, the 24 amino acid signal peptide is removed and the mature polypeptide is a 394 amino acid, 52 kDa glycoprotein with three asparagine-linked carbohydrate side chains [1]. AAT is an acute phase protein produced predominantly by hepatocytes, but AAT synthesis also occurs in mononuclear phagocytes, neutrophils, and airway and intestinal epithelial cells [2]. Consistent with a role as an important acute phase reactant, hepatocytes express approximately 200 times more AAT mRNA than other cells [3] and serum levels rapidly increase several-fold during the acute phase response [4]. The primary function of AAT is the regulation of serine proteases, and the chief site of action is the lungs where it protects the fragile alveolar tissues from proteolytic degradation during inflammatory responses. In addition to its undoubted anti-protease properties, there is accumulating evidence that AAT plays a key anti-inflammatory role [5].
Alpha-1 antitrypsin deficiency (AATD) (MIM # 613490) is an inherited condition caused by mutations within the polymorphic SERPINA1 gene and is characterised by decreased serum AAT concentrations. AATD is an under-diagnosed condition and the majority of cases remain undiagnosed. The World Health Organisation (WHO), the American Thoracic Society (ATS), and the European Respiratory Society (ERS) advocate a targeted screening approach for the detection of AATD in at risk populations, specifically chronic obstructive pulmonary disease (COPD), non-responsive asthma, cryptogenic liver disease and in first degree relatives of known AATD patients. Over 100 mutations leading to AAT deficiency have been identified to date and are associated with varying degrees of risk for lung and liver disease. AATD is associated with increased risk of cutaneous panniculitis [6] and case reports have linked AATD to vasculitis [7], and Wegener’s granulomatosis [8] with the Z allele over-represented in subsets of ANCA-associated vasculitis [9]. The most common mutations known to cause AATD are the dysfunctional Z (Glu342Lys) and S (Glu264Val) mutations. The Z mutation leads to a severe plasma deficiency and is the most common clinically significant allele. The majority of individuals diagnosed with severe AATD are homozygous for the Z mutation, and have circulating AAT levels reduced to 10-15% of normal. This is because the Z mutation prompts the AAT protein to polymerise and accumulate within the endoplasmic reticulum of hepatocytes, thus causing impaired secretion [10]. The rate of polymer formation for S is much slower than Z AAT, leading to reduced retention of protein within hepatocytes, milder plasma deficiency, and a negligible risk of disease in MS heterozygotes [11],[12]. However, there is a risk of lung disease in compound heterozygotes. For example, if the slowly polymerising S variant of AAT is inherited with a rapidly polymerising variant such as Z, the two variants when co-expressed can interact to form heteropolymers, leading to cirrhosis and plasma deficiency [13].
The ultra rare family of SERPINA1 mutations termed silent or Null are characterised by a complete absence of AAT in the plasma. Null (also called Q0) mutations are caused by a variety of different mechanisms including large gene deletions [14], intron mutations [15], nonsense mutations [16], and frameshift mutations [17]. In some cases, Null variants are synthesised in the hepatocytes, but they are rapidly cleared by intracellular degradation pathways [18]. As Null mutations do not induce AAT polymerisation, they confer no risk of liver disease but do confer a particularly high risk of lung disease [19]. The exact prevalence of Null mutations is unclear, and is hampered by a lack of general awareness of AATD and inherent flaws in diagnostic strategies.
We report here eight cases of previously unidentified Null SERPINA1 mutations in the Italian and Irish populations.

Methods

The diagnostic algorithm for diagnosis of AATD was applied as previously reported [20]. The probands were referred to the Italian or Irish National Reference Centres for the Diagnosis of AATD, situated in Pavia and Brescia (Italy), and Dublin (Ireland), respectively. Where possible, relatives were analysed and family trees were created (online Additional file 1). Family members included in the study or their parents gave written informed consent. All procedures were in accordance with the declaration of Helsinki and approved by the local ethics committees. Clinical data were obtained from direct observation or medical charts.
AAT measurements were performed by a rate immune nephelometric method (Array 360 System; Beckman-Coulter) or by immune turbidimetry (Beckman Coulter AU5400). The phenotype was determined by isoelectric focusing analysis (IEF) on agarose gel with specific immunological detection [21]. DNA was isolated from whole peripheral blood or dried blood spot (DBS) samples using a commercial extraction kit (DNA IQ System, Promega or PAXgene Blood DNA kit, PreAnalytix or DNA Blood Mini kit, Qiagen). The new mutations were identified by sequencing all coding exons (II-V) of the AAT gene (SERPINA1, RefSeq: NG_008290), as previously described [20],[22], using the CEQ 8800 genetic analysis System (Beckman Coulter) or the Big Dye Terminator Cycle Sequencing Kit 3.1 (Applied Biosystem) with the 3130 Genetic Analyzer.

Results

The specific mutations are summarized in Table 1. The eight new Null mutations have been conventionally named Q0cork, Q0perugia, Q0brescia, Q0torino, Q0cosenza, Q0pordenone, Q0lampedusa, and Q0dublin according to the birthplaces of the oldest subject carrying each mutation. Q0brescia, Q0torino and Q0cosenza consist of point mutations in the sequence of coding DNA that result in a premature stop codon (nonsense mutation). Q0cork, Q0perugia, Q0pordenone, Q0lampedusa and Q0dublin were caused by deletions, resulting in frameshift of the reading frame, and creating premature stop codons (Figure 1).
Table 1
Description of the eight new SERPINA1 Null mutations identified
Variant
Mutation
Q0cork
T180ACA,delCA > Ter190TAA
Q0perugia
V239GTG, delG > Ter241TGA
Q0brescia
E257GAG > TerTAG
Q0torino
Y297TAT > TerTAA
Q0cosenza
Q305CAA > TerTAA
Q0pordenone
L327CTG,delT > Ter338TGA
Q0lampedusa
V337GTG,delG > Ter338TGA
Q0dublin
F370TTT,delT > Ter373TAA
The genotype, AAT levels, and clinical details of each proband and their relatives bearing Null mutations are listed in Table 2.
Table 2
Summary of clinical details of Q0 individuals
Case
Genotype
AAT (g/L)
Age at diagnosis (years)
Proband/kinship to proband
Clinical
Pack/year
1.1 – IA
M1/Q0cork
0.70
43
proband
cough, dyspnoea
15
2.1 - IA
M3/Q0perugia
0.83
60
proband
emphysema
52
2.1 - IB
M3/Q0perugia
0.80
54
brother
healthy
22
3.1 – IA
M1/Q0brescia
0.70
73
mother
chronic bronchitis
0
3.1 – IB
M1/Q0brescia
0.71
71
father
healthy
0
3.1 – IIA
Q0brescia/Q0brescia
Undetectable
41
proband
emphysema
3
3.1 – IIB
Q0brescia/Q0brescia
Undetectable
37
proband
emphysema
6
3.1 – IIIA
M1/Q0brescia
0.70
7
daughter
healthy
0
3.1 – IIIB
M1/Q0brescia
1.08
10
daughter
healthy
0
3.2 - IA
Z/Q0brescia
0.20
41
proband
emphysema
20
4.1 - IA
S/Q0torino
0.71
53
proband
emphysema
15
5.1 – IA
M2/Q0cosenza
0.80
63
aunt
dyspnoea
0
5.1 – IB
M2/Q0cosenza
0.85
67
mother
asthma
0
5.1 – IIA
S/Q0cosenza
0.60
34
proband
healthy
4
5.1 – IIB
S/Q0cosenza
0.71
43
sister
healthy
0
6.1 – IA
M2/Q0pordenone
0.55
37
father
healthy
0
6.1 – IIA
M3/Q0pordenone
0.81
6
brother
healthy
0
6.1 – IIB
M1/Q0pordenone
0.77
0.5
proband
cough
0
6.2 – IA
M1/Q0pordenone
0.91
54
proband
emphysema
ex
6.2 – IIA
M1/Q0pordenone
0.78
34
nephew
healthy
0
6.2 – IIB
M1/Q0pordenone
0.66
24
nephew
healthy
0
6.3 – IA
M1/Q0pordenone
0.47
69
proband
emphysema
unknown
6.3 – IIA
M1/Q0pordenone
0.81
37
son
healthy
0.1
6.4 – IA
M3/Q0pordenone
1.30
38
mother
healthy (pregnant)
0
6.4 – IIA
M2/Q0pordenone
0.78
6
proband
healthy
0
7.1 – IA
M1/Q0lampedusa
0.62
87
mother
emphysema
0
7.1 – IIA
M1/Q0lampedusa
0.76
57
sister
healthy
0
7.1 – IIB
M1/Q0lampedusa
0.80
61
sister
healthy
0
7.1 – IIC
M1/Q0lampedusa
0.73
55
sister
healthy
15
7.1 – IID
M1/Q0lampedusa
0.74
51
sister
chronic bronchitis
60
7.1 – IIE
M1/Q0lampedusa
0.71
48
sister
chronic bronchitis
0
7.1 – IIF
Q0lampedusa/Q0lampedusa
<0.1
46
proband
emphysema, asthma
0
7.1 – IIIA
M1/Q0lampedusa
1.00
30
niece
healthy
0
7.1 – IIIB
M2/Q0lampedusa
0.84
39
nephew
healthy
10
7.1 – IIIC
M1/Q0lampedusa
0.64
33
nephew
healthy
24
7.1– IIID
M1/Q0lampedusa
0.74
22
nephew
healthy
1.5
7.1 – IIIE
M1/Q0lampedusa
0.67
15
nephew
healthy
0
8.1 – IA
M1/Q0dublin
0.74
70
proband
bronchiectasis
1
8.1 – IIA
M1/Q0dublin
0.64
40
son
healthy
0
8.1 – IIB
M1/Q0dublin
0.70
34
son
recurrent LRTIs
1
8.1 – IIC
M1/Q0dublin
1.11
39
daughter
healthy
0
Index cases are written in bold.

Q0cork

The proband was a 43 year old female who presented with cough, dyspnoea and wheeze, and was subsequently diagnosed with asthma by methacholine challenge test (Family 1.1 – subject IA, Table 2). A current smoker, spirometry showed no evidence of airways obstruction with pre-bronchodilator FEV1 of 2.55 L (95%), FVC 3.12 L (100%), and FEV1/FVC 82%. High resolution computed tomography (HRCT) of the lungs showed no evidence of emphysema or bronchiectasis. However, during routine assessment, the AAT concentration was found to be unusually low given the apparent MM phenotype observed on IEF, therefore DNA sequencing was performed. A deletion of CA in codon 180 ACA (exon II), present in heterozygosity, was detected. The deletion causes a frameshift in the reading frame and generates a premature stop codon (TAA) downstream at codon 190. The subject was homozygous Val213, therefore the novel Q0cork deletion arose on a M1(Val213) background.

Q0perugia

The proband (Family 2.1 – subject IA, Table 2) was a 60 year old male heavy smoker who developed emphysema before the age of 50. Since his AAT concentration in plasma was lower than normal, a complete genetic analysis of AAT was performed. The sequencing of SERPINA1 gene revealed the heterozygous deletion of the first G in the codon 239 GTG (exon III), which causes a frameshift in the reading frame and the generation of a premature stop codon (241TGA). The novel mutation was also detected in a brother. Phenotype analysis and family pedigree revealed that this Null mutation arose on M1(Val213) background.

Q0brescia

The probands were two sisters (Family 3.1, Table 2), both suffering from pulmonary emphysema and COPD. Their spirometry values showed obstructive defects with pre-bronchodilator FEV1 of 1.89 and 1.23 L (62% and 38%), FVC 3.38 and 2.11 L (97% and 63%), and FEV1/FVC 64% and 60%, respectively. Direct sequencing revealed both are homozygous for a point mutation at codon 257 (G > T transversion), changing a GAG (glutamic acid) codon into a TAG stop codon. Furthermore, both were homozygous for Alanine polymorphism at position 213 (rs6647), corresponding to the ancestral AAT gene variant M1(Ala). The familial study was performed on their two daughters (one from each sister) and their parents and confirmed the mendelian inheritance, showing heterozygosity both for the mutation at position 257 and for the M1 polymorphism at position 213 for all subjects. According to the reports of the probands their parents had no distant relationship, although they were born in two nearby villages in south-east Italy. Subsequently, this novel mutation was detected in a patient with severe AATD who was found to be composite heterozygous Z/Q0brescia (3.2-IA, Table 2). The proband, born in the same south-eastern Italian area, was a heavy smoker, who suffered from dyspnoea on exertion and productive cough, and he developed panlobular emphysema by the age of 40. His spirometry values showed obstructive defects with pre-bronchodilator FEV1 of 1.01 L (27%), FVC 3.36 L (73%), and FEV1/FVC 36%.

Q0torino

In index case 4.1 – IA (Table 2) DNA sequencing revealed heterozygosity for the S mutation (rs17580) and for a T > A transversion at codon 297 (TyrTAT > TerTAA) in exon IV. Analysis of the daughter confirmed that the Null mutation does not segregate with the S mutation and it arose on a M1(Val) background. The proband was a ex-smoker (15 pack/year) with emphysema and dyspnoea at rest.

Q0cosenza

The proband was a 34 year old healthy male with a reported low concentration of AAT in plasma during a routine medical assessment (Family 5.1 – subject IIA, Table 2). DNA sequencing of the proband revealed heterozygosity for the S mutation (rs17580) and for a C > T transition at codon 305 (CAA > TAA) in exon IV. This transversion results in a premature Stop codon instead of a glutamine codon. Family screening revealed that the Null mutation does not segregate with S mutation and that the novel Q0cosenza allele arose on an M2 background. The novel mutation was also detected in a sister (who carried the S mutation as well), the mother and an aunt.

Q0pordenone

In index case 6.1 – IIB (Table 2), a deletion of a single T in codon 327 (exon IV) was discovered by DNA sequencing. The deletion was heterozygous and no other mutation was present. It causes a frameshift in the reading frame and generates a premature stop codon (TGA) 11 codons downstream. The mutation was also detected in the father and a brother of the index case. Like in the index case 6.1-IIB, Q0pordenone was identified in heterozygosity with M alleles coding for normal AAT levels in 3 additional cases (6.2 - IA, 6.3 - IA and 6.4 - IIA), and in 4 relatives (2 nephews of 6.2 - IA, one son of 6.3 - IA and the mother of 6.4 - IIA). The four families carrying this novel Null allele were not related, but all subjects carrying Q0pordenone identified so far were born in the North-East region of Italy.

Q0lampedusa

DNA sequencing of the 4 exons of SERPINA1 in the index case (7.1 – IIF, Table 2) revealed a homozygous deletion of a single G in codon 337 (exon V), occurring in the background of a normal M2 allele (His101-Val213-Asp376). This deletion results in a frameshift that produces an altered reading frame and generates an immediately adjacent premature stop codon (TGA) at position 338. The proband was a woman, never smoker, who worked in a sawmill; she had the first episodes of dyspnoea on exertion at the age of 35, but suspicion of AATD did not arise untill ten years later, when HRCT diagnosed centrolobular emphysema and spirometry detected slight obstruction with pre-bronchodilator FEV1 of 1.5 (63%), FVC 2.39 L (85% ), and post-bronchodilator FEV1 of 1.63 (72%), FVC 2.65 L (96%). The consanguinity of the proband’s parents was excluded, according to the direct report of the patients; nevertheless, they was born in two small islands near to Sicily, therefore a founder effect is probable. The novel mutation Q0lampedusa was subsequently diagnosed in heterozygous fashion with M alleles coding for normal AAT levels in 11 out of 23 relatives who were subsequently investigated. Direct sequencing of SERPINA1 exons in the remaining family members has confirmed the segregation of the mutant allele.

Q0dublin

The proband was a 70 year old female who presented with bronchiectasis and a lower than expected AAT concentration given the apparent MM phenotype observed on IEF analysis (Family 8.1 – subject IC, Table 2). A past smoker, spirometry showed no evidence of airways obstruction with pre-bronchodilator FEV1 of 1.44 L (89%), FVC 1.97 L (98%), and FEV1/FVC 73%. HRCT of the lungs showed bronchiectasis but no evidence of emphysema. Sequencing identified a deletion of a single T resulting in a frameshift which alters the reading frame and generates an adjacent premature stop codon (TAA) at position 373. The subject was homozygous Val213, therefore the novel Q0dublin deletion arose on a M1(Val213) background. The same mutation was detected in heterozygosity in all three children.

Discussion

Null alleles result from different molecular mechanisms, including large gene deletions, intron mutations, nonsense mutations, frameshift mutations due to small insertions or deletions, and missense mutations associated with amino acid substitutions in potentially critical structural elements [23]. The common trait of Null mutations is the total absence of serum AAT. These mutations are extremely rare and can be difficult to diagnose, mainly because isoelectric focusing (IEF), a commonly used diagnostic method, although not preferred technique for screening of AATD [24], is not able to detect Null variants, as they do not produce protein. Therefore, the M/Null and MM phenotypes are identical when analysed by isoelectric focusing with only the normal M protein evident. Secondly, M/Null genotypes can be misclassified as M homozygotes in many common genotyping assays [25]. Sequence analysis of SERPINA1 gene is the optimal technique to detect Null mutations and only the application of an efficient and cost-effective diagnostic algorithm can ensure the diagnosis of a subject heterozygous or homozygous for Null mutations [20].
The existence of AAT Null alleles was first noted in the early 1970s by several investigators. The first published report of a Null SERPINA1 mutation described the case of a 24 year old man who had advanced pulmonary emphysema and no detectable serum AAT [26]. The first report of a probable Null SERPINA1 mutation in Ireland was a case report in 1974 describing a pedigree in which the proband was Z/Null, a son S/Null and the mother M/Null [27]. The precise Null mutation was not identified and the diagnosis was based on the discordant AAT concentrations in his son and mother when compared to phenotype identified by starch gel electrophoresis. The first report of a Null mutation of Italian origin was Q0trastevere, which was detected in an Italian individual with asthma and emphysema [16].
To date, a total of 26 different Null alleles have been detected and characterized (Table 3). Many are caused by premature stop codons, mainly due to nonsense mutations or insertion/deletion of one-two nucleotides that cause frameshift of the reading frame and lead to a premature stop codon. A second group of Null mutations lie in introns; some of these have been identified in mRNA splicing sites: Nullwest is characterized by a single G > T base substitution at position 1 of intron II, which generally is highly conserved; Nullbonny blue has been described as a deletion of the previously reported G. Other mutations are caused by large deletions; examples are Nullisola di procida, a deletion of a 17Kb fragment that includes exons II-V [14], and Nullriedenburg, caused by the complete deletion of the gene [28]. It is well known that an almost full length molecule is essential for the secretion of AAT, therefore a truncated protein prevents the secretion itself [18].
Table 3
List of the 24 Null mutation SERPINA1 described to date
Mechanism
Allele
Intron/exon
Mutation
Reference
Large deletion
Q0isola di procida
Intron IC
g8801,del17.65 kb
[14]
Q0riedenburg
Exon IC
Complete deletion of the gene
[28]
Intron mutations
Q0savannah
Intron IA
g.5307_5308ins8bp
[29]
Q0porto
Intron IC
+1G > A
[30]
Q0madrid
Intron IC
+3, insT
[31]
Q0west
Intron II
+1G > T
[15]
Q0bonny blue
Intron II
+1delG
[23]
Nonsense mutations
Q0kowloon
Exon II
Y 38TAC > Ter TAA
[23]
Q0chillichote
Exon II
Q 156CAG > Ter TAG
[29]
Q0amersfoort or Q0predevoort rs199422210
Exon II
Y 160TAC > Ter TAG
[19],[32]
Q0trastevere
Exon III
W194 TGG > Ter TGA
[16]
Q0bellingham rs199422211
Exon III
K 217AAG > Ter TAG
[33]
Q0cairo rs1802963
Exon III
K 259AAA > Ter TAA
[34]
Frameshift mutations
Q0milano
Exon III
K59,del17bp > Ter AAA
[35]
Q0soest
Exon II
T102ACC,del A > Ter 112 TGA
[32]
Q0granite falls rs267606950
Exon II
YTAC, delC > Ter 160 TAG
[36]
Q0hong kong
Exon IV
L318CTC, del TC > Ter 334 TAA
[17]
Q0mattawa rs28929473
Exon V
L353 TTA, ins T > Ter 376 TGA
[37]
Q0ourem
Exon V
L 352TTA, ins T > Ter 376 TGA
[38]
Q0bolton
Exon V
P362CCC, delC > Ter 373 TAA
[39]
Q0clayton
Exon V
P 362CCC,ins C > Ter 376 TGA, and M1(Val)
[40]
Q0saarbruecken
Exon V
P362CCC,ins C > Ter 376 TGA, and M1(Ala)
[41]
Missense mutations
Q0lisbon
Exon II
T68ACC > I ATC
[41]
 
Q0ludwigshafen rs28931572
Exon II
I92ATC > N AAC
[42]
 
Q0newport
Exon II
G115GGC > S AGC
[43]
 
Q0new hope
Exon IV
G320GGG > E GAG and E342GAG > L AAG
[23]
For intronic mutations, reference sequence was NG_008290; dbSNP identification was reported where present.
Interestingly, Null mutations can also be induced by a simple amino acid substitution, like in Nullludwigshafen (Ile92 > Asn92). This substitution of a polar for a non-polar amino acid leads to folding impairment, with destruction of tertiary structure and therefore intracellular degradation [42]. In most Null mutations belonging to this group, it is not clear whether the altered glycoprotein is unstable and therefore recognized as defective by intracellular methabolic pathways and degraded, or if it is secreted but, due to a very short half-life with rapid turnover, it cannot be detected by routine diagnostic assays. In addition, some Null mutations may yet turn out to be “secreted” Null. For example, Nullnew hope and Nullnewport, were defined as Null on the basis of IEF and protein quantification in a period when molecular diagnosis was not widely available. A precedent for incorrect Null alleles does exist, and includes the well known Mheerlen, which was originally classified as PiQ0 on the basis of IEF and protein quantification [44], and Plowell, previously called Q0cardiff [45].
We describe here eight novel Null mutations in the coding regions of the SERPINA1 gene. Three (Q0brescia, Q0torino and Q0cosenza) are nonsense mutations, the others (Q0cork, Q0perugia, Q0pordenone, Q0lampedusa and Q0dublin) are frameshift mutations caused by deletion of one or two nucleotides.
It is worth noting most of the new mutations reported in this study occur close to other mutations, supporting the concept of mutational hot spots in the SERPINA1 gene [40]. In fact, Q0brescia occurs in a portion of 27 nucleotides (nine amino acids) in exon III of the gene, where it is possible to find a conspicuous number of other mutations: Plowell /Pduarte/Ybarcelona at codon 256, Q0cairo and Mpisa [46] at codon 259, T/S at codon 264, and the normal variant Lfrankfurt at codon 255. Q0pordenone lies in another region of 27 nucleotides together with other Null (Q0hongkong, Q0new hope) and normal (Plyon, Psaltlake,) mutations. Q0lampedusa occurs in the region of 21 nucleotides where, in addition to Z, other deficient (King, Wbethesda) and normal (Etokyo, Pst.albans) mutations lie. Lastly, Q0dublin is only one nucleotide from Mheerlen and Mwurzburg mutations and two nucleotides from Etaurisano [46] deficient alleles.
While Null mutations are extremely rare, the recurrence of Q0pordenone and Q0brescia in certain localized areas, without evidence of consanguinity, may indicate a relatively high prevalence of each Null allele in these geographic regions.
Although a discussion of the clinical characteristics of the Null-bearing subjects presented herein is not the main purpose of this study, we can draw some interesting conclusions. Subjects with Null mutations should be considered a subgroup at particularly high risk of emphysema within the spectrum of AATD [19]. In support of this, we report three probands homozygous for Null alleles, with early onset lung disease, despite absent or modest smoking history. Interestingly, the clinical importance of Null heterozygosity has never been investigated. Here we report evidence of the recurrence of lung symptoms (dyspnoea, cough) and lung diseases (emphysema, asthma, chronic bronchitis) in M/Null subjects, over 45 years of age, irrespective of their smoking habit (Table 2).

Conclusions

Our study has significantly expanded the list of Null alleles known to occur within the SERPINA1 gene and underlined the importance of the correct diagnosis of this group of mutations, because of the particularly high risk of lung disease.

Additional file

Acknowledgments

The work was support by the Fondazione IRCCS Policlinico San Matteo Ricerca Corrente (RC345). We wish to thank the Alpha One Foundation (Ireland), the Irish Government Department of Health and Children, Pat O’Brien, Eric Mahon, Emma Pentony, and Professor William Torney of the Department of Chemical Pathology at Beaumont Hospital, and Mario De Marchi of S. Luigi Hospital, Orbassano. We acknowledge the support of the European Respiratory Society (ERS) and the National Society (AIMAR), joint ERS/AIMAR Fellowship STRTF 87–2010. We also thank Mrs. Nuccia Gatta, president of the Italian Alpha-1 association, for continuous support. A special thanks to all the patients and their families who participated in this study.
This manuscript is dedicated to the memory of dear friend and colleague professor Maurizio Luisetti.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

Authors have no potential conflicts of interest with any companies/organisations whose products or services may be discussed in this article.

Authors’ contributions

IF and TPC conceived of the study and wrote the manuscript. IF, TPC, SO, GO’B, DM performed experiments. AMF, NGM, ML helped with discussion and interpretation of the results. KM, LC, DRC collected samples and clinical data. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR: Structure and variation of human alpha 1-antitrypsin. Nature. 1982, 298: 329-334. 10.1038/298329a0.CrossRefPubMed Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR: Structure and variation of human alpha 1-antitrypsin. Nature. 1982, 298: 329-334. 10.1038/298329a0.CrossRefPubMed
2.
Zurück zum Zitat Kelly E, Greene CM, Carroll TP, McElvany NG, O’Neill SJ: Alpha-1 antitrypsin deficiency. Respir Med. 2010, 104: 763-772. 10.1016/j.rmed.2010.01.016.CrossRefPubMed Kelly E, Greene CM, Carroll TP, McElvany NG, O’Neill SJ: Alpha-1 antitrypsin deficiency. Respir Med. 2010, 104: 763-772. 10.1016/j.rmed.2010.01.016.CrossRefPubMed
3.
Zurück zum Zitat Rogers J, Kalsheker N, Wallis S, Speer A, Coutelle CH, Woods D, Humphries SE: The isolation of a clone for human alpha 1-antitrypsin and the detection of alpha 1-antitrypsin in mRNA from liver and leukocytes. Biochem Biophys Res Commun. 1983, 116: 375-382. 10.1016/0006-291X(83)90532-6.CrossRefPubMed Rogers J, Kalsheker N, Wallis S, Speer A, Coutelle CH, Woods D, Humphries SE: The isolation of a clone for human alpha 1-antitrypsin and the detection of alpha 1-antitrypsin in mRNA from liver and leukocytes. Biochem Biophys Res Commun. 1983, 116: 375-382. 10.1016/0006-291X(83)90532-6.CrossRefPubMed
4.
Zurück zum Zitat Ferrarotti I, Thun GA, Zorzetto M, Ottaviani S, Imboden M, Schindler C, von Eckardstein A, Rohrer L, Rochat T, Russi EW, Probst-Hensh NM, Luisetti M: Serum levels and genotype distribution of alpha1-antitrypsin in the general population. Thorax. 2012, 67: 669-674. 10.1136/thoraxjnl-2011-201321.CrossRefPubMed Ferrarotti I, Thun GA, Zorzetto M, Ottaviani S, Imboden M, Schindler C, von Eckardstein A, Rohrer L, Rochat T, Russi EW, Probst-Hensh NM, Luisetti M: Serum levels and genotype distribution of alpha1-antitrypsin in the general population. Thorax. 2012, 67: 669-674. 10.1136/thoraxjnl-2011-201321.CrossRefPubMed
5.
Zurück zum Zitat Bergin DA, Hurley K, McElvaney NG, Reeves EP: Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp (Warsz). 2012, 60: 81-97. 10.1007/s00005-012-0162-5.CrossRef Bergin DA, Hurley K, McElvaney NG, Reeves EP: Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp (Warsz). 2012, 60: 81-97. 10.1007/s00005-012-0162-5.CrossRef
6.
Zurück zum Zitat Edmonds BK, Hodge JA, Rietschel RL: Alpha 1-antitrypsin deficiency-associated panniculitis: case report and review of the literature. Pediatr Dermatol. 1991, 8: 296-299. 10.1111/j.1525-1470.1991.tb00937.x.CrossRefPubMed Edmonds BK, Hodge JA, Rietschel RL: Alpha 1-antitrypsin deficiency-associated panniculitis: case report and review of the literature. Pediatr Dermatol. 1991, 8: 296-299. 10.1111/j.1525-1470.1991.tb00937.x.CrossRefPubMed
7.
Zurück zum Zitat Lewis M, Kallenbach J, Zaltzman M, Levy H, Lurie D, Baynes R, King P, Meyers A: Severe deficiency of alpha 1-antitrypsin associated with cutaneous vasculitis, rapidly progressive glomerulonephritis, and colitis. Am J Med. 1985, 79: 489-494. 10.1016/0002-9343(85)90036-1.CrossRefPubMed Lewis M, Kallenbach J, Zaltzman M, Levy H, Lurie D, Baynes R, King P, Meyers A: Severe deficiency of alpha 1-antitrypsin associated with cutaneous vasculitis, rapidly progressive glomerulonephritis, and colitis. Am J Med. 1985, 79: 489-494. 10.1016/0002-9343(85)90036-1.CrossRefPubMed
8.
Zurück zum Zitat Barnett VT, Sekosan M, Khurshid A: Wegener’s granulomatosis and alpha1-antitrypsin-deficiency emphysema: proteinase-related diseases. Chest. 1999, 116: 253-255. 10.1378/chest.116.1.253.CrossRefPubMed Barnett VT, Sekosan M, Khurshid A: Wegener’s granulomatosis and alpha1-antitrypsin-deficiency emphysema: proteinase-related diseases. Chest. 1999, 116: 253-255. 10.1378/chest.116.1.253.CrossRefPubMed
9.
Zurück zum Zitat Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, Baslund B, Brenchley P, Bruchfeld A, Chaudhry AN, Cohen Tervaert JW, Deloukas P, Feighery C, Gross WL, Guillevin L, Gunnarsson I, Harper L, Hrušková Z, Little MA, Martorana D, Neumann T, Ohlsson S, Padmanabhan S, Pusey CD, Salama AD, Sanders JS, Savage CO, Segelmark M, Stegeman CA, Tesař V, et al: Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012, 367 (3): 214-223. 10.1056/NEJMoa1108735.CrossRefPubMedPubMedCentral Lyons PA, Rayner TF, Trivedi S, Holle JU, Watts RA, Jayne DR, Baslund B, Brenchley P, Bruchfeld A, Chaudhry AN, Cohen Tervaert JW, Deloukas P, Feighery C, Gross WL, Guillevin L, Gunnarsson I, Harper L, Hrušková Z, Little MA, Martorana D, Neumann T, Ohlsson S, Padmanabhan S, Pusey CD, Salama AD, Sanders JS, Savage CO, Segelmark M, Stegeman CA, Tesař V, et al: Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012, 367 (3): 214-223. 10.1056/NEJMoa1108735.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Lomas DA, Evans DL, Finch JT, Carrell RW: The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992, 357: 605-607. 10.1038/357605a0.CrossRefPubMed Lomas DA, Evans DL, Finch JT, Carrell RW: The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992, 357: 605-607. 10.1038/357605a0.CrossRefPubMed
11.
Zurück zum Zitat Curiel DT, Chytil A, Courtney M, Crystal RG: Serum alpha 1-antitrypsin deficiency associated with the common S-type (Glu264––Val) mutation results from intracellular degradation of alpha 1-antitrypsin prior to secretion. J Biol Chem. 1989, 264 (18): 10477-10486.PubMed Curiel DT, Chytil A, Courtney M, Crystal RG: Serum alpha 1-antitrypsin deficiency associated with the common S-type (Glu264––Val) mutation results from intracellular degradation of alpha 1-antitrypsin prior to secretion. J Biol Chem. 1989, 264 (18): 10477-10486.PubMed
12.
Zurück zum Zitat Dahl M, Hersh CP, Ly NP, Berkey CS, Silverman EK, Nordestgaard BG: The protease inhibitor PI*S allele and COPD: a meta-analysis. Eur Respir J. 2005, 26 (1): 67-76. 10.1183/09031936.05.00135704.CrossRefPubMed Dahl M, Hersh CP, Ly NP, Berkey CS, Silverman EK, Nordestgaard BG: The protease inhibitor PI*S allele and COPD: a meta-analysis. Eur Respir J. 2005, 26 (1): 67-76. 10.1183/09031936.05.00135704.CrossRefPubMed
13.
Zurück zum Zitat Mahadeva R, Chang WS, Dafforn TR, Oakley DJ, Foreman RC, Calvin J, Wight DG, Lomas DA: Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J Clin Invest. 1999, 103 (7): 999-1006. 10.1172/JCI4874.CrossRefPubMedPubMedCentral Mahadeva R, Chang WS, Dafforn TR, Oakley DJ, Foreman RC, Calvin J, Wight DG, Lomas DA: Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J Clin Invest. 1999, 103 (7): 999-1006. 10.1172/JCI4874.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Takahashi H, Crystal RG: Alpha 1-antitrypsin Null(isola di procida): an alpha 1-antitrypsin deficiency allele caused by deletion of all alpha 1-antitrypsin coding exons. Am J Hum Genet. 1990, 47: 403-413.PubMedPubMedCentral Takahashi H, Crystal RG: Alpha 1-antitrypsin Null(isola di procida): an alpha 1-antitrypsin deficiency allele caused by deletion of all alpha 1-antitrypsin coding exons. Am J Hum Genet. 1990, 47: 403-413.PubMedPubMedCentral
15.
Zurück zum Zitat Laubach VE, Ryan WJ, Brantly M: Characterization of a human alpha 1-antitrypsin null allele involving aberrant mRNA splicing. Hum Mol Genet. 1993, 2: 1001-1005. 10.1093/hmg/2.7.1001.CrossRefPubMed Laubach VE, Ryan WJ, Brantly M: Characterization of a human alpha 1-antitrypsin null allele involving aberrant mRNA splicing. Hum Mol Genet. 1993, 2: 1001-1005. 10.1093/hmg/2.7.1001.CrossRefPubMed
16.
Zurück zum Zitat Lee J, Novoradovskaya N, Rundquist B, Redwine J, Saltini C, Brantly M: Alpha 1-antitrypsin nonsense mutation associated with a retained truncated protein and reduced mRNA. Mol Genet Metab. 1998, 63: 270-280. 10.1006/mgme.1998.2680.CrossRefPubMed Lee J, Novoradovskaya N, Rundquist B, Redwine J, Saltini C, Brantly M: Alpha 1-antitrypsin nonsense mutation associated with a retained truncated protein and reduced mRNA. Mol Genet Metab. 1998, 63: 270-280. 10.1006/mgme.1998.2680.CrossRefPubMed
17.
Zurück zum Zitat Sifers RN, Brashears-Macatee S, Kidd VJ, Muensch H, Woo SL: A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem. 1988, 263: 7330-7335.PubMed Sifers RN, Brashears-Macatee S, Kidd VJ, Muensch H, Woo SL: A frameshift mutation results in a truncated alpha 1-antitrypsin that is retained within the rough endoplasmic reticulum. J Biol Chem. 1988, 263: 7330-7335.PubMed
18.
Zurück zum Zitat Brodbeck RM, Brown JL: Secretion of a-1-proteinase inhibitor requires an almost full length molecule. J Biol Chem. 1992, 267: 294-297.PubMed Brodbeck RM, Brown JL: Secretion of a-1-proteinase inhibitor requires an almost full length molecule. J Biol Chem. 1992, 267: 294-297.PubMed
19.
Zurück zum Zitat Fregonese L, Stolk J, Frants RR, Veldhuisen B: Alpha-1 antitrypsin Null mutations and severity of emphysema. Respir Med. 2008, 102: 876-884. 10.1016/j.rmed.2008.01.009.CrossRefPubMed Fregonese L, Stolk J, Frants RR, Veldhuisen B: Alpha-1 antitrypsin Null mutations and severity of emphysema. Respir Med. 2008, 102: 876-884. 10.1016/j.rmed.2008.01.009.CrossRefPubMed
20.
Zurück zum Zitat Ferrarotti I, Scabini R, Campo I, Ottaviani S, Zorzetto M, Gorrini M, Luisetti M: Laboratory diagnosis of alpha1-antitrypsin deficiency. Transl Res. 2007, 150: 267-274. 10.1016/j.trsl.2007.08.001.CrossRefPubMed Ferrarotti I, Scabini R, Campo I, Ottaviani S, Zorzetto M, Gorrini M, Luisetti M: Laboratory diagnosis of alpha1-antitrypsin deficiency. Transl Res. 2007, 150: 267-274. 10.1016/j.trsl.2007.08.001.CrossRefPubMed
21.
Zurück zum Zitat Zerimech F, Hennache G, Bellon F, Barouh G, Jacques Lafitte J, Porchet N, Balduyck M: Evaluation of a new Sebia isoelectrofocusing kit for alpha 1-antitrypsin phenotyping with the Hydrasys System. Clin Chem Lab Med. 2008, 46: 260-263. 10.1515/CCLM.2008.036.CrossRefPubMed Zerimech F, Hennache G, Bellon F, Barouh G, Jacques Lafitte J, Porchet N, Balduyck M: Evaluation of a new Sebia isoelectrofocusing kit for alpha 1-antitrypsin phenotyping with the Hydrasys System. Clin Chem Lab Med. 2008, 46: 260-263. 10.1515/CCLM.2008.036.CrossRefPubMed
22.
Zurück zum Zitat Medicina D, Montani N, Fra AM, Tiberio L, Corda L, Miranda E, Pezzini A, Bonetti F, Ingrassia R, Scabini R, Facchetti F, Schiaffonati L: Molecular characterization of the new defective P(brescia) alpha1-antitrypsin allele. Hum Mut. 2009, 30: E771-E781. 10.1002/humu.21043.CrossRefPubMed Medicina D, Montani N, Fra AM, Tiberio L, Corda L, Miranda E, Pezzini A, Bonetti F, Ingrassia R, Scabini R, Facchetti F, Schiaffonati L: Molecular characterization of the new defective P(brescia) alpha1-antitrypsin allele. Hum Mut. 2009, 30: E771-E781. 10.1002/humu.21043.CrossRefPubMed
23.
Zurück zum Zitat Lee HJ, Brantly M: Molecular mechanism of alpha1-antitrypsin null alleles. Respir Med. 2000, 94: S7-S11. 10.1053/rmed.2000.0851.CrossRefPubMed Lee HJ, Brantly M: Molecular mechanism of alpha1-antitrypsin null alleles. Respir Med. 2000, 94: S7-S11. 10.1053/rmed.2000.0851.CrossRefPubMed
24.
Zurück zum Zitat Miravitlles M, Herr C, Ferrarotti I, Jardi R, Rodriguez-Frias F, Luisetti M, Bals R: Laboratory testing of individuals with severe alpha1-antitrypsin deficiency in three European centres. Eur Respir J. 2010, 35: 960-968. 10.1183/09031936.00069709.CrossRefPubMed Miravitlles M, Herr C, Ferrarotti I, Jardi R, Rodriguez-Frias F, Luisetti M, Bals R: Laboratory testing of individuals with severe alpha1-antitrypsin deficiency in three European centres. Eur Respir J. 2010, 35: 960-968. 10.1183/09031936.00069709.CrossRefPubMed
25.
Zurück zum Zitat Rodriguez-Frias F, Vila-Auli B, Homs-Riba M, Vidal-Pla R, Calpe-Calpe JL, Jardi-Margalef R: Diagnosis of alpha-1 antitrypsin deficiency: limitations of rapid diagnostic laboratory tests. Arch Bronconeumol. 2011, 47: 415-417. 10.1016/j.arbres.2011.02.005.CrossRefPubMed Rodriguez-Frias F, Vila-Auli B, Homs-Riba M, Vidal-Pla R, Calpe-Calpe JL, Jardi-Margalef R: Diagnosis of alpha-1 antitrypsin deficiency: limitations of rapid diagnostic laboratory tests. Arch Bronconeumol. 2011, 47: 415-417. 10.1016/j.arbres.2011.02.005.CrossRefPubMed
26.
Zurück zum Zitat Talamo RC, Langley CE, Reed CE, Makino S: Antitrypsin deficiency: a variant with no detectable α1 -antitrypsin. Science. 1973, 181: 70-71. 10.1126/science.181.4094.70.CrossRefPubMed Talamo RC, Langley CE, Reed CE, Makino S: Antitrypsin deficiency: a variant with no detectable α1 -antitrypsin. Science. 1973, 181: 70-71. 10.1126/science.181.4094.70.CrossRefPubMed
27.
Zurück zum Zitat Blundell G, Cole RB, Nevin NC, Bradley B: Alpha 1-antitrypsin null gene (pi). Lancet. 1974, 2: 404-10.1016/S0140-6736(74)91782-6.CrossRefPubMed Blundell G, Cole RB, Nevin NC, Bradley B: Alpha 1-antitrypsin null gene (pi). Lancet. 1974, 2: 404-10.1016/S0140-6736(74)91782-6.CrossRefPubMed
28.
Zurück zum Zitat Poller W, Faber JP, Weidenger S, Olek K: DNA polymorphism associated with a new α1-antitrypsin PIQ0 variant (PI Q0riedenburg). Hum Genet. 1991, 86: 522-524. 10.1007/BF00194647.CrossRefPubMed Poller W, Faber JP, Weidenger S, Olek K: DNA polymorphism associated with a new α1-antitrypsin PIQ0 variant (PI Q0riedenburg). Hum Genet. 1991, 86: 522-524. 10.1007/BF00194647.CrossRefPubMed
29.
Zurück zum Zitat Brantly M, Schreck P, Rouhani FN, Bridges LR, Leong A, Viranovskaya N, Charleston C, Min B, Strange C: Rare and novel alpha-1-antitrypsin alleles identified through the University of Florida-Alpha-1 Foundation DNA bank [abstract]. Am J Respir Crit Care Med. 2009, 179: A3506- Brantly M, Schreck P, Rouhani FN, Bridges LR, Leong A, Viranovskaya N, Charleston C, Min B, Strange C: Rare and novel alpha-1-antitrypsin alleles identified through the University of Florida-Alpha-1 Foundation DNA bank [abstract]. Am J Respir Crit Care Med. 2009, 179: A3506-
30.
Zurück zum Zitat Seixas S, Mendonça C, Costa F, Rocha J: alpha1-Antitrypsin null alleles: evidence for the recurrence of the L353fsX376 mutation and a novel G–>A transition in position +1 of intron IC affecting normal mRNA splicing. Clin Genet. 2002, 62: 175-180. 10.1034/j.1399-0004.2002.620212.x.CrossRefPubMed Seixas S, Mendonça C, Costa F, Rocha J: alpha1-Antitrypsin null alleles: evidence for the recurrence of the L353fsX376 mutation and a novel G–>A transition in position +1 of intron IC affecting normal mRNA splicing. Clin Genet. 2002, 62: 175-180. 10.1034/j.1399-0004.2002.620212.x.CrossRefPubMed
31.
Zurück zum Zitat Lara B, Martinez MT, Balnco I, Hernàndez-Moro C, Velasco EA, Ferrarotti I, Rodriguez-Frias F, Perez L, Vazquez I, Alonso J, Posada M, Martinez-Delgado B: Severe alpha1-antitrypsin deficiency in composite heterozigotes inheriting a new splicing mutation Q0madrid. Resp Res. 2014, 15: 125-10.1186/s12931-014-0125-y.CrossRef Lara B, Martinez MT, Balnco I, Hernàndez-Moro C, Velasco EA, Ferrarotti I, Rodriguez-Frias F, Perez L, Vazquez I, Alonso J, Posada M, Martinez-Delgado B: Severe alpha1-antitrypsin deficiency in composite heterozigotes inheriting a new splicing mutation Q0madrid. Resp Res. 2014, 15: 125-10.1186/s12931-014-0125-y.CrossRef
32.
Zurück zum Zitat Prins J, van der Meijden BB, Kraaijenhagen RJ, Wielders JP: Inherited chronic obstructive pulmonary disease: new selective-sequencing workup for alpha1-antitrypsin deficiency identifies 2 previously unidentified null alleles. Clin Chem. 2008, 54: 101-107. 10.1373/clinchem.2007.095125.CrossRefPubMed Prins J, van der Meijden BB, Kraaijenhagen RJ, Wielders JP: Inherited chronic obstructive pulmonary disease: new selective-sequencing workup for alpha1-antitrypsin deficiency identifies 2 previously unidentified null alleles. Clin Chem. 2008, 54: 101-107. 10.1373/clinchem.2007.095125.CrossRefPubMed
33.
Zurück zum Zitat Satoh K, Nukiwa T, Brantly M, Garver RI, Hofker M, Courtney M, Crystal RG: Emphysema associated with complete absence of alpha 1- antitrypsin in serum and the homozygous inheritance of a stop codon in an alpha 1-antitrypsin-coding exon. Am J Hum Genet. 1988, 42: 77-83.PubMedPubMedCentral Satoh K, Nukiwa T, Brantly M, Garver RI, Hofker M, Courtney M, Crystal RG: Emphysema associated with complete absence of alpha 1- antitrypsin in serum and the homozygous inheritance of a stop codon in an alpha 1-antitrypsin-coding exon. Am J Hum Genet. 1988, 42: 77-83.PubMedPubMedCentral
34.
Zurück zum Zitat Zorzetto M, Ferrarotti I, Campo I, Balestrino A, Nava S, Gorrini M, Scabini R, Mazzola P, Luisetti M: Identification of a novel alpha1-antitrypsin null variant (Q0Cairo). Diagn Mol Pathol. 2005, 14: 121-124. 10.1097/01.pas.0000155023.74859.d6.CrossRefPubMed Zorzetto M, Ferrarotti I, Campo I, Balestrino A, Nava S, Gorrini M, Scabini R, Mazzola P, Luisetti M: Identification of a novel alpha1-antitrypsin null variant (Q0Cairo). Diagn Mol Pathol. 2005, 14: 121-124. 10.1097/01.pas.0000155023.74859.d6.CrossRefPubMed
35.
Zurück zum Zitat Rametta R, Nebbia G, Dongiovanni P, Farallo M, Fargion S, Valenti L: A novel alpha1-antitrypsin gene variant (PiQ0Milano). World J Hepatol. 2013, 5: 458-461. 10.4254/wjh.v5.i8.458.CrossRefPubMedPubMedCentral Rametta R, Nebbia G, Dongiovanni P, Farallo M, Fargion S, Valenti L: A novel alpha1-antitrypsin gene variant (PiQ0Milano). World J Hepatol. 2013, 5: 458-461. 10.4254/wjh.v5.i8.458.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Nukiwa T, Takahashi H, Brantly M, Courtney M, Crystal RG: alpha 1-Antitrypsin nullGranite Falls, a nonexpressing alpha 1-antitrypsin gene associated with a frameshift to stop mutation in a coding exon. J Biol Chem. 1987, 262: 11999-12004.PubMed Nukiwa T, Takahashi H, Brantly M, Courtney M, Crystal RG: alpha 1-Antitrypsin nullGranite Falls, a nonexpressing alpha 1-antitrypsin gene associated with a frameshift to stop mutation in a coding exon. J Biol Chem. 1987, 262: 11999-12004.PubMed
37.
Zurück zum Zitat Curiel D, Brantly M, Curiel E, Stier L, Crystal RG: α1-antitrypsin deficiency caused by the α1-antitrypsin Nullmattawa gene. J Clin Invest. 1989, 83: 1144-1152. 10.1172/JCI113994.CrossRefPubMedPubMedCentral Curiel D, Brantly M, Curiel E, Stier L, Crystal RG: α1-antitrypsin deficiency caused by the α1-antitrypsin Nullmattawa gene. J Clin Invest. 1989, 83: 1144-1152. 10.1172/JCI113994.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Van Rodrigues L, Costa F, Marques P, Mendonça C, Rocha J, Seixas S: Severe α-1 antitrypsin deficiency caused by Q0(Ourém) allele: clinical features, haplotype characterization and history. Clin Genet. 2011, 81: 462-469. 10.1111/j.1399-0004.2011.01670.x.CrossRef Van Rodrigues L, Costa F, Marques P, Mendonça C, Rocha J, Seixas S: Severe α-1 antitrypsin deficiency caused by Q0(Ourém) allele: clinical features, haplotype characterization and history. Clin Genet. 2011, 81: 462-469. 10.1111/j.1399-0004.2011.01670.x.CrossRef
39.
Zurück zum Zitat Fraizer GC, Siewertsen MA, Harrold TR, Cox DW: Deletion/frameshift mutation in the α1-antitrypsin null allele, PI*Q0bolton . Hum Genet. 1989, 83: 377-382. 10.1007/BF00291385.CrossRefPubMed Fraizer GC, Siewertsen MA, Harrold TR, Cox DW: Deletion/frameshift mutation in the α1-antitrypsin null allele, PI*Q0bolton . Hum Genet. 1989, 83: 377-382. 10.1007/BF00291385.CrossRefPubMed
40.
Zurück zum Zitat Brantly M, Lee JH, Hildeshine J, Uhm C, Prakash UBS, Staats BA, Crystal RG: Alpha1-antitrypsin gene mutation hot spot associated with the formation of a retained and degraded null variant. Am J Respir Cell Mol Biol. 1997, 16: 225-231. 10.1165/ajrcmb.16.3.9070606.CrossRefPubMed Brantly M, Lee JH, Hildeshine J, Uhm C, Prakash UBS, Staats BA, Crystal RG: Alpha1-antitrypsin gene mutation hot spot associated with the formation of a retained and degraded null variant. Am J Respir Cell Mol Biol. 1997, 16: 225-231. 10.1165/ajrcmb.16.3.9070606.CrossRefPubMed
41.
Zurück zum Zitat Faber JP, Poller W, Weidinger S, Kirchfesser M, Schwaab R, Bidlingmaier F, Olek K: Identification and DNA sequence analysis of 15 new alpha1-antitryspin variants, including two PI*Q0 alleles and one deficient PI*M allele. Am J Hum Genet. 1994, 55: 1113-1121.PubMedPubMedCentral Faber JP, Poller W, Weidinger S, Kirchfesser M, Schwaab R, Bidlingmaier F, Olek K: Identification and DNA sequence analysis of 15 new alpha1-antitryspin variants, including two PI*Q0 alleles and one deficient PI*M allele. Am J Hum Genet. 1994, 55: 1113-1121.PubMedPubMedCentral
42.
Zurück zum Zitat Frazier GC, Siewertsen MA, Hofker MH, Brubacher MG, Cox DW: A Null deficient allele of alpha1-antitrypsin, Q0ludwingshafen, with altered tertiary structure. J Clin Invest. 1990, 86: 1878-1884. 10.1172/JCI114919.CrossRefPubMedPubMedCentral Frazier GC, Siewertsen MA, Hofker MH, Brubacher MG, Cox DW: A Null deficient allele of alpha1-antitrypsin, Q0ludwingshafen, with altered tertiary structure. J Clin Invest. 1990, 86: 1878-1884. 10.1172/JCI114919.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Graham A, Kalsheker NA, Bamforth FJ, Newton CR, Markham AF: Molecular characterization of two alpha 1-antitrypsindeficiency variants: proteinase inhibitor (Pi)Null Newport (Gly115 → Ser) and (Pi)Z Wrexham (Ser−19 → Leu). Hum Genet. 1990, 85: 537-540.PubMed Graham A, Kalsheker NA, Bamforth FJ, Newton CR, Markham AF: Molecular characterization of two alpha 1-antitrypsindeficiency variants: proteinase inhibitor (Pi)Null Newport (Gly115 → Ser) and (Pi)Z Wrexham (Ser−19 → Leu). Hum Genet. 1990, 85: 537-540.PubMed
44.
Zurück zum Zitat Kalsheker N, Hayes K, Weidinger S, Graham A: What is Pi (proteinase inhibitor)Null or PiQ0?: a problem highlighted by the alpha 1 antitrypsin Mheerlen mutation. J Med Genet. 1992, 29: 27-29. 10.1136/jmg.29.1.27.CrossRefPubMedPubMedCentral Kalsheker N, Hayes K, Weidinger S, Graham A: What is Pi (proteinase inhibitor)Null or PiQ0?: a problem highlighted by the alpha 1 antitrypsin Mheerlen mutation. J Med Genet. 1992, 29: 27-29. 10.1136/jmg.29.1.27.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Graham A, Kalsheker NA, Newton CR, Bamforth FJ, Powell SJ, Markham AF: Molecular characterization of three alpha 1-antitrypsindeficiency variants: proteinase inhibitor (Pi)Null Cardiff (Asp256 → Val), Pi M Malton (Phe51 → deletion) and Pi I (Arg39 → Cys). Hum Genet. 1989, 84: 55-58. 10.1007/BF00210671.CrossRefPubMed Graham A, Kalsheker NA, Newton CR, Bamforth FJ, Powell SJ, Markham AF: Molecular characterization of three alpha 1-antitrypsindeficiency variants: proteinase inhibitor (Pi)Null Cardiff (Asp256 → Val), Pi M Malton (Phe51 → deletion) and Pi I (Arg39 → Cys). Hum Genet. 1989, 84: 55-58. 10.1007/BF00210671.CrossRefPubMed
46.
Zurück zum Zitat Fra AM, Gooptu B, Ferrarotti I, Miranda E, Scabini R, Ronzoni R, Benini F, Corda L, Medicina D, Luisetti M, Schiaffonati L: Three new alpha1-antitrypsin deficiency variants help to define a C-terminal region regulating conformational stability and polymerization. PlosOne. 2012, 7: e38405-10.1371/journal.pone.0038405.CrossRef Fra AM, Gooptu B, Ferrarotti I, Miranda E, Scabini R, Ronzoni R, Benini F, Corda L, Medicina D, Luisetti M, Schiaffonati L: Three new alpha1-antitrypsin deficiency variants help to define a C-terminal region regulating conformational stability and polymerization. PlosOne. 2012, 7: e38405-10.1371/journal.pone.0038405.CrossRef
Metadaten
Titel
Identification and characterisation of eight novel SERPINA1 Null mutations
verfasst von
Ilaria Ferrarotti
Tomás P Carroll
Stefania Ottaviani
Anna M Fra
Geraldine O’Brien
Kevin Molloy
Luciano Corda
Daniela Medicina
David R Curran
Noel G McElvaney
Maurizio Luisetti
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2014
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-014-0172-y

Weitere Artikel der Ausgabe 1/2014

Orphanet Journal of Rare Diseases 1/2014 Zur Ausgabe